
1) Let σ, τ ∈ S8 be given by

σ =

(
1 2 3 4 5 6 7 8
4 1 3 5 2 8 6 7

)
and τ = (1 4 2 5)(3 6 7).

(a) Write the complete factorization of σ into disjoint cycles.

Solution. σ = (1 4 5 2)(3)(6 8 7).

(b) Compute σ−1, and τ−1. [Your answer can be in any form.]

Solution.

σ−1 =

(
1 2 3 4 5 6 7 8
2 5 3 1 4 7 8 6

)
= (1 2 5 4)(3)(6 7 8)

and
τ−1 = (1 5 2 4)(3 7 6).

(c) Compute τσ. [Your answer can be in any form.]

Solution.

τσ =

(
1 2 3 4 5 6 7 8
2 4 6 1 5 8 7 3

)
= (1 2 4)(3 6 8)(5)(7).

(d) Compute τ−1στ . [Your answer can be in any form.]

Solution.

τ−1στ = (τ−1(1) τ−1(4) τ−1(5) τ−1(2))(τ−1(3))(τ−1(6) τ−1(8) τ−1(7))

= (5 1 2 4)(7)(3 8 6)

(e) Write τ as a product of transpositions.

Solution.
τ = (1 5)(1 2)(1 4)(3 7)(3 6)
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2) Give all possible rational roots of

f(x) = x5 +
2

3
x4 − 2x3 + 7x2 − x+ 1.

[Be careful! Don’t be tricked!]

Solution. We cannot use the theorem for rational roots since f does not have integral coef-
ficients. But, the roots of f and 3 · f are the same, and 3 · f has integral coefficients. Since
the leading and constant coefficients are both 3, the possible rational roots [of f and 3 · f ]
are {±1,±3,±1/3}.

3) Let f(x) = x5 + 1 and g(x) = x3 + 1 in F2[x]. Write the GCD of f and g as a linear
combination of them.

Solution. We have:

f(x) = g(x) · x2 + (x2 + 1),

g(x) = (x2 + 1) · x+ (x+ 1),

(x2 + 1) = (x+ 1)(x+ 1) + 0.

So, the GCD is x+ 1. Then, we have [remembering that in F2 we have that 1 = −1]:

(x+ 1) = g(x) + (x2 + 1) · x
= g(x) + (f(x) + g(x) · x2) · x
= x · f(x) + (x3 + 1) · g(x).

4) Determine which of the following polynomials are irreducible in Q[x]. [Justify!]

(a) f(x) = x3 − 3x2 + 2x− 7.

Solution. Reduce modulo 2. Then, f̄(x) = x3 + x2 + 1. Since f̄(0) = f̄(1) = 1, f̄(x)
has no roots, and since its degree is 3 it is irreducible. Hence, so is f(x).

(b) f(x) = x4 + 1. [Hint: What happens with f(x+ 1)?]

Solution. We have that f(x + 1) = x4 + 4x3 + 6x2 + 4x + 2, and then Eisenstein’s
criterion [with p = 2] gives us that f(x+ 1) is irreducible, and hence so is f(x).

(c) f(x) = 3x7 +6x4 +81x3−9x+1 [Hint: Using a [tricky] HW problem makes this much
easier!]

Solution. We have that g(x) = x7 + 9x6 + 81x4 + 6x3 + 3 is irreducible by Eisenstein’s
criterion [with p = 3], and hence, by the HW problem, we have that f(x) is also
irreducible.
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5) Let F be a field and f, g ∈ F [x]. Let also

I = {f · r + g · s : r, s ∈ F [x]}.

[Hence, I is a the set of all linear combinations of f and g.] Prove that there exist d ∈ F [x]
such that

I = {d · t : t ∈ F [x]}.

[Hint: d is the GCD of f and g. Also, we’ve done the analogue of this for integers in class!
The proof is the same.]

Proof. Let d = gcd(f, g).
[⊆] Let f · r + g · s ∈ I. Then, since d | f, g, we have that d | (f · r + g · s), and hence

there exists t ∈ F [x] such that f · r + g · s = d · t.
[⊇] By Bezout’s Theorem, we have that d = f · r1 + g · s1 for some r1, s1 ∈ F [x]. Then,

for all t ∈ F [x], we have that d · t = f · (r1 · t) + g · (s1 · t), and hence d · t ∈ I.

6) Give example polynomials f, g ∈ R[x], for some suitable ring R, such that f has more
[distinct] roots in R than its degree, and g has degree greater than zero and yet is a unit.
[Hint: Take R = Z/nZ for the smallest n > 1 for which R is not a domain. The degrees of
f and g can be low. Note that I showed you these examples in class!]

Solution. Let R = Z/4Z. Then, take f = 2x. Then, f(0) = 0 and f(2) = 0, so there are
two roots, even though deg f = 1.

Now, take g = 2x+ 1. Then, (2x+ 1)(2x+ 1) = 4x2 + 4x+ 1 = 1, and hence g is a unit,
even though deg g > 0.

7) Prove that there is no integer n whose square n2 has its last two digits as 35. [Hint: If
the last digit of n2 is 5, what can we say about the last digit of n, i.e., what is the remainder
of n when divided by 10? Then, what happens with n2 modulo 100?]

Proof. We have that n2 ≡ 5 (mod 10) if, and only if, n ≡ 5 (mod 10). We can find that by
trial and error, as there are only 10 possibilities.

Then, n = 10q + 5 and hence (10q + 5)2 = 100q2 + 100q + 25 ≡ 25 (mod 100). Hence, if
n2 has last digit 5, the digit before that must be 2 [and hence never 3].
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8) Let F be a field with exactly 4 elements, say F = {0, 1, a, b}. [Hence, we are assuming
that all these elements are distinct, e.g., a 6= 1, b 6= 0, etc.]

(a) Prove that 1 = −1 in F . [Hint: Suppose not. Then, −1 6= 1. Then, as −1 6= 0, we can
assume without loss of generality, that −1 = a. Show then that b = −b by checking
that no other element can be −b. This would mean that b + b = b(1 + 1) = 0. Since
b 6= 0 and we are in a field, we would have that 1+1 = 0, contradicting the assumption
that 1 6= −1.]

Proof. Suppose that 1 6= −1. Then, we may assume, as in the hint, that a = −1, as
if −1 = 0, then 1 = 0, which is not true in a field, and if b = −1, we could switch the
names of a and b.

Now, if b + 0 = 0, then b = 0, which is false. If b + 1 = 0, then b = −1 = a, which
is also false. If b + a = b − 1 = 0, then b = 1, which is also false. Thus, the only
possibility left is b = −b.
Then, 0 = b + b = b(1 + 1), which is a contradiction as b, (1 + 1) 6= 0. Therefore, we
must have that 1 = −1.

(b) Prove that b = a+ 1. [Hint: Can a+ 1 be any other element? You need to use (a)!]

Proof. If a+ 1 = 0, then a = −1 = 1, which is false. If a+ 1 = 1, then a = 0, which is
false. If a + 1 = a, then 1 = 0, which is also false. Therefore, the only possibility left
is a+ 1 = b.

(c) Prove that if b = a2. [Hint: Can a2 be any other element? You need to use (a) and
the fact that xy = 0 implies that either x = 0 or y = 0.]

Proof. If a2 = a · a = 0, then a = 0, which is false.

If a2 = 1, then a2 − 1 = (a− 1)(a + 1) = 0, i.e., a = 1 or a = −1. Since, 1 = −1, this
would mean that a = 1, which is false.

If a2 = a, then a2 − a = a(a− 1) = 0. Thus, either a = 0 or a = 1, and both are false.

Thus, a2 = b is the only possibility.

(d) Prove that a is a root of x2 + x+ 1 ∈ F [x]. [Use the previous items.]

Proof. We have that a2 + a+ 1 = a2 + (a+ 1) = b+ b = b(1 + 1) = b · 0 = 0.
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