Midterm Solution

M551 – Abstract Algebra

October 14th, 2011

1. Let G be a finite simple group with $|G| = p^{\alpha}n$, where n > 1, p is prime, $\alpha \in \mathbb{Z}_{>0}$ and $p \nmid n$. Show that $|G| \mid n_p!$, where n_p is the number of Sylow p-subgroups of G.

Proof. By Sylow's Theorem, we have that G acts on $\operatorname{Syl}_p(G)$ by conjugation. Since G is simple and n > 1, we have that $n_p > 1$. Also, the kernel of the representation of this action is either $\{1\}$ or G. Since the action is non-trivial, as it is transitive [by Sylow's Theorem] and $n_p > 1$, we must have that the kernel is $\{1\}$, and thus, by the first isomorphism theorem, G is isomorphic to a subgroup of S_{n_p} . Therefore, by Lagrange's Theorem, we have that $|G| \mid n_p!$.

2. (a) Let G act on a finite set S and assume that there exists an element in G which induces an *odd* permutation of S. Show that there exists $H \leq G$ such that |G:H| = 2.

Proof. Let |S| = n. Then, the action gives a representation $\phi : G \to S_n$. Let $\epsilon : S_n \to \{\pm 1\}$ be the sign (or parity) homomorphism. Since G has an element that induces an odd permutation [and $\epsilon(1) = 1$], we have that the homomorphism $\epsilon \circ \phi : G \to \{\pm 1\}$ is onto. Let H be its kernel. Then, by the First Isomorphism Theorem, we have that $|G : H| = |G| / |H| = |\{\pm 1\}| = 2$.

(b) Let G be a finite group of order 2n, where n is odd. Show that G has a subgroup of index 2. [Hint: Let G act on itself by left multiplication.]

Proof. We use part (a) with G acting on itself by left multiplication. We just need an element which induces an odd permutation. Let g be an element of order 2 [by Cauchy].

Note that the kernel of this action is trivial, as the only element of $x \in G$ such that xy = y for all $y \in G$ is x = 1. So, G is isomorphic to a subgroup of S_{2n} . Also note that if $x \neq 1$, then $xy \neq y$ for all $y \in G$ [i.e., x fixes no element of G].

Since g has order 2, we have that if $g = \sigma_1 \cdots \sigma_t$, where the σ_i 's are non-trivial *disjoint* cycles of S_{2n} , then the lcm of the length of these cycles is 2, i.e., all σ_i 's are transpositions. Since g fixes no element, we must have that the σ_i 's involve all 2n elements, i.e., t = n. Since n is odd, g induces an odd permutation.