
1) [25 points] Let K be a field and F ⊆ K. Suppose that F is also a field with the same
addition and product as K. [We are not assuming that 1k = 1F , so, in principle, F might
now be a subfield of K.]

(a) Show that 1F 6= 0K . [Hint: Remember that since F is a field, 1F 6= 0F .]

Proof. We have that 1F · 0F = 0F . If 1F = 0K , then 1F · 0F = 0K · 0F = 0K = 1F [as
any element of K when multiplied by 0K yield 0K ]. Since 0F 6= 1F , this cannot happen
[as we’d have 1F = 0F · 1F = 0F ].

[Alternatively, one can show that 0K = 0F and hence 1F 6= 0F = 0K . This is true as
0K + 1F = 1F = 0F + 1F and hence we can subtract 1F [in K] to obtain 0K = 0F .]

(b) Show that 1F = 1K . [Hint: By part (a), 1F is invertible in K, and so if 1F · a = 1F · b,
for any a, b ∈ K [or F ], we have that a = b.]

Proof. We now have 1F · 1F = 1F = 1F · 1K . So, as in the hint 1F = 1K .
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2) [25 points] Let R be a [not necessarily commutative] ring [with one] such that a2 = a for
all a ∈ R.

(a) Show that 1R = −1R. [Hint: Consider (1R + 1R)2.]

Proof. On the one hand we have that (1R + 1R)2 = 1R + 1R, by hypothesis. On the
other hand, we have (1R + 1R)2 = (1R + 1R)(1R + 1R) = 1R + 1R + 1R + 1R. Thus,
1R + 1R + 1R + 1R = 1R + 1R. Subtracting 1R three times in this equation, we obtain
that 1R = −1R.

[Alternatively, we have: (−1F )2 = (−1F )(−1F ) = 1F , where the last equality we
have seen in class [−1F · a = −a and −(−a) = a], and since a2 = a, we also have
(−1F )2 = −1F . Thus, −1F = (−1F )2 = 1F .]

(b) Show that R is commutative. [Hint: By (a), it suffices to show that for all a, b ∈ R,
we have ab + ba = 0. Consider (a + b)2, and remember we cannot assume that R is
commutative!]

Proof. Let a, b ∈ R. [We need to show ab = ba. Since R might not be commutative,
we must write (a + b)2 = a2 + ab + ba + b2, and by hypothesis, this gives us (a + b)2 =
a + ab + ba + b. On the other hand, (a + b)2 = a + b, by hypothesis. Hence, we have
a + b = a + ab + ba + b, and subtracting a + b from both sides, we obtain ab + ba = 0,
i.e., ab = −ba. Since 1R = −1R, we have ab = −ba = −1R · ba = 1R · ba = ba, and R
must be commutative.

2



3) [25 points] Let p be a prime with p ≥ 3, and let Fp = Z/pZ [or Fp = Ip, as in the book].
[Remember that Fp is a field !] Let U = F×p be the set of units of Fp.

(a) Show that the only elements of a ∈ F×p such that a = a−1 are 1 and p− 1. [Hint: If

a−1 = a, then a2 = 1. Then, what are all the roots of the polynomial x2 − 1 in Fp?]

Proof. Since Fp is a field, we have that x2 − 1 has at most two roots. But x = 1 and
x = p− 1 are roots, and hence all the roots. [Note that since p 6= 2, 1 and p− 1 are
different!] So, these are the only elements that are inverse of themselves.

(b) Use (a) to show that (p− 1)! ≡ −1 (mod p). [Hint: That is the same as to say that
1 · 2 · · · p− 1 = p− 1.]

Proof. In (p− 1)! = 1 · 2 · · · p− 1, each of the terms distinct from 1 and p− 1 can be
paired up with another [different] term yielding 1, i.e., you can pair it with its inverse.
[E.g., for p = 7, we have 1 · 2 · 3 · 4 · 5 · 6 = 1 · (2 · 4) · (3 · 5) · 6 = 1 · 1 · 1 · 6 = 6.] So, what
is left is 1 and p− 1. Therefore (p− 1)! = 1 · p− 1 = −1, and hence (p − 1)! ≡ −1
(mod p).
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4) [25 points] Let R be an integral domain, and suppose that there is some n ∈ Z \ {0} such
that n · 1R = 0R. [Note that n can be negative.]

(a) Show that there exists some prime p such that p · 1R = 0R. [Hint: We have that if
a, b ∈ Z, then (a · b) · 1R = (a · 1R) · (b · 1R). Then, use the Fundamental Theorem of
Arithmetic and the fact that R is a domain.]

Proof. Suppose that n ·1R = 0R. Then, if n < 0, we have that 0R = −0R = −(n ·1R) =
(−n) · 1R. Thus, we may assume that n > 0. Since 1R 6= 0R, we must have that n > 1.

Now, by the Fundamental Theorem of Arithmetic, we have that n = p1 · · · pk, where
the pi’s a prime. Hence, n · 1R = (p1 · · · pk) · 1R = (p1 · 1R) · · · (pk · 1R) = 0R. Then,
since R is a domain, we have that (pi · 1R) = 0R for some i.

(b) Show that the prime in (a) is unique. [Hint: If p 6= q, both primes, then gcd(p, q) =
1. You can use Bezout’s Theorem [i.e., the Extended Euclidean Algorithm]. Also,
remember that 1R 6= 0R.]

Proof. Suppose that p, q are distinct primes such that p · 1R = q · 1R = 0R. Since
gcd(p, q) = 1, there are r, s ∈ Z such that 1 = rp + sq. Then, 1R = 1 · 1R =
(rp + sq) · 1R = r(p · 1R) + s(q · 1R) = r · 0R + s · 0R = 0R + 0R = 0R. But, in a ring we
must have 1R 6= 0R.
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