Midterm (Take Home) - Solutions

M555 - Number Theory I

October 16th, 2008

1. Let k and n be positive integers. Prove that for any possible choice of signs, the number

$$
\pm \frac{1}{k} \pm \frac{1}{k+1} \pm \frac{1}{k+2} \pm \cdots \pm \frac{1}{k+n}
$$

is not an integer. [Hint: Try to fix your proof of Problem 1.30 from Rosen and Ireland. For the ones who did not look, there was a hint at the back of the book for it.]

Proof. Let r be the largest positive integer such that 2^{r} divides one of denominators above. [We shall prove 2^{r} divides exactly one of the denominators.] Now, suppose that $2^{r} \mid(k+i),(k+j)$, with $0 \leq i<j \leq n$. So, $2^{r} \mid(j-i)$, and let $q \in \mathbb{Z}$ such that $j=i+2^{r} q$. Note that $q>1$, as $j>i$. Then, $i<i+2^{r} \leq j$, and hence $k+i+2^{r}$ is one of the denominators above. Now, we have that $2^{r} \mid(k+i)$, and $2^{r+1} \nmid k+i$ [by the maximality of $r]$. So, $k+i=2^{r} q^{\prime}$ with q^{\prime} odd. So, $k+i+2^{r}=2^{r}\left(q^{\prime}+1\right)$, and since $q^{\prime}+1$ is even, $2^{r+1} \mid\left(k+i+2^{r}\right)$, which contradicts the maximality of r. Hence, 2^{r} must divide exactly one of the denominators above.
Now, proceed as in the HW problem. Let S be the sum above and suppose it is in \mathbb{Z}. Then, consider

$$
2^{r-1} S= \pm \frac{2^{r-1}}{k} \pm \frac{2^{r-1}}{k+1} \pm \frac{2^{r-1}}{k+2} \pm \cdots \pm \frac{2^{r-1}}{k+n}
$$

which must also be an integer. Then, if $k+i$ is the only denominator divisible by 2^{r}, then $2^{r-1} /(k+i)$, after simplification, is the only fraction of $2^{r-1} S$ having the denominator divisible by 2 . Thus, the sum of the other fractions is of the form a / b with b odd. Thus, by Problem 1.29 from the text book, we have that $a / b \pm 2^{r-1} /(k+i)=2^{r-1} S \notin \mathbb{Z}$, and hence $S \notin \mathbb{Z}$.
2. Assume the Prime Number Theorem, i.e., $\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log (x)}=1$. Prove that for all $c>1$, there is N [depending on c] such that for all $x>N$ there is a prime number in $(x, c x)$. [Compare with Bertrand's Postulate.]

Proof. Let $c^{\prime}=(c+1) / 2$. [Hence $c^{\prime}>1$ also.] Since we have

$$
\lim _{x \rightarrow \infty} \frac{\log (x)}{\log \left(c^{\prime} x\right)}=1, \quad \lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log (x)}=1
$$

we get:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\pi\left(c^{\prime} x\right)}{\pi(x)} & =\lim _{x \rightarrow \infty} \frac{\frac{\pi\left(c^{\prime} x\right)}{c^{\prime} x / \log \left(c^{\prime} x\right)}}{\frac{\pi(x)}{c^{\prime} x / \log \left(c^{\prime} x\right)}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{\pi\left(c^{\prime} x\right)}{c^{\prime} x / \log \left(c^{\prime} x\right)}}{\frac{\log \left(c^{\prime} x\right)}{c^{\prime} \log (x)} \frac{\pi(x)}{x / \log (x)}} \\
& =\left(\lim _{x \rightarrow \infty} c^{\prime} \frac{\log (x)}{\log \left(c^{\prime} x\right)}\right)\left(\lim _{x \rightarrow \infty} \frac{\frac{\pi\left(c^{\prime} x\right)}{c^{\prime} x / \log \left(c^{\prime} x\right)}}{\frac{\pi(x)}{x / \log (x)}}\right) \\
& =c^{\prime}>1
\end{aligned}
$$

So, let $\epsilon=\left(c^{\prime}-1\right) / 2>0$. Then, there exists N such that if $x>N$, then $\left|\pi\left(c^{\prime} x\right) / \pi(x)-c^{\prime}\right|<$ ϵ, i.e., $c^{\prime}-\epsilon<\pi\left(c^{\prime} x\right) / \pi(x)<c^{\prime}+\epsilon$. Since $c^{\prime}-\epsilon=\left(c^{\prime}+1\right) / 2>1$, we have that if $x>N$, then $\pi\left(c^{\prime} x\right)>\pi(x)$, and hence there is a prime in $\left(x, c^{\prime} x\right] \subseteq(x, c x)$.
3. Let n be a positive integer. We say that n is a pseudoprime with respect to the base b if $(b, n)=1, n$ is composite, and $b^{n-1} \equiv 1(\bmod n)$.

Let $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}, r \geq 2$, be the prime decomposition of n. Find the number of incongruent bases modulo n with respect to which n is a pseudoprime. [Simplify your answer as much as possible.]

Proof. For each i, since $\left(\mathbb{Z} / p_{i}^{e_{i}} \mathbb{Z}\right)^{\times}$is cyclic, we have that there are $\left(n-1, \varphi\left(p_{i}^{e_{i}}\right)\right)$ possible b_{i} 's such that $b_{i}^{n-1} \equiv 1\left(\bmod p_{i}^{e_{i}}\right)$. [This was done in class and in the text. It is a consequence of the proof of Proposition 4.2.1 from the text - as observer below the proof.]
So, we have that $b^{n-1} \equiv 1(\bmod n)$ if, and only if, $b \equiv b_{i}\left(\bmod p_{i}^{e_{i}}\right)$, for some b_{i} such that $b_{i}^{n-1} \equiv 1\left(\bmod p_{i}^{e_{i}}\right)$, for all i. Moreover, by the Chinese Remainder Theorem, this b is unique [for each choice of b_{i} 's] modulo n.
Hence, there are $\prod_{i=1}^{r}\left(n-1, \varphi\left(p_{i}^{e_{i}}\right)\right)=\prod_{i=1}^{r}\left(n-1, p_{i}^{e_{i}-1}\left(p_{i}-1\right)\right)=\prod_{i=1}^{r}\left(n-1,\left(p_{i}-1\right)\right)$ [as $p_{i} \mid n$, implies that $p_{i} \nmid(n-1)$].
4. Remember that a Fermat number is a number of the form $F_{m} \stackrel{\text { def }}{=} 2^{2^{m}}+1$. Prove that F_{m}, with $m \geq 1$, is prime if, and only if, $3^{\left(F_{m}-1\right) / 2} \equiv-1\left(\bmod F_{m}\right)$. [Note that this allows us to determine primality without factoring.]

Proof. Suppose F_{m} is prime. Since $m \geq 1$, we have that $F_{m} \equiv 1(\bmod 4)$. Hence, the law of quadratic reciprocity gives us

$$
\left(\frac{3}{F_{m}}\right)=\left(\frac{F_{m}}{3}\right)=\left(\frac{(-1)^{2^{m}}+1}{3}\right)=\left(\frac{2}{3}\right)=-1 .
$$

Thus, $3^{\left(F_{m}-1\right) / 2}=-1$.
Now, assume that $3^{\left(F_{m}-1\right) / 2} \equiv-1\left(\bmod F_{m}\right) . \quad$ So, $3 \in\left(\mathbb{Z} / F_{m} \mathbb{Z}\right)^{\times}\left[\right.$as $3^{F_{m}-1} \equiv 1$ $\left.\left(\bmod F_{m}\right)\right]$. Moreover $|3| \mid\left(F_{m}-1\right)=2^{2^{m}}$ in $\left(\mathbb{Z} / F_{m} \mathbb{Z}\right)^{\times}$. So, $|3|=2^{r}$ for some r. But, if $r<2^{m}$, we have that $3^{\left(F_{m}-1\right) / 2} \equiv 3^{2^{2^{m}-1}} \equiv\left(3^{2^{r}}\right)^{2^{2^{m}-1-r}} \equiv 1\left(\bmod F_{m}\right)$, contradicting the initial assumption. Thus, $|3|=2^{2^{m}}$, and so $\varphi\left(F_{m}\right)=\left|\left(\mathbb{Z} / F_{m} \mathbb{Z}\right)^{\times}\right| \geq|3|=F_{m}-1$. Therefore we must have that $\varphi\left(F_{m}\right)=F_{m}-1$ and hence, F_{m} is prime.

