
Final (In Class Part)

M551 – Abstract Algebra

December 13th, 2007

1. Let p be a prime and G be a non-abelian group of order p3. Prove that Z(G) [the
center of G] has order p and that it is equal to the commutator subgroup G′ [also
denoted by [G, G]].

Proof. Since G is a p-group, we have that Z(G) 6= 1, and since G is not abelian, we
have that Z(G) 6= G. So, we must have |Z(G)| = p or p2. If |Z(G)| = p2, we would
have that |G/Z(G)| = p, and hence cyclic. [Note that Z(G) is always normal in G.]
But a previous result, we have that G would the be abelian, which is a contradiction.
Therefore, |Z(G)| = p.

Now, |G/Z(G)| = p2, and hence [by another previous result], G must be abelian. So,
G′ ≤ Z(G) [by yet another result]. Hence, |G′| = 1 or G′ = Z(G). But G′ = 1 if, and
only if, G is abelian, and hence G′ = Z(G).
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2. Let p, q, r be three primes such that p < q < r and G be a group with |G| = pqr. Prove
that G is solvable. [You can use neither Feit-Thompson’s nor Burnside’s Theorems,
which we did not prove in class.]

Proof. We prove two claims first.

Claim: If |G| = pq with p and q primes and p < q, then G is solvable. [These p, and
q are any primes, not necessarily the ones from the statement.]

Proof. We prove that G has a normal subgroup of order q. By Sylow’s Theorem, G
has a subgroup of order q, and since its index is the least prime divisor of |G|, it is
normal.

[Alternatively, one can also use Sylow’s Theorem again: if nq
def
= nq(G) ∈ {1, p}, but

nq ≡ 1 (mod q). Since q > p, we must have nq = 1. So, if {Q} = Sylq(G), we have
that Q / G and |Q| = q.]

So, we have that G/Q has order p, and hence it is abelian. Since Q also has prime
order, Q is also abelian. Thus,

1 / Q / G,

is a solvable series.

Claim: The group G [from the statement] has a normal subgroup of prime order.

Proof. By Sylow’s Theorem, we have that nr
def
= nr(G) ∈ {1, p, q, pq}. Since r > p, q,

we have that nr is either 1 or pq. If the former, we are done. So suppose nr = pq.
Then, we have pq(r − 1) elements of order r.

If G does not have a normal subgroup of order q, then we have: nq ∈ {1, p, r, pr} and
nq ≡ 1 (mod q). So, we must have nq ≥ r [since nq 6= 1 and p < q]. Thus, we would
have at least r(q − 1) elements of order q.

But then, since we have at least p−1 elements of order p and one element of order 1, then
G would have at least pq(r−1)+r(q−1)+(p−1)+1 = pqr+(r−p)(q−1) > pqr = |G|
elements, a contradiction.

Hence, either we have a normal subgroup of order r or a normal subgroup of order q.

So, let N be the normal subgroup of prime order of G and G/N be its quotient. Since
N is abelian, it’s solvable. Since |G/N | is a product of two distinct primes, G/N is
also solvable by the first claim. Thus, G is solvable. [Using correspondence, if H/N is
the normal subgroup of prime order in G/N , we have that:

1 / N / H / G

is a solvable series, since each quotient has prime order.]
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3. Let R be a DVR with field of fractions F . [You can use any theorem proved in class,
but state it clearly.]

(a) Is Q[x, y] a DVR?

Proof. Suffice to show that Q[x, y] is not a PID. But (y) is a prime ideal, since
Q[x, y]/(y) = Q[x], a domain, but not a field. Hence, (y) is prime but not maxi-
mal, and thus Q[x, y] is not a PID.

(b) Show that if a ∈ F and f ∈ R[x] is monic polynomial such that f(a) = 0, then
a ∈ R. [This says that R is integrally closed.]

Proof. Let ν : F → Z∪{∞} be the valuation of F . Suppose that ν(a) = −k < 0.
If f(x) = xk + bn−1x

n−1 + · · · + b1x + b0 ∈ R[x] [and so ν(bi) ≥ 0] and f(a) = 0,
then

an = −bn−1a
n−1 − · · · − b1a− b0,

and thus,

−kn = ν(an)

= ν(−bn−1a
n−1 − · · · − b1a− b0)

≥ min{−ik + ν(bi) : i ∈ {0, . . . , (n− 1)}}
≥ min{−ik : i ∈ {0, . . . , (n− 1)}}
≥ −(n− 1)k

> −kn,

which is a contradiction. Thus, ν(a) ≥ 0, i.e., a ∈ R.

[Alternatively, one can prove a more general result. A DVR is a UFD, and every
UFD is integrally closed: if a ∈ F is a root, then f(x) = (x − a)g(x) in F [x].
Then, by [a consequence of] Gauss’s Lemma, there are α, β ∈ F such that f(x) =
α(x− a) · βg(x), with α(x− a), βg(x) ∈ R[x]. [This is Proposition 9.3.5.] Since f
is monic, so is g, and thus αβ = 1. Since α(x− a) ∈ R[x], we must have α ∈ R,
and since βg(x) ∈ R[x] and g is monic, β ∈ R. So, βα(x − a) = (x − a) ∈ R[x]
and thus a ∈ R.]

(c) Show that F is not algebraically closed, i.e., that there exists a non-constant
polynomial g ∈ F [x]− F that has no roots in F .

Proof. Let t be a uniformizer, i.e., an element of R such that ν(t) = 1. [So, we
have that the unique maximal ideal of R [which is local] is [principal] generated
by t.]

Let x2 − t ∈ R[x]. [By (b), if this polynomial has a root, it must be in R.] Let α
be such a root. Then α2 = t, and hence ν(α) = ν(t)/2 = 1/2. But the range of ν
is Z ∪ {∞}, and so this is a contradiction.
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4. Let R be a UFD.

(a) Prove that R[x1, x2, . . .] is also a UFD. [So, this ring is a non-Noetherian UFD.]

Proof. We have seen in class [as an application of Gauss’s Lemma] that Sn
def
=

R[x1, . . . , xn] is an UFD for all n. Let’s also denote S
def
= R[x1, x2, . . .]. Now let

f ∈ S. Then, there exists n such that f ∈ Sn.

Claim: f is irreducible in S if, and only if, it is irreducible in Sn.

Proof. The “only if” part is trivial, since the units of both rings are the same,
namely R×. [We have to be a bit careful here!]

Now, if f = gh, with g, h ∈ S−R×, then there exists m ≥ n such that g, h ∈ Sm,
which can be taken to be minimal. If m > n, then we have that 0 = degxm

f =
degxm

g + degxm
h [since R[x1, . . . , xm−1] is a domain, since R is a domain]. But

then, g, h ∈ Sm−1, contradicting the minimality of m. Thus, g, h ∈ Sn, and hence
f is reducible in Sn.

We now show that if f is irreducible in S, then it must be prime. [Remember
that this guarantees uniqueness of factorization.] Suppose that f | gh in S. Then,
there exists m ≥ n such that f, g, h ∈ Sm and f | gh in Sm. But Sm is a UFD,
and by the claim, f must be irreducible in Sm and therefore prime in Sm. Thus,
f | g or f | h in Sm and therefore in S.

Finally, it just remains to show the existence of factorization. Take f ∈ S. Then,
there exists n such that f ∈ Sn. Since Sn is a UFD, there are f1, . . . , fk ∈ Sn

irreducibles, such that f = f1 · · · fk. But, by the claim, these are irreducibles in
S also, and hence this is a factorization of f in S.

[Another way to see this existence is using the chain of principal ideals. Suppose
we have

(f) = (f0) ⊆ (f1) ⊆ (f2) ⊆ · · · .

Suppose that f ∈ Sn. Since f1 | f , there exists g1 ∈ Sm, for some m ≥ n such
that f = g1f1 in Sm [and hence, f1 ∈ Sm]. By taking degrees in xm again, we can
show that m ≤ n. So, f1 ∈ Sn. Repeating the argument, we have that fi ∈ Sn for
all i, and fi | fi−1 in Sn. Since Sn is a UFD, this sequence is eventually stationary,
and hence there exists factorization in S.]
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(b) Prove that if for all a, b ∈ R, there is c ∈ R such that (a, b) = (c) [i.e., R is a
Bezout domain], then R is a PID. [We are still assuming that R is a UFD!]

Proof. Let I be an ideal which is not finitely generated. The, there are a1, a2, . . . ∈
I such that

(a1) $ (a1, a2) $ (a1, a2, a3) $ · · · .

But then, since R is Bezout, for each i, there exists bi such that (a1, . . . , ai) = (bi).
[There is a little induction here, but we’ve mentioned it in class.] So, we have

(a1) $ (b2) $ (b3) $ · · · .

But, the existence of factorization in R guarantees that this sequence eventually
stops. [If you want to see it explicitly, just note that each bi is a divisor of a1,
and if a1 has finitely many divisors, up to multiplication by units [which does not
affect the ideals]. In particular, if a1 = p1 · · · pk, with pi irreducible, the longest
sequence of of principal ideals, as above, would have k + 1 ideals in it:

(p1 · · · pk) $ (p1 · · · pk−1) $ (p1 · · · pk−2) $ (p1) $ (1).]

[Alternatively, one can let a ∈ I with the least number of factors, if I 6= (0), R,
and prove that I = (a).]
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