1) Negate the following statement: "given $x \in (0, \infty)$, we have that x > y > 0 for some $y \in (0, \infty)$ ". [As usual, your answer should contain no "nots".]

Solution. There exists $x \in (0, \infty)$, such that for all $y \in (0, \infty)$, $x \leq y$ or $y \leq 0$.

2) Let A, B, C be subsets of U. [You can use $U = \mathbb{R}$ if you want, but it is not necessary.] Prove of disprove: $(A \setminus C) \cup (A \cap B) = A \cap ((B \cap C)^c)$.

Solution. The statement is false. Let $A = C = \{1\}$, $B = \emptyset$, and $U = \mathbb{R}$. Then, $(A \setminus C) \cup (A \cap B) = \emptyset \cup \emptyset = \emptyset$, while $A \cap ((B \cap C)^c) = \{1\} \cap (\emptyset^c) = \{1\} \cap \mathbb{R} = \{1\}$. Hence, they are different.

3) Let \sim be the relation on $\mathbb{R}^2 \setminus \{(0,0)\}$ defined by $(a,b) \sim (c,d)$ iff there exists $r \in \mathbb{R}$ such that (ra, rb) = (c, d). Prove that \sim is an equivalence relation.

Proof. [Reflexive:] $(a, b) \sim (a, b)$ as $(a, b) = (1 \cdot a, 1 \cdot b)$.

[Symmetric:] Suppose that $(a, b) \sim (c, d)$. Hence, (c, d) = (ra, rb) for some $r \in \mathbb{R}$. Since $(c, d) \neq (0, 0)$, we must have that $r \neq 0$. Thus, $(a, b) = (1/r \cdot c, 1/r \cdot d)$ [and $1/r \in \mathbb{R}$]. Thus, $(c, d) \sim (a, b)$.

[Transitive:] Suppose that $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. Then, by definition, there are $r, s \in \mathbb{R}$ such that (c, d) = (ra, rb) and (e, f) = (sc, sd). Thus, (e, f) = (rsa, rsb). Since $rs \in \mathbb{R}$, we have that $(a, b) \sim (e, f)$.

-	-	-	-	7

4) Let $f: X \to Y$ be a one-to-one function and $A, B \subseteq X$. Prove that $f(A \cap B) = f(A) \cap f(B)$.

Proof. [" \subseteq :"] Let $y \in f(A \cap B)$. Then, there exists $x \in A \cap B$ such that f(x) = y. Since $x \in A$, we have that y = f(x) is in f(A), and since $x \in B$ also, we have that $y = f(x) \in f(B)$. Hence, $y \in f(A) \cap f(B)$.

[" \supseteq :"] Let $y \in f(A) \cap f(B)$. Then, $y \in f(A)$ and $y \in f(B)$. The former tells us that there exists $x \in A$ such that y = f(x), while the latter tells us that there exists $x' \in B$ such that y = f(x'). Since f is one-to-one and f(x) = f(x'), we must have that x = x'. Thus, $x \in A \cap B$.

5) Show that for all positive integers n, we have that $n^7 - n$ is divisible by 7.

Proof. We prove it by induction on n. For n = 1, we have $n^7 - n = 0$, which is divisible by 7.

Now suppose that $n^7 - n$ is divisible by 7. Then,

$$(n+1)^7 - (n+1) = n^7 + 7n^6 + 21n^5 + 35n^4 + 35n^3 + 21n^2 + 7n + 1 - (n-1)$$

= $[n^7 - n] + [7n^6 + 21n^5 + 35n^4 + 35n^3 + 21n^2 + 7n]$
= $[n^7 - n] + 7 \cdot [n^6 + 3n^5 + 5n^4 + 5n^3 + 3n^2 + n].$

[Note that we can compute $(n+1)^7$ quickly using Pascal's Triangle!] Hence, $(n+1)^7 - (n+1)$ is, using the induction hypothesis, a sum of two terms divisible by 7, and hence is itself divisible by 7.

6) Prove that $n! \leq n^n$ for all positive integers n.

Proof. Before we prove the result, we need the following. If 0 < a < b, then $a^n < b^n$ for all positive integer n. We prove it by induction: for n = 1, it is trivial. Now suppose that $a^n < b^n$. If we use Problem 9 below, we have that 0 < a < b and $0 < a^n < b^n$ implies that $a^{n+1} < b^{n+1}$.

We prove it by induction on n. For n = 1, we have that $1! = 1^1$. Now assume that $n! \leq n^n$. Then,

> $(n+1)! = (n+1) \cdot n!$ $\leq (n+1) \cdot n^n \qquad \text{[by the IH]}$ $\leq (n+1) \cdot (n+1)^n \qquad \text{[by the above, as } 0 < n < n+1\text{]}$ $= (n+1)^{n+1}.$

7) Find a closed formula for the recursion $a_0 = 0$, $a_n = 3 \cdot a_{n-1} + 2$ for $n \ge 1$. [You don't have to show me how you came up with the formula, but you have to prove that it is correct.]

Proof. We prove that $a_n = 3^n - 1$ by induction on n. For n = 0, we have $a_0 = 0 = 3^0 - 1$. So, now assume that $a_n = 3^n - 1$ for some $n \ge 0$. Then, $a_{n+1} = 3a_n + 2 = 3(3^n - 1) + 2 = 3^{n+1} - 3 + 2 = 3^{n+1} - 1$.

8) Let F be a field and $a, b \in F$. Also, let n(x) denote the additive inverse of x [which I denoted by -x] and q(x) denote the multiplicative inverse of x [which I denoted by x^{-1}]. Using only the field axioms show that:

(a) n(a+b) = n(a) + n(b)

Proof. We need to show that (a + b) + (n(a) + n(b)) = 0. We have:

$$(a+b) + (n(a) + n(b)) = (a+b) + (n(b) + n(a))$$
 [by comm.]
= $(a + (b + n(b))) + n(a)$ [by assoc.]
= $(a+0) + n(a)$ [by inv. elem.]
= $a + n(a)$ [by identity]
= 0 [by inv. elem.].

Hence, n(a + b) = n(a) + n(b).

(b) q(q(a)) = a

Proof. We need to show that $a \cdot q(a) = 1$. But that holds by definition of q(a). Hence q(q(a)) = a.

9) Let F be an ordered field. Using only the order axioms show that if 0 < a < b and 0 < c < d, then ac < bd.

Proof. Since a > 0, we have that ac < ad [by multiplicativity]. Since d > 0, we have that ad < db. By transitivity, we have that ac < db.

10) Let $x \in \mathbb{R}$ such that |x-1| < 2. Show that $|x^2 - 2x + 2| < 5$.

Proof. We have:

$$\begin{aligned} |x^2 - 2x + 2| &= |(x - 1)^2 + 1| \\ &\leq |(x - 1)^2| + |1| \qquad \text{[by triang. ineq.]} \\ &= |x - 1|^2 + 1 \qquad \text{[as } |a| |b| = |ab|] \\ &< 2^2 + 1 = 5 \qquad \text{[since } |x - 1| < 2]. \end{aligned}$$