
1) Negate the following statement: “given x ∈ (0,∞), we have that x > y > 0 for some
y ∈ (0,∞)”. [As usual, your answer should contain no “nots”.]

Solution. There exists x ∈ (0,∞), such that for all y ∈ (0,∞), x ≤ y or y ≤ 0.

2) Let A, B, C be subsets of U . [You can use U = R if you want, but it is not necessary.]
Prove of disprove: (A \ C) ∪ (A ∩B) = A ∩ ((B ∩ C)c).

Solution. The statement is false. Let A = C = {1}, B = ∅, and U = R. Then, (A \ C) ∪
(A∩B) = ∅∪∅ = ∅, while A∩ ((B ∩C)c) = {1} ∩ (∅c) = {1} ∩R = {1}. Hence, they are
different.

3) Let ∼ be the relation on R2 \ {(0, 0)} defined by (a, b) ∼ (c, d) iff there exists r ∈ R such
that (ra, rb) = (c, d). Prove that ∼ is an equivalence relation.

Proof. [Reflexive:] (a, b) ∼ (a, b) as (a, b) = (1 · a, 1 · b).

[Symmetric:] Suppose that (a, b) ∼ (c, d). Hence, (c, d) = (ra, rb) for some r ∈ R. Since
(c, d) 6= (0, 0), we must have that r 6= 0. Thus, (a, b) = (1/r · c, 1/r · d) [and 1/r ∈ R]. Thus,
(c, d) ∼ (a, b).

[Transitive:] Suppose that (a, b) ∼ (c, d) and (c, d) ∼ (e, f). Then, by definition, there
are r, s ∈ R such that (c, d) = (ra, rb) and (e, f) = (sc, sd). Thus, (e, f) = (rsa, rsb). Since
rs ∈ R, we have that (a, b) ∼ (e, f).

4) Let f : X → Y be a one-to-one function and A, B ⊆ X. Prove that f(A ∩ B) =
f(A) ∩ f(B).

Proof. [“⊆:”] Let y ∈ f(A ∩ B). Then, there exists x ∈ A ∩ B such that f(x) = y. Since
x ∈ A, we have that y = f(x) is in f(A), and since x ∈ B also, we have that y = f(x) ∈ f(B).
Hence, y ∈ f(A) ∩ f(B).

[“⊇:”] Let y ∈ f(A) ∩ f(B). Then, y ∈ f(A) and y ∈ f(B). The former tells us that
there exists x ∈ A such that y = f(x), while the latter tells us that there exists x′ ∈ B such
that y = f(x′). Since f is one-to-one and f(x) = f(x′), we must have that x = x′. Thus,
x ∈ A ∩B.
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5) Show that for all positive integers n, we have that n7 − n is divisible by 7.

Proof. We prove it by induction on n. For n = 1, we have n7 − n = 0, which is divisible by
7.

Now suppose that n7 − n is divisible by 7. Then,

(n + 1)7 − (n + 1) = n7 + 7n6 + 21n5 + 35n4 + 35n3 + 21n2 + 7n + 1− (n− 1)

= [n7 − n] + [7n6 + 21n5 + 35n4 + 35n3 + 21n2 + 7n]

= [n7 − n] + 7 · [n6 + 3n5 + 5n4 + 5n3 + 3n2 + n].

[Note that we can compute (n+1)7 quickly using Pascal’s Triangle!] Hence, (n+1)7−(n+1) is,
using the induction hypothesis, a sum of two terms divisible by 7, and hence is itself divisible
by 7.

6) Prove that n! ≤ nn for all positive integers n.

Proof. Before we prove the result, we need the following. If 0 < a < b, then an < bn for
all positive integer n. We prove it by induction: for n = 1, it is trivial. Now suppose that
an < bn. If we use Problem 9 below, we have that 0 < a < b and 0 < an < bn implies that
an+1 < bn+1.

We prove it by induction on n. For n = 1, we have that 1! = 11.
Now assume that n! ≤ nn. Then,

(n + 1)! = (n + 1) · n!

≤ (n + 1) · nn [by the IH]

≤ (n + 1) · (n + 1)n [by the above, as 0 < n < n + 1]

= (n + 1)n+1.

7) Find a closed formula for the recursion a0 = 0, an = 3 ·an−1 +2 for n ≥ 1. [You don’t have
to show me how you came up with the formula, but you have to prove that it is correct.]

Proof. We prove that an = 3n − 1 by induction on n. For n = 0, we have a0 = 0 = 30 − 1.
So, now assume that an = 3n − 1 for some n ≥ 0. Then, an+1 = 3an + 2 = 3(3n − 1) + 2 =
3n+1 − 3 + 2 = 3n+1 − 1.

2



8) Let F be a field and a, b ∈ F . Also, let n(x) denote the additive inverse of x [which I
denoted by −x] and q(x) denote the multiplicative inverse of x [which I denoted by x−1].
Using only the field axioms show that:

(a) n(a + b) = n(a) + n(b)

Proof. We need to show that (a + b) + (n(a) + n(b)) = 0. We have:

(a + b) + (n(a) + n(b)) = (a + b) + (n(b) + n(a)) [by comm.]

= (a + (b + n(b))) + n(a) [by assoc.]

= (a + 0) + n(a) [by inv. elem.]

= a + n(a) [by identity]

= 0 [by inv. elem.].

Hence, n(a + b) = n(a) + n(b).

(b) q(q(a)) = a

Proof. We need to show that a · q(a) = 1. But that holds by definition of q(a). Hence
q(q(a)) = a.

9) Let F be an ordered field. Using only the order axioms show that if 0 < a < b and
0 < c < d, then ac < bd.

Proof. Since a > 0, we have that ac < ad [by multiplicativity]. Since d > 0, we have that
ad < db. By transitivity, we have that ac < db.

10) Let x ∈ R such that |x− 1| < 2. Show that |x2 − 2x + 2| < 5.

Proof. We have:∣∣x2 − 2x + 2
∣∣ =

∣∣(x− 1)2 + 1
∣∣

≤
∣∣(x− 1)2

∣∣ + |1| [by triang. ineq.]

= |x− 1|2 + 1 [as |a| |b| = |ab|]

< 22 + 1 = 5 [since |x− 1| < 2].
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