Final (Take-Home Part)

M551 - Abstract Algebra

December 3rd, 2007

1. Let R be a commutative ring with identity. Suppose that for each prime ideal P, the localization R_{P} has no non-zero nilpotent element.
(a) Show that R has no non-zero nilpotent element.

Proof. Let $a \in R-\{0\}$. Let $I \stackrel{\text { def }}{=}\{r \in R: r a=0\}$. Then I is an ideal: if $r, s \in I$, then $(r-s) a=r a-s a=0$. If $x \in R$, then $x r a=x \cdot 0=0$.

Since $a \neq 0$, we have that $1 \notin I$, and hence $I \neq R$. Thus, there is a maximal ideal M [and hence also prime] such that $I \subseteq M$. But, if $a^{m}=0[$ in $R]$, then $(a / 1)^{m}=\left(a^{m}\right) / 1=$ $0 / 1\left[\right.$ in R_{M}], and hence, since R_{M} has no non-zero nilpotent elements, we have that $a / 1=0 / 1$. So, there exists $x \in R-M$ such that $x a=0$. But, by definition, such x would have to be in M, giving us a contadiction. Thus, a cannot be nilpotent.
(b) Is R necessarily a domain?

Proof. No! Let $R \stackrel{\text { def }}{=} \mathbb{Z} / 6 \mathbb{Z}$. The only proper non-zero ideals of R are $P_{1} \stackrel{\text { def }}{=}(2)$ and $P_{2} \xlongequal{\text { def }}(3)$. [Note that every ideal of R is principal, since \mathbb{Z} is a PID. It is not a PID since it is not a domain, though.] Since it is not a domain, we have that (0) is not prime. By observing containment, we can see that P_{1} and P_{2} are maximal, and hence prime.
Note that in $R_{P_{1}}$, we have that $2 / 1=0 / 1$, since $3 \notin P_{1}$ and $3 \cdot 2=0[$ in $R]$. Now, if $(a / b)^{n}=0 / 1$ in $R_{P_{1}}$, then there exists $x \notin P_{1}$ such that $x a^{n}=0$. Since $x \notin P_{1}$, we have that $x=1,3,5$. Since 1 and 5 are units in R, if $a \neq 0$, then we must have $x=3$. But then, a^{n} must be in $P_{1}=\{0,2,4\}$. Since P_{1} is prime, we have that $a \in P_{1}$. So, by our previous remark [i.e., $2 / 1=0 / 1$], we have $(a / b)=0 / 1$. Therefore, $R_{P_{1}}$ has no non-zero nilpotent elements.
[In fact, we have $R_{P_{1}}=\{0 / 1,1 / 1\} \cong \mathbb{Z} / 2 \mathbb{Z}$, since $2 / 1=0$, and $1 / 1=1 / 3=1 / 5$.]
Note that in $R_{P_{2}}$, we have that $3 / 1=0 / 1$, since $2 \notin P_{3}$ and $2 \cdot 3=0[$ in $R]$. Now, if $(a / b)^{n}=0 / 1$ in $R_{P_{2}}$, then there exists $x \notin P_{2}$ such that $x a^{n}=0$. Since $x \notin P_{2}$, we have
that $x=1,2,4,5$. Since 1 and 5 are units in R, if $a \neq 0$, then we must have $x=2$ or $x=4$. But then, a^{n} must be in $P_{2}=\{0,3\}$. Since P_{2} is prime, we have that $a \in P_{2}$. So, by our previous remark [i.e., $3 / 1=0 / 1$], we have $(a / b)=0 / 1$. Therefore, $R_{P_{2}}$ has no non-zero nilpotent elements.
[In fact, we have $R_{P_{2}}=\{0 / 1,1 / 1,2 / 1\} \cong \mathbb{Z} / 3 \mathbb{Z}$, since $3 / 1=0$, and $1 / 2=2 / 1$.]
2. Let R be a non-Noetherian commutative ring with identity, and \mathcal{S} be the set of ideals which are not finitely generated.
(a) Show that \mathcal{S} has a maximal element I. [The ideal I in the next items is this maximal element.]

Proof. We use Zorn's Lemma: let \mathcal{C} be a chain in \mathcal{S}. [Note that $\mathcal{S} \neq \varnothing$ since R is nonNoetherian.] Let $I_{\mathcal{C}} \stackrel{\text { def }}{=} \bigcup_{I \in \mathcal{C}} I$. Then, as usual, $I_{\mathcal{C}}$ is an ideal. If $I_{\mathcal{C}}$ is finitely generated, say $I_{\mathcal{C}}=\left(a_{0}, \ldots, a_{n}\right)$, then there exists $I_{i} \in \mathcal{C} \subseteq \mathcal{S}$ such that $a_{i} \in I_{i}$. Since \mathcal{C} is a chain [i.e., totally ordered], we have that all a_{i} are in a single I_{j}, which we can assume, without loss of generality, to be I_{n}. But then, $I \subseteq I_{n} \subseteq I$. i.e., $I=I_{n}$. So, $I \in \mathcal{S}$, which would mean that I is not finitely generated, giving us a contradiction. Thus, $I \in \mathcal{S}$ is an upper bound of \mathcal{C}.
(b) Suppose that $x \notin I$. Prove that there exists a finitely generated ideal $I_{0} \subseteq I$, such that $\left(I_{0}, x\right)=(I, x)$. [Don't forget the $I_{0} \subseteq I$ part!]

Proof. Since I is maximal in \mathcal{S} and $x \notin I$, we have that $I \varsubsetneqq(I, x)$, and so $(I, x) \notin \mathcal{S}$, and so it's finitely generated, say $(I, x)=\left(a_{1}, \ldots, a_{n}\right)$. Since $a_{i} \in(I, x)$, for each i there exists $b_{i} \in I$ and $r_{i} \in R$ such that $a_{i}=b_{i}+x r_{i}$. Let then $I_{0} \stackrel{\text { def }}{=}\left(b_{1}, \ldots, b_{n}\right)$. Clearly $I_{0} \subseteq I$, and so $\left(I_{0}, x\right) \subseteq(I, x)$.
Now, given $a+x r \in(I, x)$, since $(I, x)=\left(a_{0}, \ldots, a_{n}\right)$, we have that there are $s_{1}, \ldots, s_{n} \in$ R such that

$$
a+r x=s_{1} a_{1}+\cdots s_{n} a_{n}=s_{1} b_{1}+\cdots+s_{n} b_{n}+x\left(s_{1} r_{1}+\cdots+s_{n} r_{n}\right) \in\left(I_{0}, x\right)
$$

Thus, $\left(I_{0}, x\right)=(I, x)$.
(c) Suppose $x y \in I$, but $x, y \notin I$. Prove that $J \stackrel{\text { def }}{=}\{r \in R: r x \in I\}$ is a finitely generated ideal.

Proof. Let $r, s \in J$. Then, $(r-s) x=r x-s x \in I$, since $r x, s x \in I$, and so $r-s \in J$. Given $t \in R$, we have $t r x \in I$, since $(r x) \in I$ and I is an ideal. Thus, J is an ideal. Now, if $r \in I$, clearly $r x \in I$, and so $I \subseteq J$. But, since $y \notin I$, and $y x=x y \in I$, we have that $I \varsubsetneqq J$. By the maximality of I in \mathcal{S}, we have that J is finitely generated.
(d) Prove that I must be prime. [Of course, use (b) and (c). Assume that I is not prime and conclude that it must be finitely generated.]

Proof. Observe that $I \neq R$, since $R=(1)$ and hence not in \mathcal{S} [while $I \in \mathcal{S}]$. Suppose then that $x y \in I$, with $x, y \notin I$. Let J be the ideal from part (c). We claim that $I=\left(I_{0}, x J\right)$. Indeed, clearly $I_{0}, x J \subseteq I$. Now, given $a \in I \subseteq(I, x)=\left(I_{0}, x\right)$, there are $a_{0} \in I_{0}$ and $r \in R$ such that $a=a_{0}+x r$. But then, $x r=a-a_{0} \in I$, and hence $r \in J$. So, $a=a_{0}+r x \in\left(I_{0}, x J\right)$, and thus $I=\left(I_{0}, x J\right)$.
So, since J is finitely generated by (c), if $J=\left(c_{1}, \cdots, c_{m}\right)$, then $I=\left(I_{0}, x J\right)=$ $\left(b_{1}, \ldots, b_{n}, x c_{1}, \ldots, x c_{m}\right)$, and I is finitely generated. But this contradicts the fact that $I \in \mathcal{S}$. Therefore, I must be prime.
[Note that this proves that if every prime ideal of a commutative ring with 1 is finitely generated, then the ring is Noetherian.]

