1) Negate the following statement: “given x € (0,00), we have that x > y > 0 for some
y € (0,00)”. [As usual, your answer should contain no “nots”.]

Solution. There exists x € (0,00), such that for all y € (0,00), z < y or y < 0. O

2) Let A, B,C be subsets of U. [You can use U = R if you want, but it is not necessary.|
Prove of disprove: (A\C)U(ANB)=AnN({(BNC)°).

Solution. The statement is false. Let A = C = {1}, B =&, and U = R. Then, (A\ C)U
(ANB)=2oU@ =@, while AN((BNC)°) = {1} N(2°) = {1} "R = {1}. Hence, they are
different.

O]

3) Let ~ be the relation on R?\ {(0,0)} defined by (a,b) ~ (c,d) iff there exists r € R such
that (ra,rb) = (¢,d). Prove that ~ is an equivalence relation.

Proof. [Reflexive:] (a,b) ~ (a,b) as (a,b) = (1-a,1-b).

[Symmetric:] Suppose that (a,b) ~ (¢,d). Hence, (¢,d) = (ra,rb) for some r € R. Since
(¢,d) # (0,0), we must have that » # 0. Thus, (a,b) = (1/r-¢,1/r-d) [and 1/r € R]. Thus,
(¢,d) ~ (a,b).

[Transitive:] Suppose that (a,b) ~ (¢,d) and (c,d) ~ (e, f). Then, by definition, there
are 7, s € R such that (¢,d) = (ra,rb) and (e, f) = (sc, sd). Thus, (e, f) = (rsa,rsb). Since
rs € R, we have that (a,b) ~ (e, f).

[l

4) Let f : X — Y be a one-to-one function and A, B C X. Prove that f(AN B) =
fA) N F(B).

Proof. [“C:"] Let y € f(AN B). Then, there exists x € AN B such that f(z) = y. Since
x € A, we have that y = f(z) isin f(A), and since x € B also, we have that y = f(z) € f(B).
Hence, y € f(A) N f(B).

[“D7] Let y € f(A)N f(B). Then, y € f(A) and y € f(B). The former tells us that
there exists € A such that y = f(x), while the latter tells us that there exists 2’ € B such
that y = f(2). Since f is one-to-one and f(z) = f(z’), we must have that = 2. Thus,
r e ANDB.

[



5) Show that for all positive integers n, we have that n” — n is divisible by 7.

Proof. We prove it by induction on n. For n = 1, we have n’

7.

—n = 0, which is divisible by
Now suppose that n” — n is divisible by 7. Then,

(n+1)"—(n+1)=n"+ 7"+ 21n° + 350" + 350 + 21n* + Tn +1— (n — 1)
= [n" — n] + [Tn® + 21n° + 350" + 35n° + 21n® + Tn]
=[n" —n]+7-[n®+3n° +5n* + 5n® + 3n® +n).

[Note that we can compute (n+1)7 quickly using Pascal’s Triangle!] Hence, (n+1)"—(n+1) is,
using the induction hypothesis, a sum of two terms divisible by 7, and hence is itself divisible
by 7.

U

6) Prove that n! < n” for all positive integers n.

Proof. Before we prove the result, we need the following. If 0 < a < b, then a™ < b" for
all positive integer n. We prove it by induction: for n = 1, it is trivial. Now suppose that

a™ < b". If we use Problem 9 below, we have that 0 < a < b and 0 < a™ < b"™ implies that
an—i—l < bn-‘rl.

We prove it by induction on n. For n = 1, we have that 1! = 11.
Now assume that n! < n"™. Then,

m+1)!'=mn+1) n
<(n+1)-n" [by the IH]
<(n+1)-(n+1)" [by the above, as 0 < n < n+1]
= (n+1)"*!

7) Find a closed formula for the recursion ag = 0, a,, = 3-a,,_1+2 for n > 1. [You don’t have
to show me how you came up with the formula, but you have to prove that it is correct.]

Proof. We prove that a, = 3" — 1 by induction on n. For n = 0, we have qp = 0 = 3° — 1.
So, now assume that a,, = 3" — 1 for some n > 0. Then, a,,; = 3a, +2=33"—-1)+2=
3t —3 42 =3 — 1.

]



8) Let F be a field and a,b € F. Also, let n(x) denote the additive inverse of = [which I
denoted by —z] and ¢(x) denote the multiplicative inverse of x [which I denoted by z~1].
Using only the field axioms show that:

(a) n(a+0b) = n(a) +n(b)

Proof. We need to show that (a + b) + (n(a) +n(b)) = 0. We have:

(a+b)+ (n(a) + n(d)) = (a + b) + (n(b) + n(a)) [by comm.]
= (a+ (b+n(b))) + n(a) [by assoc.]
=(a+0)+n(a) [by inv. elem.]
=a+n(a) [by identity]
=0 [by inv. elem.].

Hence, n(a + b) = n(a) + n(b).

(b) q(q(a)) = a

Proof. We need to show that a - ¢(a) = 1. But that holds by definition of ¢(a). Hence
q(q(a)) = a.
]

9) Let F be an ordered field. Using only the order axioms show that if 0 < a < b and
0 < c<d, then ac < bd.

Proof. Since a > 0, we have that ac < ad [by multiplicativity]. Since d > 0, we have that
ad < db. By transitivity, we have that ac < db.

O
10) Let z € R such that |x — 1| < 2. Show that |z? — 2z + 2| < 5.
Proof. We have:
|2* =20+ 2| =|(z — 1) + 1|
< ’(x — 1)2‘ + 1] [by triang. ineq.]
=z —1P7+1 [as [al [b] = |ab]
<224+1=5 [since |z — 1| < 2].
0



