1) [15 points] Determine if B is a basis of the corresponding vector space V or not, giving a short explanation. [Hint: None of them actually require computations!]
(a) $B=\{1+x, 2+2 x\}$ for $V=P_{1}$. [P_{1} is the vector space of polynomials of degree at most 1.]

Solution. No, as the set is linearly dependent, as the second polynomial is a multiple of the first.
(b) $B=\{(-1,2,3),(0,1,4)\}$ for $V=\mathbb{R}^{3}$.

Solution. No, as the dimension of \mathbb{R}^{3} is 3 , so every basis should have 3 vectors. [The given set does not generate all of \mathbb{R}^{3}, as we need at least three vectors for that.]
(c) $B=\{(1,1),(-1,1)\}$ for $V=\mathbb{R}^{2}$.

Solution. Yes. Since B has two elements, and 2 is the dimension of \mathbb{R}^{2}, we only need to check that the vectors are linearly independent. Since one vector is not a multiple of the other, the set is linearly independent, and hence B is a basis.
2) Change of basis:
(a) [10 points] Let $B=\{(1,1),(0,1)\}$ and $B^{\prime}=\{(2,1),(1,1)\}$. Give the transition matrix $P_{B \rightarrow B^{\prime}}$.

Solution.

$$
\left[B^{\prime} \mid B\right]=\left[\begin{array}{ll|ll}
2 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{rr|rr}
1 & 0 & 0 & -1 \\
1 & 1 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{rr|rr}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 2
\end{array}\right]
$$

So,

$$
P_{B \rightarrow B^{\prime}}=\left[\begin{array}{rr}
0 & -1 \\
1 & 2
\end{array}\right] .
$$

(b) [5 points] Let B and B^{\prime} be bases of a vector space V, with transition matrix

$$
P_{B \rightarrow B^{\prime}}=\left[\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right] .
$$

Then, if $[\mathbf{v}]_{B}=(2,-1)$, find $[\mathbf{v}]_{B^{\prime}}$.
Solution. We have

$$
[\mathbf{v}]_{B^{\prime}}=P_{B \rightarrow B^{\prime}} \cdot[\mathbf{v}]_{B}=\left[\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right] \cdot\left[\begin{array}{r}
2 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
5
\end{array}\right] .
$$

So, $[\mathbf{v}]_{B^{\prime}}=(1,5)$.
3) [15 points] Let $\mathbf{v}_{1}=(0,1,-2,3), \mathbf{v}_{2}=(-2,1,1,1), \mathbf{v}_{3}=(1,-1,1,0)$. To find if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent or dependent, you need to set up a system, and depending on what happen with the system you can give the answer. Give this system and tell how solving it would tell you if the set is linearly independent or dependent [something like, "it is linearly dependent if the system is consistent"].
[Note: Again, this is part of what you would have to do to find the answer, but I am saving you from actually having to solve the system! If you still don't know what I mean, just determine if the set is linearly dependent or independent.]

Solution. We have that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent if, and only if, the only real numbers such that $k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+k_{3} \mathbf{v}_{3}=\mathbf{0}$ are $k_{1}=k_{2}=k_{3}=0$. In other words, if and only if, the unique solution of

$$
\left[\begin{array}{rrr}
0 & -2 & 1 \\
1 & 1 & -1 \\
-2 & 1 & 1 \\
3 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

is $k_{1}=k_{2}=k_{3}=0$, i.e., if the [homogeneous] system above has only one solution. [If it has infinitely many solutions, then it has a non-trivial one, and thus the set would be linearly dependent.]
4) [15 points] Let

$$
A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad A_{3}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], \quad A_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

Then $B=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ is a basis of $M_{2 \times 2}$. [Just take my word.] Set up a linear system $A \mathbf{x}=\mathbf{b}$ whose unique solution \mathbf{x} is exactly $[A]_{B}$ [the coordinates of A with respect to the basis B], where

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

[Note: Yet again, this is part of what you would have to do. If you don't know what I mean, just compute $[A]_{B}$.]

Solution. We have that $[A]_{B}=\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$ means that $A=k_{1} A_{1}+k_{2} A_{2}+k_{3} A_{3}+k_{4} A_{4}$. So,

$$
k_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+k_{2}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]+k_{3}\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]+k_{4}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] .
$$

Simplifying the left hand side gives:

$$
\left[\begin{array}{cc}
k_{1}+k_{2}+k_{3} & k_{2} \\
k_{3} & k_{1}+k_{2}+k_{3}+k_{4}
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] .
$$

Comparing the entries gives:

$$
\begin{aligned}
k_{1}+k_{2}+k_{3} & =1 \\
k_{2} & =2 \\
k_{3} & =3 \\
k_{1}+k_{2}+k_{3}+k_{4} & =4
\end{aligned}
$$

The unique solution of this system of this system is then $[A]_{B}$.
5) Vector Spaces:
(a) [7 points] Is the set V of vectors (x, y) of \mathbb{R}^{2} such that $x \geq 0$ a vector space [with the usual addition and scalar multiplication of vectors]? [Show work!]

Solution. No. Although $(0,0)$ is in V, and summing two elements of V gives another element of V, V is not closed under scalar multiplication: $(1,1)$ is in V, but $-1 \cdot(1,1)=$ $(-1,-1)$ is not in V.
(b) [8 points] The set \mathbb{R}^{2} with the usual addition but with scalar multiplication given by $k(x, y)=(k y, k x)$ is not a vector space. Show all axioms that fail by giving concrete examples. [Use the list in the end.]

Solution. Note that since the addition is the usual one, all axioms that refer only to sum [namely, (1), (2), (3), (4), and half of (0)] are automatically satisfied. Checking the others we see that only (7) and (8) fail: take $\mathbf{u}=(0,1)$, and $k=l=1$. Then

$$
k(l \mathbf{u})=1(1(0,1))=1(1,0)=(0,1)
$$

but

$$
(k l) \mathbf{u}=(1 \cdot 1)(0,1)=1(0,1)=(1,0) .
$$

Since these are different, (7) fails. With the same \mathbf{u} we can see that (8) also fails as

$$
1(0,1)=(1,0) \neq(0,1)
$$

(c) [10 points] Show that the set V of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(1)=0$ is a vector space [with the usual addition and scalar multiplication of functions]. [Show work!]

Solution. Yes. Since all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is a vector space, we can just check that V is a subspace:

- The function constant equal to zero is clearly in V. [To check if a function is in V we compute its value at $x=1$. If the value is 0 , then it is in V. If it is not, then it is not.]
- If $f(1)=0$ and $g(1)=0$, then $(f+g)(1)=f(1)+g(1)=0+0=0$. So, if $f, g \in V$, then $f+g \in V$.
- If $f(1)=0$ and $k \in \mathbb{R}$, then $(k f)(1)=k f(1)=k 0=0$. So, if $f \in V$, then $k f \in V$.

Vector Space Axioms

A non-empty set V with a sum and a scalar product is a vector space if it satisfies the following conditions:
0. $\mathbf{u}+\mathbf{v} \in V$ for all $\mathbf{u}, \mathbf{v} \in V$, and $k \mathbf{u} \in V$ for all $\mathbf{u} \in V$ and $k \in \mathbb{R}$;

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in V$;
2. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$;
3. there is $\mathbf{0} \in V$ such that $\mathbf{0}+\mathbf{u}=\mathbf{u}$ for all $\mathbf{u} \in V$;
4. given $\mathbf{u} \in V$, there exists $-\mathbf{u} \in V$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$;
5. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$ for all $\mathbf{u}, \mathbf{v} \in V$ and $k \in \mathbb{R}$;
6. $(k+l) \mathbf{u}=k \mathbf{u}+l \mathbf{u}$ for all $\mathbf{u} \in V$ and $k, l \in \mathbb{R}$;
7. $k(l \mathbf{u})=(k l) \mathbf{u}$ for all $\mathbf{u} \in V$ and $k, l \in \mathbb{R}$;
8. $\mathbf{1} \mathbf{u}=\mathbf{u}$ for all $\mathbf{u} \in V$.
