Midterm Solution

M551 - Abstract Algebra

October 14th, 2011

1. Let G be a finite simple group with $|G|=p^{\alpha} n$, where $n>1, p$ is prime, $\alpha \in \mathbb{Z}_{>0}$ and $p \nmid n$. Show that $|G| \mid n_{p}$!, where n_{p} is the number of Sylow p-subgroups of G.

Proof. By Sylow's Theorem, we have that G acts on $\operatorname{Syl}_{p}(G)$ by conjugation. Since G is simple and $n>1$, we have that $n_{p}>1$. Also, the kernel of the representation of this action is either $\{1\}$ or G. Since the action is non-trivial, as it is transitive [by Sylow's Theorem] and $n_{p}>1$, we must have that the kernel is $\{1\}$, and thus, by the first isomorphism theorem, G is isomorphic to a subgroup of $S_{n_{p}}$. Therefore, by Lagrange's Theorem, we have that $|G| \mid n_{p}$!.
2. (a) Let G act on a finite set S and assume that there exists an element in G which induces an odd permutation of S. Show that there exists $H \leq G$ such that $|G: H|=2$.

Proof. Let $|S|=n$. Then, the action gives a representation $\phi: G \rightarrow S_{n}$. Let $\epsilon: S_{n} \rightarrow\{ \pm 1\}$ be the sign (or parity) homomorphism.
Since G has an element that induces an odd permutation [and $\epsilon(1)=1$], we have that the homomorphism $\epsilon \circ \phi: G \rightarrow\{ \pm 1\}$ is onto. Let H be its kernel. Then, by the First Isomorphism Theorem, we have that $|G: H|=|G| /|H|=|\{ \pm 1\}|=$ 2.
(b) Let G be a finite group of order $2 n$, where n is odd. Show that G has a subgroup of index 2. [Hint: Let G act on itself by left multiplication.]

Proof. We use part (a) with G acting on itself by left multiplication. We just need an element which induces an odd permutation. Let g be an element of order 2 [by Cauchy].
Note that the kernel of this action is trivial, as the only element of $x \in G$ such that $x y=y$ for all $y \in G$ is $x=1$. So, G is isomorphic to a subgroup of $S_{2 n}$. Also note that if $x \neq 1$, then $x y \neq y$ for all $y \in G$ [i.e., x fixes no element of G].
Since g has order 2, we have that if $g=\sigma_{1} \cdots \sigma_{t}$, where the σ_{i} 's are non-trivial disjoint cycles of $S_{2 n}$, then the lcm of the length of these cycles is 2 , i.e., all σ_{i} 's are transpositions. Since g fixes no element, we must have that the σ_{i} 's involve all $2 n$ elements, i.e., $t=n$. Since n is odd, g induces an odd permutation.

