1) [10 points] Let $X = \{1, 2, 3\}$. Give an example of a relation \mathcal{R} [not necessarily an equivalence relation!] on X such that $1\mathcal{R}2$, but 1 is *not* related to 3 by \mathcal{R} .

Solution. There are may possibilities. The simplest one is to take $\mathcal{R} = \{(1,2)\}$. Then, $1\mathcal{R}^2$ [as $(1,2) \in \mathcal{R}$], but 1 is not related to 3 [as $(1,3) \notin \mathcal{R}$].

2) [10 points] Give the definition of *domain* of a relation \mathcal{R} on $X \times Y$.

Solution. The domain of \mathcal{R} is defined as the set:

 $\{x \in X : \exists y \in Y \text{ such that } x \mathcal{R} y\}.$

3) [10 points] Let $X = \{1, 2, 3, 4, 5\}$. Is $\mathcal{P} = \{\{1, 2\}, \{3, 4\}, \{2, 5\}\}$ a partition of X? How about $\mathcal{Q} = \{\{1, 2\}, \{3\}, \{4\}\}$? Justify your answers!

Solution. \mathcal{P} is not a partition, as $\{1,2\}, \{2,5\} \in \mathcal{P}$, with $\{1,2\} \cap \{2,5\} = \{2\} \neq \emptyset$, but $\{1,2\} \neq \{2,5\}$. [Distinct elements of a partition have to be disjoint!]

 \mathcal{Q} is not a partition either, as 5 is in X, but not in any element of \mathcal{Q} . [A partition must cover all elements of the set.]

4) [15 points] Let x be a real number. Prove that if x is irrational, then 1/x is also irrational.

Proof. We prove the contrapositive. [I.e., of $1/x \in \mathbb{Q}$, then $x \in \mathbb{Q}$.]

Suppose that $1/x \in \mathbb{Q}$. [We need to prove that $x \in \mathbb{Q}$.] Then, clearly $1/x \neq 0$ [as a/b = 0 if, and only if a = 0], and since $1 \in \mathbb{Q}$ and \mathbb{Q} is closed under division by *nonzero elements*, we have that $\frac{1}{1/x} = x \in \mathbb{Q}$.

5) [10 points] Prove or disprove: Let A, B and C be sets. Then, $[(A \setminus B) \setminus C] \cup (B \setminus C) = A \setminus C$.

Solution. The statement is FALSE. [Draw the Venn diagrams.] Here is a counter-example: take $A = C = \emptyset$ and $B = \{1\}$. Then, $(A \setminus B) \setminus C = \emptyset$ and $B \setminus C = \{1\}$. Thus, $[(A \setminus B) \setminus C] \cup (B \setminus C) = \{1\}$. On the other hand, $A \setminus C = \emptyset$. Thus, in this case, $[(A \setminus B) \setminus C] \cup (B \setminus C) \neq A \setminus C$.

6) [15 points] Prove or disprove: Let A, B and C be sets. Then, $(A \setminus B) \cap C = (C \setminus B) \cap A$.

Proof. The statement is TRUE.

[" \subseteq ":] Let $x \in (A \setminus B) \cap C$. Then, $x \in A \setminus B$ and $x \in C$. Thus, $x \in A$, $x \notin B$, $x \in C$. Therefore, $x \in C \setminus B$ [as $x \in C$, $x \notin B$] and $x \in A$. Hence, $x \in (C \setminus B) \cap A$.

[" \subseteq ":] Let $x \in (C \setminus B) \cap A$. Then, $x \in C \setminus B$ and $x \in A$. Thus, $x \in C$, $x \notin B$, $x \in A$. Therefore, $x \in A \setminus B$ [as $x \in A$, $x \notin B$] and $x \in C$. Hence, $x \in (A \setminus B) \cap C$.

7) [10 points] Give the completely simplified negation of the following statement. [Your answers should have no "nots" in them.]

Given x > 0, there exists y such that (if x < 1, then y < x) and (if $x \ge 1$, then $y \ge x$).

[Hint: Negate one part at a time, as it makes it easier to get partial credit.]

Solution. We can rephrase it as:

$$\forall x > 0, \exists y \text{ such that } (x < 1 \Rightarrow y < x) \text{ and } (x \ge 1 \Rightarrow y \ge x).$$

Then

$$\begin{aligned} \operatorname{NOT}[\forall x > 0, \exists y \text{ such that } (x < 1 \Rightarrow y < x) \text{ and } (x \ge 1 \Rightarrow y \ge x)] \\ &= \exists x > 0 \text{ such that NOT}[\exists y \text{ such that } (x < 1 \Rightarrow y < x) \text{ and } (x \ge 1 \Rightarrow y \ge x)] \\ &= \exists x > 0 \text{ such that } \forall y \operatorname{NOT}[(x < 1 \Rightarrow y < x) \text{ and } (x \ge 1 \Rightarrow y \ge x)] \\ &= \exists x > 0 \text{ such that } \forall y \operatorname{NOT}[(x < 1 \Rightarrow y < x)] \text{ or } \operatorname{NOT}[(x \ge 1 \Rightarrow y \ge x)] \\ &= \exists x > 0 \text{ such that } \forall y \operatorname{NOT}[(x < 1 \Rightarrow y < x)] \text{ or } \operatorname{NOT}[(x \ge 1 \Rightarrow y \ge x)] \\ &= \exists x > 0 \text{ such that } \forall y (x < 1 \text{ and } y \ge x) \text{ or } (x \ge 1 \text{ and } y < x). \end{aligned}$$

- 8) Let $X = \mathbb{R} \setminus \{0\}$. Define a relation \mathcal{R} by $x\mathcal{R}y$ if $x/y \in \mathbb{Q}$.
 - (a) [15 points] Prove that \mathcal{R} is an equivalence relation.

Proof. [Reflexive:] Let $x \in X$. Then, $x \neq 0$ [this is *crucial!*] and so x/x = 1. Since $1 \in \mathbb{Q}$, we have that $x\mathcal{R}x$.

[Symmetric:] Suppose that $x\mathcal{R}y$. Then, by definition, $x/y \in \mathbb{Q}$. Since $x \neq 0$, we have also that $x/y \neq 0$. Thus, since $1 \in \mathbb{Q}$ and \mathbb{Q} is closed under division by *nonzero* elements [and $x/y \neq 0$], we have that $\frac{1}{x/y} = y/x \in \mathbb{Q}$. Therefore, we have that $y\mathcal{R}x$ by definition.

[Transitive:] Suppose that $x\mathcal{R}y$ and $y\mathcal{R}z$. Then, by definition we have that $x/y, y/z \in \mathbb{Q}$. Since \mathbb{Q} is closed under products, we have that $(x/y) \cdot (y/z) = x/z \in \mathbb{Q}$. Therefore $x\mathcal{R}z$ by definition.

_	-	-	

(b) [5 points] Describe the equivalence class of 1. [Your answer should be a *simple* and well described subset of X. Just writing the definition is not enough, although it'd get you some partial credit.]

Solution. We have:

$$\overline{1} = \{ x \in X : x\mathcal{R}1 \}$$
$$= \{ x \in X : x/1 \in \mathbb{Q} \}$$
$$= \{ x \in X : x \in \mathbb{Q} \}.$$

So, $\overline{1} = X \cap \mathbb{Q} = \mathbb{Q} \setminus \{0\}.$