- 1) [10 points] Give examples of functions $f : \mathbb{R} \to \mathbb{R}$ such that:
 - (a) f is one-to-one, but not onto.

Solution. There are many examples, for instance, $f(x) = e^x$. We know that it is one-to-one and onto $(0, \infty)$, so it is one-to-one, but not onto all of \mathbb{R} .

(b) f is onto, but not one-to-one.

Solution. There are many examples, for instance,

$$f(x) = \begin{cases} \ln(x), & \text{if } x > 0, \\ 0, & \text{if } x \le 0. \end{cases}$$

We know that $\ln(x)$ is onto, as it is the inverse of $e^x : \mathbb{R} \to (0, \infty)$. But it's domain is not \mathbb{R} . We make the domain \mathbb{R} by "attaching" the half-line from $(-\infty, 0]$ at y = 0. Then, its not one-to-one, as f(-1) = f(-2) = 0.

(c) f is neither one-to-one nor onto.

Solution. There are many examples, for instance, $f(x) = x^2$. Not onto, since the image of f(x) is $[0, \infty)$, and not one-to-one, since f(-1) = f(1).

2) [10 points] Prove that

$$\sum_{k=1}^{n} \left(k^2 - \frac{k}{3} \right) = \frac{n^2(n+1)}{3},$$

for all integers $n \ge 1$.

Solution. See Example 4.6 on pg. 43 from the textbook.

3) [10 points] Show that for all integers $n \ge 1$, we have that 5 divides $4^{2n-1} + 1$.

Solution. [Compare with Problem 9 from pg. 46 from our solutions!] We prove it by induction on n. For n = 1, we have $4^{2 \cdot 1 - 1} + 1 = 5$, which is divisible by 5. Now, assume that $4^{2n-1} + 1$ is divisible by 5. Then,

$$4^{2(n+1)-1} + 1 = 4^{2n+1} + 1$$

= $4^2 \cdot 4^{2n-1} + 1$
= $(15+1) \cdot 4^{2n-1} + 1$
= $15 \cdot 4^{2n-1} + (4^{2n-1} + 1)$

Since 5 divides 15, it clearly divides $15 \cdot 4^{2n-1}$. Also, by the induction hypothesis, 5 divides $4^{2n-1} + 1$. Thus, 5 divides $4^{2(n+1)-1} + 1 = 15 \cdot 4^{2n-1} + (4^{2n-1} + 1)$.

4) [15 points] Let $f : \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} -x, & \text{if } x \in \mathbb{Q}, \\ x, & \text{if } x \notin \mathbb{Q}. \end{cases}$$

So, for instance, f(1/2) = -1/2 and $f(\sqrt{2}) = \sqrt{2}$. Is f onto \mathbb{R} ? Is it one-to-one? If both, find its inverse. [As always, justify your answers!]

Solution. By Theorem 3.24 [on pg. 36 from the textbook], we see that it suffices to show that f is invertible to show that it is also one-to-one and onto.

[Inverse:] We have that f is its own inverse: If $x \in \mathbb{Q}$, then also $-x \in \mathbb{Q}$. Hence $f \circ f(x) = f(f(x)) = f(-x) = -(-x) = x$. If $x \notin \mathbb{Q}$, then $f \circ f(x) = f(f(x)) = f(x) = x$. So, for all $x \in \mathbb{R}$, we have that $f \circ f(x) = x$, and hence $f^{-1}(x) = f(x)$.

If you want to see how does one show that it is one-to-one and onto directly, here it is:

[Onto:] Let $b \in \mathbb{R}$. [We need $a \in \mathbb{R}$ such that f(a) = b.] If $b \notin \mathbb{Q}$, then let a = b. Then, f(a) = a = b. If $b \in \mathbb{Q}$, then let a = -b. Since $b \in \mathbb{Q}$, then $-b = a \in \mathbb{Q}$, and hence f(a) = -a = -(-b) = b. So, in either case, there is $a \in \mathbb{R}$ such that f(a) = b.

[One-to-one:] Suppose that f(a) = f(b). [We need to prove that a = b.] If $a \notin \mathbb{Q}$, then f(a) = a = f(b). If $b \in \mathbb{Q}$, then $f(b) = -b \in \mathbb{Q}$. But then, a = f(b) = -b cannot hold, as $a \notin Q$ and $-b \in \mathbb{Q}$. So, we must have that if $a \notin \mathbb{Q}$, then $b \notin \mathbb{Q}$. So, we would have a = f(a) = f(b) = b.

Now, if $a \in \mathbb{Q}$, then f(a) = -a = f(b). If $b \notin \mathbb{Q}$, then $f(b) = b \notin \mathbb{Q}$. But then, -a = f(b) = b cannot hold, as $-a \in Q$ and $b \notin \mathbb{Q}$. So, we must have that if $a \in \mathbb{Q}$, then $b \in \mathbb{Q}$. So, we would have a = -f(a) = -f(b) = b.]

- 5) [15 points] Prove that for all integers $n \ge 4$, we have:
 - (a) $2n+1 < 2^n$

Solution. We prove it by induction on n. For n = 4, we have $2 \cdot 4 + 1 = 9 < 16 = 2^4$. Now, assume that $2n + 1 < 2^n$. Then,

$$2(n+1) + 1 = 2n + 1 + 2$$

$$< 2^{n} + 2$$
 [by the IH]

$$< 2^{n} + 2^{n}$$
 [as $n \ge 4, 2^{n} > 2$]

$$= 2^{n+1}.$$

(b) $n^2 \le 2^n$

Solution. We prove it by induction on n. For n = 4, we have $4^2 = 16 = 2^4$. Now, assume that $n^2 \le 2^n$. Then,

$$(n+1)^2 = n^2 + 2n + 1$$

 $\leq 2^n + 2n + 1$ [by the IH]
 $\leq 2^n + 2^n$ [by part (a)]
 $= 2^{n+1}.$

6) [20 points] Let $f: X \to Y$ be a function, and $A, B \subseteq X$. [You cannot quote previous work on this question, as we've done all these questions already.]

(a) Prove that $f(A \setminus B) \supseteq f(A) \setminus f(B)$.

Solution. [Done in class.] Let $y \in f(A) \setminus f(B)$. Hence, $y \in f(A)$, but $y \notin f(B)$. Since $y \in f(A)$, there exists $x \in A$ such that f(x) = y. If $x \in B$, then $f(x) \in f(B)$, and since y = f(x), we would have $y \in f(B)$, which is a contradiction. So, x cannot be in B. Hence, [since $x \in A$], $x \in A \setminus B$. Since y = f(x), we have that $y \in f(A \setminus B)$.

(b) Disprove that $f(A \setminus B) \subseteq f(A) \setminus f(B)$ [in general].

Solution. [Done in class.] Let $f(x) = x^2$, A = [-1, 1], B = (0, 1]. Thus, $A \setminus B = [-1, 0]$. Using the graph we see that $f(A) = [0, 1] = f(A \setminus B)$, and f(B) = (0, 1]. Thus, $f(A \setminus B) = [0, 1] \neq \{0\} = f(A) \setminus f(B)$.

(c) Prove that if f is one-to-one, then we do have $f(A \setminus B) \subseteq f(A) \setminus f(B)$.

Solution. See our solutions for Problem 9(b) on pg. 38.

7) [20 points] Let $f : X \to Y$ be a function and $A \subseteq Y$. Show that if f is onto, then $f(f^{-1}(A)) = A$. Show that this is not necessarily true if f is not onto. [Again, this was done before, so you cannot just quote the result.]

Solution. For $f(f^{-1}(A)) = A$, note that since f is onto, then $A \subseteq f(X) = Y$. Then, the proof is the proof of Theorem 3.15 on pg. 33. [As I said, you'd have to repeat that proof here, not just quote it.]

[Done in class.] To show that it fails if f is not onto, take $f(x) = x^2$, and $A = \mathbb{R}$. Then, $f^{-1}(\mathbb{R}) = \mathbb{R}$ and $f(\mathbb{R}) = [0, \infty)$. Thus, $f(f^{-1}(\mathbb{R})) = f(\mathbb{R}) = [0, \infty) \subsetneqq \mathbb{R}$.