1) [20 points] Use the Extended Euclidean Algorithm to write the GCD of 130 and 61 as a linear combination of themselves.

Solution. We have:

$$
2=2 \cdot 1+0
$$

So,

$$
1=23 \cdot 130-49 \cdot 61
$$

2) [20 points] Give the set of all solutions of the system

$$
\begin{aligned}
2 x & \equiv 3 \\
12 x & (\bmod 7) \\
\equiv 5 & (\bmod 13)
\end{aligned}
$$

Solution. We have that $(-3) \cdot 2+1 \cdot 7=1$. So, the first equation can be multiplied by -3 , giving $x \equiv-9 \equiv 5(\bmod 7)$. For the second we can multiply by -1 , obtaining $x \equiv-5 \equiv 8$ $(\bmod 13)$.

Since $2 \cdot 7+(-1) \cdot 13=1$, we have that a solution is $x=8 \cdot 2 \cdot 7+5 \cdot(-1) \cdot 13=47$, and all solutions are $\{47+91 k: k \in \mathbb{Z}\}$.

$$
\begin{aligned}
& 130=2 \cdot 61+8 \quad \longrightarrow \quad 8=\underline{130}-2 \cdot \underline{61} \\
& 61=7 \cdot 8+5 \quad \longrightarrow \quad 5=\underline{61}-7 \cdot 8=-7 \cdot \underline{130}+15 \cdot \underline{61} \\
& 8=1 \cdot 5+3 \quad \longrightarrow \quad 3=8-5=8 \cdot \underline{130}-17 \cdot \underline{61} \\
& 5=1 \cdot 3+2 \quad \longrightarrow \quad 2=5-3=-15 \cdot \underline{130}+32 \cdot \underline{61} \\
& 3=1 \cdot 2+1 \quad \longrightarrow \quad 1=3-2=23 \cdot \underline{130}-49 \cdot \underline{61}
\end{aligned}
$$

3) [20 points] Let a, b, and n be positive integers. Show that if $a^{n} \mid b^{n}$, then $a \mid b$.

Proof. We can write $a=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ and $b=p_{1}^{f_{1}} \cdots p_{k}^{f_{k}}$, with the p_{i} 's distinct primes and $e_{i}, f_{i} \geq 0$.

Then, $a^{n}=p_{1}^{e_{1} n} \cdots p_{k}^{e_{k} n}$ and $b=p_{1}^{f_{1} n} \cdots p_{k}^{f_{k} n}$, and since $a^{n} \mid b^{n}$, we have that $e_{i} n \leq f_{i} n$ for all i. Hence, $e_{i} \leq f_{i}$ for all i, which implies that $a \mid b$ [from their decompositions].
[Induction also works.]
4) [20 points] Let n and b be positive integers. Show that $(b-1) \mid n$ if, and only if, the sum of the b-adic digits of n is divisible by $b-1$.

Proof. Let

$$
n=n_{0}+n_{1} \cdot b+\cdots+n_{k} \cdot b^{k} .
$$

Then, the n_{i} 's are the b-adic digits. Since $b \equiv 1(\bmod b-1)$, we have that

$$
\begin{aligned}
n & =n_{0}+n_{1} \cdot b+\cdots+n_{k} \cdot b^{k} \\
& \equiv n_{0}+n_{1} \cdot 1+\cdots+n_{k} \cdot 1^{k} \quad(\bmod b-1) \\
& =n_{0}+n_{1}+\cdots+n_{k} .
\end{aligned}
$$

Thus, $n \equiv 0(\bmod b-1)$ if, and only if, $n_{0}+n_{1}+\cdots+n_{k} \equiv 0(\bmod b-1)$, i.e., $(b-1) \mid n$ if, and only if, $(b-1) \mid n_{0}+n_{1}+\cdots+n_{k}$.
5) [20 points] Show that if p and $p^{2}+2$ are both prime, then $p=3$.

Proof. If $p=3$, then $p^{2}+2=29$ is also prime.
So, suppose that $p \neq 3$. Hence, $p \equiv 1$ or $p \equiv 2(\bmod 3)[$ as $3 \nmid p]$. But, in either case, we have that $p^{2}+2 \equiv 0(\bmod 3)$, i.e., $3 \mid\left(p^{2}+2\right)$. Since $p^{2}+2>3, p^{2}+2$ cannot be prime.

