1) Let $\sigma, \tau \in S_{8}$ be given by

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 1 & 3 & 5 & 2 & 8 & 6 & 7
\end{array}\right) \quad \text { and } \quad \tau=(1425)(367)
$$

(a) Write the complete factorization of σ into disjoint cycles.

Solution. $\sigma=(1452)(3)(687)$.
(b) Compute σ^{-1}, and τ^{-1}. [Your answer can be in any form.]

Solution.

$$
\sigma^{-1}=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 5 & 3 & 1 & 4 & 7 & 8 & 6
\end{array}\right)=\left(\begin{array}{lllll}
1 & 5 & 5 & 4
\end{array}\right)(3)(678)
$$

and

$$
\tau^{-1}=(1524)(376)
$$

(c) Compute $\tau \sigma$. [Your answer can be in any form.]

Solution.

$$
\tau \sigma=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 4 & 6 & 1 & 5 & 8 & 7 & 3
\end{array}\right)=\left(\begin{array}{lllll}
1 & 2 & 4
\end{array}\right)\left(\begin{array}{lll}
3 & 6 & 8
\end{array}\right)(5)(7) .
$$

(d) Compute $\tau^{-1} \sigma \tau$. [Your answer can be in any form.]

Solution.

$$
\begin{aligned}
\tau^{-1} \sigma \tau & =\left(\tau^{-1}(1) \tau^{-1}(4) \tau^{-1}(5) \tau^{-1}(2)\right)\left(\tau^{-1}(3)\right)\left(\tau^{-1}(6) \tau^{-1}(8) \tau^{-1}(7)\right) \\
& =(5124)(7)(386)
\end{aligned}
$$

(e) Write τ as a product of transpositions.

Solution.

$$
\tau=(15)(12)(14)(37)(36)
$$

2) Give all possible rational roots of

$$
f(x)=x^{5}+\frac{2}{3} x^{4}-2 x^{3}+7 x^{2}-x+1
$$

[Be careful! Don't be tricked!]
Solution. We cannot use the theorem for rational roots since f does not have integral coefficients. But, the roots of f and $3 \cdot f$ are the same, and $3 \cdot f$ has integral coefficients. Since the leading and constant coefficients are both 3, the possible rational roots [of f and $3 \cdot f$] are $\{ \pm 1, \pm 3, \pm 1 / 3\}$.
3) Let $f(x)=x^{5}+1$ and $g(x)=x^{3}+1$ in $\mathbb{F}_{2}[x]$. Write the GCD of f and g as a linear combination of them.

Solution. We have:

$$
\begin{aligned}
f(x) & =g(x) \cdot x^{2}+\left(x^{2}+1\right), \\
g(x) & =\left(x^{2}+1\right) \cdot x+(x+1), \\
\left(x^{2}+1\right) & =(x+1)(x+1)+0 .
\end{aligned}
$$

So, the GCD is $x+1$. Then, we have [remembering that in \mathbb{F}_{2} we have that $\left.1=-1\right]$:

$$
\begin{aligned}
(x+1) & =g(x)+\left(x^{2}+1\right) \cdot x \\
& =g(x)+\left(f(x)+g(x) \cdot x^{2}\right) \cdot x \\
& =x \cdot f(x)+\left(x^{3}+1\right) \cdot g(x) .
\end{aligned}
$$

4) Determine which of the following polynomials are irreducible in $\mathbb{Q}[x]$. [Justify!]
(a) $f(x)=x^{3}-3 x^{2}+2 x-7$.

Solution. Reduce modulo 2. Then, $\bar{f}(x)=x^{3}+x^{2}+1$. Since $\bar{f}(0)=\bar{f}(1)=1, \bar{f}(x)$ has no roots, and since its degree is 3 it is irreducible. Hence, so is $f(x)$.
(b) $f(x)=x^{4}+1$. [Hint: What happens with $f(x+1)$?]

Solution. We have that $f(x+1)=x^{4}+4 x^{3}+6 x^{2}+4 x+2$, and then Eisenstein's criterion [with $p=2$] gives us that $f(x+1)$ is irreducible, and hence so is $f(x)$.
(c) $f(x)=3 x^{7}+6 x^{4}+81 x^{3}-9 x+1$ [Hint: Using a [tricky] HW problem makes this much easier!]

Solution. We have that $g(x)=x^{7}+9 x^{6}+81 x^{4}+6 x^{3}+3$ is irreducible by Eisenstein's criterion [with $p=3$], and hence, by the HW problem, we have that $f(x)$ is also irreducible.
5) Let F be a field and $f, g \in F[x]$. Let also

$$
I=\{f \cdot r+g \cdot s: r, s \in F[x]\} .
$$

[Hence, I is a the set of all linear combinations of f and g.] Prove that there exist $d \in F[x]$ such that

$$
I=\{d \cdot t: t \in F[x]\} .
$$

[Hint: d is the GCD of f and g. Also, we've done the analogue of this for integers in class! The proof is the same.]

Proof. Let $d=\operatorname{gcd}(f, g)$.
[С] Let $f \cdot r+g \cdot s \in I$. Then, since $d \mid f, g$, we have that $d \mid(f \cdot r+g \cdot s)$, and hence there exists $t \in F[x]$ such that $f \cdot r+g \cdot s=d \cdot t$.
[〕] By Bezout's Theorem, we have that $d=f \cdot r_{1}+g \cdot s_{1}$ for some $r_{1}, s_{1} \in F[x]$. Then, for all $t \in F[x]$, we have that $d \cdot t=f \cdot\left(r_{1} \cdot t\right)+g \cdot\left(s_{1} \cdot t\right)$, and hence $d \cdot t \in I$.
6) Give example polynomials $f, g \in R[x]$, for some suitable ring R, such that f has more [distinct] roots in R than its degree, and g has degree greater than zero and yet is a unit. [Hint: Take $R=\mathbb{Z} / n \mathbb{Z}$ for the smallest $n>1$ for which R is not a domain. The degrees of f and g can be low. Note that I showed you these examples in class!]

Solution. Let $R=\mathbb{Z} / 4 \mathbb{Z}$. Then, take $f=2 x$. Then, $f(0)=0$ and $f(2)=0$, so there are two roots, even though $\operatorname{deg} f=1$.

Now, take $g=2 x+1$. Then, $(2 x+1)(2 x+1)=4 x^{2}+4 x+1=1$, and hence g is a unit, even though $\operatorname{deg} g>0$.
7) Prove that there is no integer n whose square n^{2} has its last two digits as 35 . [Hint: If the last digit of n^{2} is 5 , what can we say about the last digit of n, i.e., what is the remainder of n when divided by 10 ? Then, what happens with n^{2} modulo 100?]

Proof. We have that $n^{2} \equiv 5(\bmod 10)$ if, and only if, $n \equiv 5(\bmod 10)$. We can find that by trial and error, as there are only 10 possibilities.

Then, $n=10 q+5$ and hence $(10 q+5)^{2}=100 q^{2}+100 q+25 \equiv 25(\bmod 100)$. Hence, if n^{2} has last digit 5 , the digit before that must be 2 [and hence never 3].
8) Let F be a field with exactly 4 elements, say $F=\{0,1, a, b\}$. [Hence, we are assuming that all these elements are distinct, e.g., $a \neq 1, b \neq 0$, etc.]
(a) Prove that $1=-1$ in F. [Hint: Suppose not. Then, $-1 \neq 1$. Then, as $-1 \neq 0$, we can assume without loss of generality, that $-1=a$. Show then that $b=-b$ by checking that no other element can be $-b$. This would mean that $b+b=b(1+1)=0$. Since $b \neq 0$ and we are in a field, we would have that $1+1=0$, contradicting the assumption that $1 \neq-1$.]

Proof. Suppose that $1 \neq-1$. Then, we may assume, as in the hint, that $a=-1$, as if $-1=0$, then $1=0$, which is not true in a field, and if $b=-1$, we could switch the names of a and b.

Now, if $b+0=0$, then $b=0$, which is false. If $b+1=0$, then $b=-1=a$, which is also false. If $b+a=b-1=0$, then $b=1$, which is also false. Thus, the only possibility left is $b=-b$.

Then, $0=b+b=b(1+1)$, which is a contradiction as $b,(1+1) \neq 0$. Therefore, we must have that $1=-1$.
(b) Prove that $b=a+1$. [Hint: Can $a+1$ be any other element? You need to use (a)!]

Proof. If $a+1=0$, then $a=-1=1$, which is false. If $a+1=1$, then $a=0$, which is false. If $a+1=a$, then $1=0$, which is also false. Therefore, the only possibility left is $a+1=b$.
(c) Prove that if $b=a^{2}$. [Hint: Can a^{2} be any other element? You need to use (a) and the fact that $x y=0$ implies that either $x=0$ or $y=0$.]

Proof. If $a^{2}=a \cdot a=0$, then $a=0$, which is false.
If $a^{2}=1$, then $a^{2}-1=(a-1)(a+1)=0$, i.e., $a=1$ or $a=-1$. Since, $1=-1$, this would mean that $a=1$, which is false.

If $a^{2}=a$, then $a^{2}-a=a(a-1)=0$. Thus, either $a=0$ or $a=1$, and both are false. Thus, $a^{2}=b$ is the only possibility.
(d) Prove that a is a root of $x^{2}+x+1 \in F[x]$. [Use the previous items.]

Proof. We have that $a^{2}+a+1=a^{2}+(a+1)=b+b=b(1+1)=b \cdot 0=0$.

