Midterm (Take Home)

M555 - Number Theory I

October 16th, 2008

- You are not supposed to discuss this with anyone.
- You can use Ireland and Rosen and class notes, but please do not keep looking for solutions (in several books, papers, internet, etc.).
- Please, since you have some time, write your solutions neatly.
- The due date is Tuesday, 08/21 in class. [If you feel you need more time, please let me know ASAP, so that all can have the same amout of time.]

1. Let k and n be positive integers. Prove that for any possible choice of signs, the number

$$
\pm \frac{1}{k} \pm \frac{1}{k+1} \pm \frac{1}{k+2} \pm \cdots \pm \frac{1}{k+n}
$$

is not an integer. [Hint: Try to fix your proof of Problem 1.30 from Rosen and Ireland. For the ones who did not look, there was a hint at the back of the book for it.]
2. Assume the Prime Number Theorem, i.e., $\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log (x)}=1$. Prove that for all $c>1$, there is N [depending on c] such that for all $x>N$ there is a prime number in $(x, c x)$. [Compare with Bertrand's Postulate.]
3. Let n be a positive integer. We say that n is a pseudoprime with respect to the base b if $(b, n)=1, n$ is composite, and $b^{n-1} \equiv 1(\bmod n)$.
Let $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}, r \geq 2$, be the prime decomposition of n. Find the number of incongruent bases modulo n with respect to which n is a pseudoprime. [Simplify your answer as much as possible.]
4. Remember that a Fermat number is a number of the form $F_{m} \stackrel{\text { def }}{=} 2^{2^{m}}+1$. Prove that F_{m}, with $m \geq 1$, is prime if, and only if, $3^{\left(F_{m}-1\right) / 2} \equiv-1\left(\bmod F_{m}\right)$. [Note that this allows us to determine primality without factoring.]

