1) $[16$ points $]$ Let $a, b \in \mathbb{Z}$. Prove that $(a, b)=(a, a+b)$.

Proof. Suffices to prove that the set of common divisors of a and b is the same as the set of common divisors of a and $a+b$ [as then the maximum of those, i.e., the GCD, must be the same.]
Suppose that $d \mid a, b$. Then, $a=a_{1} d$ and $b=b_{1} d$, with $a_{1}, b_{1} \in \mathbb{Z}$, and hence $a+b=\left(a_{1}+b_{1}\right) d$, and so $d \mid a,(a+b)$.
Conversely, if $d \mid a,(a+b)$, then $a=a_{1} d$ and $(a+b)=c_{1} d$. Then, $b=(a+b)-a=\left(c_{1}-a_{1}\right) d$, and thus $d \mid a, b$.
2) [17 points] Show that for any positive integer n, the number $n^{2}+3 n+2$ is never prime. [Hint: If it is not prime, then it factors!]

Proof. We have that $n^{2}+3 n+2=(n+2)(n+1)$. So, if $n \geq 1$, then $(n+1),(n+2)>1$, and thus $n^{2}+3 n+2$ has two proper factors greater than one, and thus it is not prime.
3) [17 points] Prove that if n and is composite and not a perfect square, then $(n-1)$! $\equiv 0$ $(\bmod n)$. [Hint: If it is composite, then it factors! Then use the fact it is not a perfect square.]

Proof. Since n is composite, we have that $n=a b$, with $1<a, b<n$. Since n is not a perfect square, we have that $a \neq b$. Now, $(n-1)!=1 \cdot 2 \cdot 3 \cdots(n-2) \cdot(n-1)$. Since $a, b \in\{1,2, \ldots,(n-1)\}$, we have that a and b appear in the factors of $(n-1)$! and since they are different, each one of them appears. [If, say $1<a<b<(n-1)$, we would have $(n-1)!=1 \cdot 2 \cdots a \cdots b \cdots(n-2) \cdot(n-1)$.] Hence, $a b=n \mid(n-1)!$ and therefore, $(n-1) \equiv 0$ $(\bmod n)$.

