1) Negate the following statement: "given $x \in(0, \infty)$, we have that $x>y>0$ for some $y \in(0, \infty)$ ". [As usual, your answer should contain no "nots".]

Solution. There exists $x \in(0, \infty)$, such that for all $y \in(0, \infty), x \leq y$ or $y \leq 0$.
2) Let $A, B, C$ be subsets of $U$. [You can use $U=\mathbb{R}$ if you want, but it is not necessary.] Prove of disprove: $(A \backslash C) \cup(A \cap B)=A \cap\left((B \cap C)^{\mathrm{c}}\right)$.

Solution. The statement is false. Let $A=C=\{1\}, B=\varnothing$, and $U=\mathbb{R}$. Then, $(A \backslash C) \cup$ $(A \cap B)=\varnothing \cup \varnothing=\varnothing$, while $A \cap\left((B \cap C)^{\mathrm{c}}\right)=\{1\} \cap\left(\varnothing^{\mathrm{c}}\right)=\{1\} \cap \mathbb{R}=\{1\}$. Hence, they are different.
3) Let $\sim$ be the relation on $\mathbb{R}^{2} \backslash\{(0,0)\}$ defined by $(a, b) \sim(c, d)$ iff there exists $r \in \mathbb{R}$ such that $(r a, r b)=(c, d)$. Prove that $\sim$ is an equivalence relation.

Proof. [Reflexive:] $(a, b) \sim(a, b)$ as $(a, b)=(1 \cdot a, 1 \cdot b)$.
[Symmetric:] Suppose that $(a, b) \sim(c, d)$. Hence, $(c, d)=(r a, r b)$ for some $r \in \mathbb{R}$. Since $(c, d) \neq(0,0)$, we must have that $r \neq 0$. Thus, $(a, b)=(1 / r \cdot c, 1 / r \cdot d)$ [and $1 / r \in \mathbb{R}$ ]. Thus, $(c, d) \sim(a, b)$.
[Transitive:] Suppose that $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$. Then, by definition, there are $r, s \in \mathbb{R}$ such that $(c, d)=(r a, r b)$ and $(e, f)=(s c, s d)$. Thus, $(e, f)=(r s a, r s b)$. Since $r s \in \mathbb{R}$, we have that $(a, b) \sim(e, f)$.
4) Let $f: X \rightarrow Y$ be a one-to-one function and $A, B \subseteq X$. Prove that $f(A \cap B)=$ $f(A) \cap f(B)$.

Proof. ["С:"] Let $y \in f(A \cap B)$. Then, there exists $x \in A \cap B$ such that $f(x)=y$. Since $x \in A$, we have that $y=f(x)$ is in $f(A)$, and since $x \in B$ also, we have that $y=f(x) \in f(B)$. Hence, $y \in f(A) \cap f(B)$.
["ఇ:"] Let $y \in f(A) \cap f(B)$. Then, $y \in f(A)$ and $y \in f(B)$. The former tells us that there exists $x \in A$ such that $y=f(x)$, while the latter tells us that there exists $x^{\prime} \in B$ such that $y=f\left(x^{\prime}\right)$. Since $f$ is one-to-one and $f(x)=f\left(x^{\prime}\right)$, we must have that $x=x^{\prime}$. Thus, $x \in A \cap B$.
5) Show that for all positive integers $n$, we have that $n^{7}-n$ is divisible by 7 .

Proof. We prove it by induction on $n$. For $n=1$, we have $n^{7}-n=0$, which is divisible by 7.

Now suppose that $n^{7}-n$ is divisible by 7 . Then,

$$
\begin{aligned}
(n+1)^{7}-(n+1) & =n^{7}+7 n^{6}+21 n^{5}+35 n^{4}+35 n^{3}+21 n^{2}+7 n+1-(n-1) \\
& =\left[n^{7}-n\right]+\left[7 n^{6}+21 n^{5}+35 n^{4}+35 n^{3}+21 n^{2}+7 n\right] \\
& =\left[n^{7}-n\right]+7 \cdot\left[n^{6}+3 n^{5}+5 n^{4}+5 n^{3}+3 n^{2}+n\right] .
\end{aligned}
$$

[Note that we can compute $(n+1)^{7}$ quickly using Pascal's Triangle!] Hence, $(n+1)^{7}-(n+1)$ is, using the induction hypothesis, a sum of two terms divisible by 7 , and hence is itself divisible by 7 .
6) Prove that $n!\leq n^{n}$ for all positive integers $n$.

Proof. Before we prove the result, we need the following. If $0<a<b$, then $a^{n}<b^{n}$ for all positive integer $n$. We prove it by induction: for $n=1$, it is trivial. Now suppose that $a^{n}<b^{n}$. If we use Problem 9 below, we have that $0<a<b$ and $0<a^{n}<b^{n}$ implies that $a^{n+1}<b^{n+1}$.

We prove it by induction on $n$. For $n=1$, we have that $1!=1^{1}$.
Now assume that $n!\leq n^{n}$. Then,

$$
\begin{aligned}
(n+1)! & =(n+1) \cdot n! & & \\
& \leq(n+1) \cdot n^{n} & & {[\text { by the IH }] } \\
& \leq(n+1) \cdot(n+1)^{n} & & {[\text { by the above, as } 0<n<n+1] } \\
& =(n+1)^{n+1} . & &
\end{aligned}
$$

7) Find a closed formula for the recursion $a_{0}=0, a_{n}=3 \cdot a_{n-1}+2$ for $n \geq 1$. [You don't have to show me how you came up with the formula, but you have to prove that it is correct.]

Proof. We prove that $a_{n}=3^{n}-1$ by induction on $n$. For $n=0$, we have $a_{0}=0=3^{0}-1$. So, now assume that $a_{n}=3^{n}-1$ for some $n \geq 0$. Then, $a_{n+1}=3 a_{n}+2=3\left(3^{n}-1\right)+2=$ $3^{n+1}-3+2=3^{n+1}-1$.
8) Let $F$ be a field and $a, b \in F$. Also, let $n(x)$ denote the additive inverse of $x$ [which I denoted by $-x$ ] and $q(x)$ denote the multiplicative inverse of $x$ [which I denoted by $x^{-1}$ ]. Using only the field axioms show that:
(a) $n(a+b)=n(a)+n(b)$

Proof. We need to show that $(a+b)+(n(a)+n(b))=0$. We have:

$$
\begin{array}{rlrl}
(a+b)+(n(a)+n(b)) & =(a+b)+(n(b)+n(a)) & & \\
& =(a+(b y \text { comm. }] \\
& =(a+0)+n(b))+n(a) & & {[\text { by assoc. }]} \\
& =a+n(a) & & {[\text { by inv. elem.] }} \\
& =0 & & \text { [by identity] } \\
& & & {[\text { by inv. elem. }] .}
\end{array}
$$

Hence, $n(a+b)=n(a)+n(b)$.
(b) $q(q(a))=a$

Proof. We need to show that $a \cdot q(a)=1$. But that holds by definition of $q(a)$. Hence $q(q(a))=a$.
9) Let $F$ be an ordered field. Using only the order axioms show that if $0<a<b$ and $0<c<d$, then $a c<b d$.

Proof. Since $a>0$, we have that $a c<a d$ [by multiplicativity]. Since $d>0$, we have that $a d<d b$. By transitivity, we have that $a c<d b$.
10) Let $x \in \mathbb{R}$ such that $|x-1|<2$. Show that $\left|x^{2}-2 x+2\right|<5$.

Proof. We have:

$$
\begin{aligned}
\left|x^{2}-2 x+2\right| & =\left|(x-1)^{2}+1\right| & & \\
& \leq\left|(x-1)^{2}\right|+|1| & & \text { [by triang. ineq.] } \\
& =|x-1|^{2}+1 & & {[\text { as }|a||b|=|a b|] } \\
& <2^{2}+1=5 & & {[\text { since }|x-1|<2] . }
\end{aligned}
$$

