1) Let 0,7 € Sg be given by

123456738
0—(4 13598 6 7) and 7=(1425)(367).
(a) Write the complete factorization of o into disjoint cycles.

Solution. 0 =(1452)(3)(687).

(b) Compute 0!, and 77!, [Your answer can be in any form.]

Solution.
4 (123 45678\
o —(2 531 47 8 6 =(1254)(3)(678)

and
1 =(1524)(376).

(c) Compute 7o. [Your answer can be in any form.]

Solution.
; 2 ) — (124)(368)(5)(7).

(d) Compute 77'o7. [Your answer can be in any form.]

Solution.

(e) Write 7 as a product of transpositions.

Solution.
7=(15)(12)(14)(37)(36)



2) Give all possible rational roots of
2
f(z) :x5+§x4—2x3—|—7:p2—$+1.

[Be careful! Don'’t be tricked!]

Solution. We cannot use the theorem for rational roots since f does not have integral coef-
ficients. But, the roots of f and 3 - f are the same, and 3 - f has integral coefficients. Since
the leading and constant coefficients are both 3, the possible rational roots [of f and 3 - f]
are {£1,+3,+1/3}. O

3) Let f(z) = 2° + 1 and g(z) = 2* + 1 in Fy[z]. Write the GCD of f and g as a linear
combination of them.

Solution. We have:
flx) = g(x) - 2* + (2% + 1),
glx) = (2®*+1) -2+ (z+1),
(®+1)=(z+1)(z+1)+0.

So, the GCD is « + 1. Then, we have [remembering that in Fo we have that 1 = —1]:

(z+1)=g(x)+ (2*+1) 2
=g(x) + (f(2) +g(x) - 2*) -2
=a- f(z) + (2> +1) - g().

4) Determine which of the following polynomials are irreducible in Q[z]. [Justify!]
(a) f(z) =23 —32? + 22— 7.

Solution. Reduce modulo 2. Then, f(z) = 2® + 22 + 1. Since f(0) = f(1) = 1, f(x)
has no roots, and since its degree is 3 it is irreducible. Hence, so is f(x). O

(b) f(z) = 2"+ 1. [Hint: What happens with f(z + 1)7]

Solution. We have that f(x + 1) = 2* 4+ 42® + 622 + 42 + 2, and then Eisenstein’s
criterion [with p = 2] gives us that f(z + 1) is irreducible, and hence so is f(z). O

(c) f(x) = 32"+ 621 +8123—9x+1 [Hint: Using a [tricky] HW problem makes this much
easier!]

Solution. We have that g(z) = 27 + 925 + 812* 4+ 62° 4 3 is irreducible by Eisenstein’s
criterion [with p = 3], and hence, by the HW problem, we have that f(z) is also
irreducible. O]



5) Let F' be a field and f,g € Flz]. Let also
I={f-r+g-s: rseFx]}

[Hence, I is a the set of all linear combinations of f and g.] Prove that there exist d € F[x]
such that
I'={d-t:teFlz]}.

[Hint: d is the GCD of f and g. Also, we've done the analogue of this for integers in class!
The proof is the same.]

Proof. Let d = ged(f, g).
[C] Let f-r+g-s € I. Then, since d | f,g, we have that d | (f -7+ ¢ - s), and hence
there exists t € F[x] such that f-r+g¢g-s=d-t.
[D] By Bezout’s Theorem, we have that d = f - r; + ¢ - s; for some r1,s; € Flz|. Then,
for all t € Flx], we have that d-t = f-(r;-t)+ g+ (s1-t), and hence d -t € I.
L]

6) Give example polynomials f,g € R[z|, for some suitable ring R, such that f has more
[distinct] roots in R than its degree, and g has degree greater than zero and yet is a unit.
[Hint: Take R = Z/nZ for the smallest n > 1 for which R is not a domain. The degrees of
f and g can be low. Note that I showed you these examples in class!]

Solution. Let R = Z/4Z. Then, take f = 2x. Then, f(0) = 0 and f(2) = 0, so there are
two roots, even though deg f = 1.
Now, take g = 2z + 1. Then, (2x +1)(2z + 1) = 42® + 4z + 1 = 1, and hence g is a unit,
even though degg > 0.
[

7) Prove that there is no integer n whose square n? has its last two digits as 35. [Hint: If
the last digit of n? is 5, what can we say about the last digit of n, i.e., what is the remainder
of n when divided by 10? Then, what happens with n? modulo 1007?]

Proof. We have that n> =5 (mod 10) if, and only if, n =5 (mod 10). We can find that by
trial and error, as there are only 10 possibilities.

Then, n = 10¢ + 5 and hence (10q + 5)* = 100¢? + 100q + 25 = 25 (mod 100). Hence, if
n? has last digit 5, the digit before that must be 2 [and hence never 3. O



8) Let F be a field with exactly 4 elements, say F' = {0,1,a,b}. [Hence, we are assuming
that all these elements are distinct, e.g., a # 1, b # 0, etc.]

(a)

Prove that 1 = —1 in F. [Hint: Suppose not. Then, —1 # 1. Then, as —1 # 0, we can
assume without loss of generality, that —1 = a. Show then that b = —b by checking
that no other element can be —b. This would mean that b+ b = b(1 + 1) = 0. Since
b # 0 and we are in a field, we would have that 1+ 1 = 0, contradicting the assumption
that 1 # —1.]

Proof. Suppose that 1 # —1. Then, we may assume, as in the hint, that a = —1, as
if —1 =0, then 1 = 0, which is not true in a field, and if b = —1, we could switch the
names of a and b.

Now, if b+ 0 = 0, then b = 0, which is false. If b+ 1 = 0, then b = —1 = a, which
is also false. If b+a = b —1 = 0, then b = 1, which is also false. Thus, the only
possibility left is b = —b.

Then, 0 = b+ b = b(1 + 1), which is a contradiction as b, (1 4+ 1) # 0. Therefore, we
must have that 1 = —1. O

Prove that b = a + 1. [Hint: Can a + 1 be any other element? You need to use (a)!]

Proof. If a+1 =0, then a = —1 = 1, which is false. If a +1 = 1, then a = 0, which is
false. If a +1 = a, then 1 = 0, which is also false. Therefore, the only possibility left
isa+1=hb. O

Prove that if b = a®. [Hint: Can a* be any other element? You need to use (a) and
the fact that xy = 0 implies that either x =0 or y = 0.]

Proof. If a*> = a - a = 0, then a = 0, which is false.

Ifa?=1,thena®?—1=(a—1)(a+1)=0,ie,a=1o0ra= —1. Since, 1 = —1, this
would mean that a = 1, which is false.

If a®> = a, then a* — a = a(a — 1) = 0. Thus, either a = 0 or a = 1, and both are false.

Thus, a? = b is the only possibility. O
Prove that a is a root of 22 + x + 1 € F[z]. [Use the previous items.]

Proof. We have that a*> +a+1=a*+ (a+1)=b+b=0b(14+1)=b-0=0. O



