1) [10 points] Give examples of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:
(a) f is one-to-one, but not onto.

Solution. There are many examples, for instance, $f(x)=\mathrm{e}^{x}$. We know that it is one-to-one and onto $(0, \infty)$, so it is one-to-one, but not onto all of \mathbb{R}.
(b) f is onto, but not one-to-one.

Solution. There are many examples, for instance,

$$
f(x)= \begin{cases}\ln (x), & \text { if } x>0 \\ 0, & \text { if } x \leq 0\end{cases}
$$

We know that $\ln (x)$ is onto, as it is the inverse of $\mathrm{e}^{x}: \mathbb{R} \rightarrow(0, \infty)$. But it's domain is not \mathbb{R}. We make the domain \mathbb{R} by "attaching" the half-line from $(-\infty, 0]$ at $y=0$. Then, its not one-to-one, as $f(-1)=f(-2)=0$.
(c) f is neither one-to-one nor onto.

Solution. There are many examples, for instance, $f(x)=x^{2}$. Not onto, since the image of $f(x)$ is $[0, \infty)$, and not one-to-one, since $f(-1)=f(1)$.
2) [10 points] Prove that

$$
\sum_{k=1}^{n}\left(k^{2}-\frac{k}{3}\right)=\frac{n^{2}(n+1)}{3}
$$

for all integers $n \geq 1$.

Solution. See Example 4.6 on pg. 43 from the textbook.
3) [10 points] Show that for all integers $n \geq 1$, we have that 5 divides $4^{2 n-1}+1$.

Solution. [Compare with Problem 9 from pg. 46 from our solutions!]
We prove it by induction on n. For $n=1$, we have $4^{2 \cdot 1-1}+1=5$, which is divisible by 5 . Now, assume that $4^{2 n-1}+1$ is divisible by 5 . Then,

$$
\begin{aligned}
4^{2(n+1)-1}+1 & =4^{2 n+1}+1 \\
& =4^{2} \cdot 4^{2 n-1}+1 \\
& =(15+1) \cdot 4^{2 n-1}+1 \\
& =15 \cdot 4^{2 n-1}+\left(4^{2 n-1}+1\right)
\end{aligned}
$$

Since 5 divides 15 , it clearly divides $15 \cdot 4^{2 n-1}$. Also, by the induction hypothesis, 5 divides $4^{2 n-1}+1$. Thus, 5 divides $4^{2(n+1)-1}+1=15 \cdot 4^{2 n-1}+\left(4^{2 n-1}+1\right)$.
4) [15 points] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}-x, & \text { if } x \in \mathbb{Q} \\ x, & \text { if } x \notin \mathbb{Q}\end{cases}
$$

So, for instance, $f(1 / 2)=-1 / 2$ and $f(\sqrt{2})=\sqrt{2}$. Is f onto \mathbb{R} ? Is it one-to-one? If both, find its inverse. [As always, justify your answers!]

Solution. By Theorem 3.24 [on pg. 36 from the textbook], we see that it suffices to show that f is invertible to show that it is also one-to-one and onto.
[Inverse:] We have that f is its own inverse: If $x \in \mathbb{Q}$, then also $-x \in \mathbb{Q}$. Hence $f \circ f(x)=$ $f(f(x))=f(-x)=-(-x)=x$. If $x \notin \mathbb{Q}$, then $f \circ f(x)=f(f(x))=f(x)=x$. So, for all $x \in \mathbb{R}$, we have that $f \circ f(x)=x$, and hence $f^{-1}(x)=f(x)$.
[If you want to see how does one show that it is one-to-one and onto directly, here it is:
[Onto:] Let $b \in \mathbb{R}$. [We need $a \in \mathbb{R}$ such that $f(a)=b$.] If $b \notin \mathbb{Q}$, then let $a=b$. Then, $f(a)=a=b$. If $b \in \mathbb{Q}$, then let $a=-b$. Since $b \in \mathbb{Q}$, then $-b=a \in \mathbb{Q}$, and hence $f(a)=-a=-(-b)=b$. So, in either case, there is $a \in \mathbb{R}$ such that $f(a)=b$.
[One-to-one:] Suppose that $f(a)=f(b)$. [We need to prove that $a=b$.]
If $a \notin \mathbb{Q}$, then $f(a)=a=f(b)$. If $b \in \mathbb{Q}$, then $f(b)=-b \in \mathbb{Q}$. But then, $a=f(b)=-b$ cannot hold, as $a \notin Q$ and $-b \in \mathbb{Q}$. So, we must have that if $a \notin \mathbb{Q}$, then $b \notin \mathbb{Q}$. So, we would have $a=f(a)=f(b)=b$.
Now, if $a \in \mathbb{Q}$, then $f(a)=-a=f(b)$. If $b \notin \mathbb{Q}$, then $f(b)=b \notin \mathbb{Q}$. But then, $-a=f(b)=b$ cannot hold, as $-a \in Q$ and $b \notin \mathbb{Q}$. So, we must have that if $a \in \mathbb{Q}$, then $b \in \mathbb{Q}$. So, we would have $a=-f(a)=-f(b)=b$.]
5) [15 points] Prove that for all integers $n \geq 4$, we have:
(a) $2 n+1<2^{n}$

Solution. We prove it by induction on n. For $n=4$, we have $2 \cdot 4+1=9<16=2^{4}$. Now, assume that $2 n+1<2^{n}$. Then,

$$
\begin{aligned}
2(n+1)+1 & =2 n+1+2 & & \\
& <2^{n}+2 & & {[\text { by the IH }] } \\
& <2^{n}+2^{n} & & {\left[\text { as } n \geq 4,2^{n}>2\right] } \\
& =2^{n+1} . & &
\end{aligned}
$$

(b) $n^{2} \leq 2^{n}$

Solution. We prove it by induction on n. For $n=4$, we have $4^{2}=16=2^{4}$.
Now, assume that $n^{2} \leq 2^{n}$. Then,

$$
\begin{aligned}
(n+1)^{2} & =n^{2}+2 n+1 & & \\
& \leq 2^{n}+2 n+1 & & {[\text { by the } \mathrm{IH}] } \\
& \leq 2^{n}+2^{n} & & {[\text { by part (a) }] } \\
& =2^{n+1} . & &
\end{aligned}
$$

6) [20 points] Let $f: X \rightarrow Y$ be a function, and $A, B \subseteq X$. [You cannot quote previous work on this question, as we've done all these questions already.]
(a) Prove that $f(A \backslash B) \supseteq f(A) \backslash f(B)$.

Solution. [Done in class.] Let $y \in f(A) \backslash f(B)$. Hence, $y \in f(A)$, but $y \notin f(B)$. Since $y \in f(A)$, there exists $x \in A$ such that $f(x)=y$. If $x \in B$, then $f(x) \in f(B)$, and since $y=f(x)$, we would have $y \in f(B)$, which is a contradiction. So, x cannot be in B. Hence, [since $x \in A$], $x \in A \backslash B$. Since $y=f(x)$, we have that $y \in f(A \backslash B)$.
(b) Disprove that $f(A \backslash B) \subseteq f(A) \backslash f(B)$ [in general].

Solution. [Done in class.] Let $f(x)=x^{2}, A=[-1,1], B=(0,1]$. Thus, $A \backslash B=[-1,0]$. Using the graph we see that $f(A)=[0,1]=f(A \backslash B)$, and $f(B)=(0,1]$. Thus, $f(A \backslash B)=[0,1] \neq\{0\}=f(A) \backslash f(B)$.
(c) Prove that if f is one-to-one, then we do have $f(A \backslash B) \subseteq f(A) \backslash f(B)$.

Solution. See our solutions for Problem 9(b) on pg. 38.
7) [20 points] Let $f: X \rightarrow Y$ be a function and $A \subseteq Y$. Show that if f is onto, then $f\left(f^{-1}(A)\right)=A$. Show that this is not necessarily true if f is not onto. [Again, this was done before, so you cannot just quote the result.]

Solution. For $f\left(f^{-1}(A)\right)=A$, note that since f is onto, then $A \subseteq f(X)=Y$. Then, the proof is the proof of Theorem 3.15 on pg. 33. [As I said, you'd have to repeat that proof here, not just quote it.]
[Done in class.] To show that it fails if f is not onto, take $f(x)=x^{2}$, and $A=\mathbb{R}$. Then, $f^{-1}(\mathbb{R})=\mathbb{R}$ and $f(\mathbb{R})=[0, \infty)$. Thus, $f\left(f^{-1}(\mathbb{R})\right)=f(\mathbb{R})=[0, \infty) \varsubsetneqq \mathbb{R}$.

