1) [10 points] Let $X=\{1,2,3\}$. Give an example of a relation \mathcal{R} [not necessarily an equivalence relation!] on X such that $1 \mathcal{R} 2$, but 1 is not related to 3 by \mathcal{R}.

Solution. There are may possibilities. The simplest one is to take $\mathcal{R}=\{(1,2)\}$. Then, $1 \mathcal{R} 2$ [as $(1,2) \in \mathcal{R}]$, but 1 is not related to 3 [as $(1,3) \notin \mathcal{R}]$.
2) [10 points] Give the definition of domain of a relation \mathcal{R} on $X \times Y$.

Solution. The domain of \mathcal{R} is defined as the set:

$$
\{x \in X: \exists y \in Y \text { such that } x \mathcal{R} y\}
$$

3) [10 points] Let $X=\{1,2,3,4,5\}$. Is $\mathcal{P}=\{\{1,2\},\{3,4\},\{2,5\}\}$ a partition of X ? How about $\mathcal{Q}=\{\{1,2\},\{3\},\{4\}\}$? Justify your answers!

Solution. \mathcal{P} is not a partition, as $\{1,2\},\{2,5\} \in \mathcal{P}$, with $\{1,2\} \cap\{2,5\}=\{2\} \neq \varnothing$, but $\{1,2\} \neq\{2,5\}$. [Distinct elements of a partition have to be disjoint!]
\mathcal{Q} is not a partition either, as 5 is in X, but not in any element of \mathcal{Q}. [A partition must cover all elements of the set.]
4) [15 points] Let x be a real number. Prove that if x is irrational, then $1 / x$ is also irrational.

Proof. We prove the contrapositive. [I.e., of $1 / x \in \mathbb{Q}$, then $x \in \mathbb{Q}$.]
Suppose that $1 / x \in \mathbb{Q}$. [We need to prove that $x \in \mathbb{Q}$.] Then, clearly $1 / x \neq 0$ [as $a / b=0$ if, and only if $a=0$], and since $1 \in \mathbb{Q}$ and \mathbb{Q} is closed under division by nonzero elements, we have that $\frac{1}{1 / x}=x \in \mathbb{Q}$.
5) $[10$ points $]$ Prove or disprove: Let A, B and C be sets. Then, $[(A \backslash B) \backslash C] \cup(B \backslash C)=A \backslash C$.

Solution. The statement is FALSE. [Draw the Venn diagrams.] Here is a counter-example: take $A=C=\varnothing$ and $B=\{1\}$. Then, $(A \backslash B) \backslash C=\varnothing$ and $B \backslash C=\{1\}$. Thus, $[(A \backslash B) \backslash C] \cup(B \backslash C)=\{1\}$. On the other hand, $A \backslash C=\varnothing$. Thus, in this case, $[(A \backslash B) \backslash C] \cup(B \backslash C) \neq A \backslash C$.
6) [15 points] Prove or disprove: Let A, B and C be sets. Then, $(A \backslash B) \cap C=(C \backslash B) \cap A$.

Proof. The statement is TRUE.
$[" \subseteq$ ":] Let $x \in(A \backslash B) \cap C$. Then, $x \in A \backslash B$ and $x \in C$. Thus, $x \in A, x \notin B, x \in C$. Therefore, $x \in C \backslash B$ as $x \in C, x \notin B]$ and $x \in A$. Hence, $x \in(C \backslash B) \cap A$.
$[" \subseteq$ ":] Let $x \in(C \backslash B) \cap A$. Then, $x \in C \backslash B$ and $x \in A$. Thus, $x \in C, x \notin B, x \in A$. Therefore, $x \in A \backslash B[$ as $x \in A, x \notin B]$ and $x \in C$. Hence, $x \in(A \backslash B) \cap C$.
7) [10 points] Give the completely simplified negation of the following statement. [Your answers should have no "nots" in them.]

Given $x>0$, there exists y such that (if $x<1$, then $y<x$) and (if $x \geq 1$, then $y \geq x$).
[Hint: Negate one part at a time, as it makes it easier to get partial credit.]

Solution. We can rephrase it as:

$$
\forall x>0, \exists y \text { such that }(x<1 \Rightarrow y<x) \text { and }(x \geq 1 \Rightarrow y \geq x)
$$

Then

$$
\begin{aligned}
\text { NOT }[& \forall x
\end{aligned} \begin{aligned}
& >0, \exists y \text { such that }(x<1 \Rightarrow y<x) \text { and }(x \geq 1 \Rightarrow y \geq x)] \\
& =\exists x>0 \text { such that NOT }[\exists y \text { such that }(x<1 \Rightarrow y<x) \text { and }(x \geq 1 \Rightarrow y \geq x)] \\
& =\exists x>0 \text { such that } \forall y \operatorname{NOT}[(x<1 \Rightarrow y<x) \text { and }(x \geq 1 \Rightarrow y \geq x)] \\
& =\exists x>0 \text { such that } \forall y \operatorname{NOT}[(x<1 \Rightarrow y<x)] \text { or NOT }[(x \geq 1 \Rightarrow y \geq x)] \\
& =\exists x>0 \text { such that } \forall y(x<1 \text { and } y \geq x) \text { or }(x \geq 1 \text { and } y<x) .
\end{aligned}
$$

8) Let $X=\mathbb{R} \backslash\{0\}$. Define a relation \mathcal{R} by $x \mathcal{R} y$ if $x / y \in \mathbb{Q}$.
(a) [15 points] Prove that \mathcal{R} is an equivalence relation.

Proof. [Reflexive:] Let $x \in X$. Then, $x \neq 0$ [this is crucial!] and so $x / x=1$. Since $1 \in \mathbb{Q}$, we have that $x \mathcal{R} x$.
[Symmetric:] Suppose that $x \mathcal{R} y$. Then, by definition, $x / y \in \mathbb{Q}$. Since $x \neq 0$, we have also that $x / y \neq 0$. Thus, since $1 \in \mathbb{Q}$ and \mathbb{Q} is closed under division by nonzero elements [and $x / y \neq 0$], we have that $\frac{1}{x / y}=y / x \in \mathbb{Q}$. Therefore, we have that $y \mathcal{R} x$ by definition.
[Transitive:] Suppose that $x \mathcal{R} y$ and $y \mathcal{R} z$. Then, by definition we have that $x / y, y / z \in$ \mathbb{Q}. Since \mathbb{Q} is closed under products, we have that $(x / y) \cdot(y / z)=x / z \in \mathbb{Q}$. Therefore $x \mathcal{R} z$ by definition.
(b) [5 points] Describe the equivalence class of 1. [Your answer should be a simple and well described subset of X. Just writing the definition is not enough, although it'd get you some partial credit.]

Solution. We have:

$$
\begin{aligned}
\overline{1} & =\{x \in X: x \mathcal{R} 1\} \\
& =\{x \in X: x / 1 \in \mathbb{Q}\} \\
& =\{x \in X: x \in \mathbb{Q}\} .
\end{aligned}
$$

So, $\overline{1}=X \cap \mathbb{Q}=\mathbb{Q} \backslash\{0\}$.

