Final (Solution)

M551 - Abstract Algebra

December 7th, 2011

1. Let p be a prime and G be a non-abelian group of order p^{3}. Prove that $G / Z(G) \cong$ $Z_{p} \times Z_{p}$ [where $Z(G)$ is the center of G and Z_{p} is a multiplicative cyclic group of order $p]$.

Proof. Since G is a p-group, the center is non-trivial. Since G is not abelian, the center is not the whole group. So, $|Z(G)|$ is either p or p^{2}. If $|G|=p^{2}$, then $G / Z(G)$ is of order p, and thus cyclic. But this implies that G is abelian, and hence a contradiction. Therefore, $|Z(G)|=p$ and $|G / Z(G)|=p^{2}$.
Thus, we have $G / Z(G)$ is isomorphic to either $Z_{p^{2}}$ or to $Z_{p} \times Z_{p}$. If the former, then it is cyclic, which would imply, again, that G is abelian, and hence a contradiction. Thus, $G / Z(G) \cong Z_{p} \times Z_{p}$.
2. Let G be a finite simple group. Show that if p is the largest prime dividing $|G|$, then there is no subgroup $H \leq G$ such that $1<|G: H|<p$.

Proof. Let $n \stackrel{\text { def }}{=}|G: H|$, and assume that $1<n<p$. Also, let $\Omega \stackrel{\text { def }}{=}\left\{g_{1} H, \ldots, g_{n} H\right\}$ be the set of cosets of H in G. Then, G acts on Ω by left multiplication. The representation $\phi: G \rightarrow S_{\Omega} \cong S_{n}$ is faithful, as G is simple.
Since $p||G|$, by Cauchy's Theorem, there exists an element $g \in G$ of order p. Thus $\phi(g) \in S_{n}$ has order p. But, since $n<p$ this is impossible, as the order of an element of S_{n} is the least common multiple of the lengths of the cycles in its decomposition into disjoint cycles. Since p is prime, this means that its decomposition into disjoint cycles has at least one cycle of length p. But a cycle of S_{n} cannot have length greater than n.
3. Let R be a PID. Show that every ideal I of R, with $I \neq 0, R$, is a product of finitely many maximal ideals, and that this decomposition is unique up to reordering.

Proof. Since R is a PID, we have that $I=(a)$. Since $I \neq 0$, we have that $a \neq 0$. Since $I \neq R$, we have that $a \notin R^{\times}$.
Since R is a UFD [as PID implies UFD], we have that $a=p_{1} \cdots p_{k}$, with p_{i} 's irreducibles. Since R is a UFD, this implies that the p_{i} 's are primes, and hence $\left(p_{i}\right)$ is a prime ideal. Since R is a PID, we have that $\left(p_{i}\right)$ is maximal. Thus,

$$
I=(a)=\left(p_{1}\right) \cdots\left(p_{k}\right) .
$$

Now, suppose that $I=M_{1} \cdots M_{l}$, with M_{i} 's maximal. Then, since R is a PID, there exists $m_{i} \in R$ such that $M_{i}=\left(m_{i}\right)$. Since M_{i} is prime, so is m_{i}, and hence irreducible. Therefore, since $I=(a)$, there exists a unit u such that $a=u \cdot m_{1} \cdots m_{l}$, and this is another factorization of a. By uniqueness of factorization, we have that $k=l$, and after a possible reordering, we can assume that p_{i} and m_{i} are associates. But then $\left(p_{i}\right)=\left(m_{i}\right)=M_{i}$.
4. Let R be a noetherian commutative ring with 1 [and $1 \neq 0$] and D be a multiplicative closed subset of R with $1 \in R$ and $0 \notin R$. Let $R_{D} \stackrel{\text { def }}{=} D^{-1} R$ be the localization of R at D. Show that R_{D} is also noetherian.

Proof. Let $J_{1} \subseteq J_{2} \subseteq J_{3} \subseteq \cdots$ be an infinite chain of ideal from R_{D}. Let $I_{i} \stackrel{\text { def }}{=}{ }^{\mathrm{c}} J_{i}$ be the contraction of the ideal J_{i}, i.e., if $\pi: R \rightarrow R_{D}$ is the homomorphism defined by $\pi(r)=r / 1$, then $I_{i} \stackrel{\text { def }}{=} \pi^{-1}\left(J_{i}\right)$. Then, we have $I_{1} \subseteq I_{2} \subseteq \cdots$. Since R is a noetherian [and I_{i} 's are ideals of R], we have that there exists N such that $I_{n}=I_{N}$ for all $n \geq N$. Then, we must have $J_{n}={ }^{\mathrm{e}} I_{n}={ }^{\mathrm{e}} I_{N}=J_{N}$. [Note: We've seen in class that if J is an ideal of R_{D}, then ${ }^{\mathrm{e}}\left({ }^{\mathrm{c}} J\right)=J$, but if I and ideal of R that is not prime, then maybe ${ }^{\mathrm{c}}\left({ }^{\mathrm{e}} I\right) \neq I$.] Thus, R_{D} satisfies the ACC of ideals, and hence it is noetherian.

Here is an alternative proof: Let $\pi: R \rightarrow R_{D}$ be the homomorphism defined by $\pi(r)=r / 1, I$ be an ideal of R_{D} and $I^{\prime} \stackrel{\text { def }}{=} \pi^{-1}(I)$ be the contraction of I to R [which we know is an ideal]. Then, since R is noetherian, we have that $I^{\prime}=\left(a_{1}, \ldots, a_{n}\right)$ for some $a_{i} \in R$.
We claim that $I=\left(a_{1} / 1, \ldots, a_{n} / 1\right)$. Since $a_{i} \in I^{\prime}$, we have that $\pi\left(a_{i}\right)=a_{i} / 1 \in I$ [by definition of I. So, clearly $\left(a_{1} / 1, \ldots, a_{n} / 1\right) \subseteq I$.

Now, let $r / d \in I$. Then, $d / 1 \cdot r / d=r / 1 \in I$. Therefore, $r \in I^{\prime}$. Thus, $r=r_{1} a_{1}+\cdots+$ $r_{n} a_{n}$, for some $r_{i} \in R$. Thus $r / 1=\left(r_{1} a_{1}+\cdots+r_{n} a_{n}\right) / 1=r_{1} / 1 \cdot a_{1} / 1+\cdots+r_{n} / 1 \cdot a_{n} / 1$, and so $r / d=r_{1} / d \cdot a_{1} / 1+\cdots+r_{n} / d \cdot a_{n} / 1$. Therefore, $r / d \in\left(a_{1} / 1, \ldots, a_{n} / 1\right)$ and $I \subseteq\left(a_{1} / 1, \ldots, a_{n} / 1\right)$.

