Final (In Class Part)

M551 – Abstract Algebra

December 13th, 2007

1. Let p be a prime and G be a non-abelian group of order p^3 . Prove that Z(G) [the center of G] has order p and that it is equal to the commutator subgroup G' [also denoted by [G, G]].

Proof. Since G is a p-group, we have that $Z(G) \neq 1$, and since G is not abelian, we have that $Z(G) \neq G$. So, we must have |Z(G)| = p or p^2 . If $|Z(G)| = p^2$, we would have that |G/Z(G)| = p, and hence cyclic. [Note that Z(G) is always normal in G.] But a previous result, we have that G would the be abelian, which is a contradiction. Therefore, |Z(G)| = p.

Now, $|G/Z(G)| = p^2$, and hence [by another previous result], G must be abelian. So, $G' \leq Z(G)$ [by yet another result]. Hence, |G'| = 1 or G' = Z(G). But G' = 1 if, and only if, G is abelian, and hence G' = Z(G).

2. Let p, q, r be three primes such that p < q < r and G be a group with |G| = pqr. Prove that G is solvable. [You can use neither Feit-Thompson's nor Burnside's Theorems, which we did not prove in class.]

Proof. We prove two claims first.

Claim: If |G| = pq with p and q primes and p < q, then G is solvable. [These p, and q are any primes, not necessarily the ones from the statement.]

Proof. We prove that G has a normal subgroup of order q. By Sylow's Theorem, G has a subgroup of order q, and since its index is the least prime divisor of |G|, it is normal.

[Alternatively, one can also use Sylow's Theorem again: if $n_q \stackrel{\text{def}}{=} n_q(G) \in \{1, p\}$, but $n_q \equiv 1 \pmod{q}$. Since q > p, we must have $n_q = 1$. So, if $\{Q\} = \text{Syl}_q(G)$, we have that $Q \triangleleft G$ and |Q| = q.]

So, we have that G/Q has order p, and hence it is abelian. Since Q also has prime order, Q is also abelian. Thus,

 $1 \triangleleft Q \triangleleft G$,

is a solvable series.

Claim: The group G [from the statement] has a normal subgroup of prime order.

Proof. By Sylow's Theorem, we have that $n_r \stackrel{\text{def}}{=} n_r(G) \in \{1, p, q, pq\}$. Since r > p, q, we have that n_r is either 1 or pq. If the former, we are done. So suppose $n_r = pq$. Then, we have pq(r-1) elements of order r.

If G does not have a normal subgroup of order q, then we have: $n_q \in \{1, p, r, pr\}$ and $n_q \equiv 1 \pmod{q}$. So, we must have $n_q \geq r$ [since $n_q \neq 1$ and p < q]. Thus, we would have at least r(q-1) elements of order q.

But then, since we have at least p-1 elements of order p and one element of order 1, then G would have at least pq(r-1)+r(q-1)+(p-1)+1 = pqr+(r-p)(q-1) > pqr = |G| elements, a contradiction.

Hence, either we have a normal subgroup of order r or a normal subgroup of order q.

So, let N be the normal subgroup of prime order of G and G/N be its quotient. Since N is abelian, it's solvable. Since |G/N| is a product of two distinct primes, G/N is also solvable by the first claim. Thus, G is solvable. [Using correspondence, if H/N is the normal subgroup of prime order in G/N, we have that:

$$1 \triangleleft N \triangleleft H \triangleleft G$$

is a solvable series, since each quotient has prime order.]

- **3.** Let R be a DVR with field of fractions F. [You can use any theorem proved in class, but state it clearly.]
 - (a) Is $\mathbb{Q}[x, y]$ a DVR?

Proof. Suffice to show that $\mathbb{Q}[x, y]$ is not a PID. But (y) is a prime ideal, since $\mathbb{Q}[x, y]/(y) = \mathbb{Q}[x]$, a domain, but not a field. Hence, (y) is prime but not maximal, and thus $\mathbb{Q}[x, y]$ is not a PID.

(b) Show that if $a \in F$ and $f \in R[x]$ is monic polynomial such that f(a) = 0, then $a \in R$. [This says that R is integrally closed.]

Proof. Let $\nu: F \to \mathbb{Z} \cup \{\infty\}$ be the valuation of F. Suppose that $\nu(a) = -k < 0$. If $f(x) = x^k + b_{n-1}x^{n-1} + \cdots + b_1x + b_0 \in R[x]$ [and so $\nu(b_i) \ge 0$] and f(a) = 0, then

$$a^n = -b_{n-1}a^{n-1} - \dots - b_1a - b_0,$$

and thus,

$$kn = \nu(a^{n})$$

= $\nu(-b_{n-1}a^{n-1} - \dots - b_{1}a - b_{0})$
 $\geq \min\{-ik + \nu(b_{i}) : i \in \{0, \dots, (n-1)\}\}$
 $\geq \min\{-ik : i \in \{0, \dots, (n-1)\}\}$
 $\geq -(n-1)k$
 $> -kn,$

which is a contradiction. Thus, $\nu(a) \ge 0$, i.e., $a \in R$.

[Alternatively, one can prove a more general result. A DVR is a UFD, and every UFD is integrally closed: if $a \in F$ is a root, then f(x) = (x - a)g(x) in F[x]. Then, by [a consequence of] Gauss's Lemma, there are $\alpha, \beta \in F$ such that $f(x) = \alpha(x-a) \cdot \beta g(x)$, with $\alpha(x-a), \beta g(x) \in R[x]$. [This is Proposition 9.3.5.] Since f is monic, so is g, and thus $\alpha\beta = 1$. Since $\alpha(x-a) \in R[x]$, we must have $\alpha \in R$, and since $\beta g(x) \in R[x]$ and g is monic, $\beta \in R$. So, $\beta \alpha(x-a) = (x-a) \in R[x]$ and thus $a \in R$.]

(c) Show that F is not algebraically closed, i.e., that there exists a non-constant polynomial $g \in F[x] - F$ that has no roots in F.

Proof. Let t be a uniformizer, i.e., an element of R such that $\nu(t) = 1$. [So, we have that the unique maximal ideal of R [which is local] is [principal] generated by t.]

Let $x^2 - t \in R[x]$. [By (b), if this polynomial has a root, it must be in R.] Let α be such a root. Then $\alpha^2 = t$, and hence $\nu(\alpha) = \nu(t)/2 = 1/2$. But the range of ν is $\mathbb{Z} \cup \{\infty\}$, and so this is a contradiction.

4. Let R be a UFD.

(a) Prove that $R[x_1, x_2, ...]$ is also a UFD. [So, this ring is a non-Noetherian UFD.]

Proof. We have seen in class [as an application of Gauss's Lemma] that $S_n \stackrel{\text{def}}{=} R[x_1, \ldots, x_n]$ is an UFD for all n. Let's also denote $S \stackrel{\text{def}}{=} R[x_1, x_2, \ldots]$. Now let $f \in S$. Then, there exists n such that $f \in S_n$.

Claim: f is irreducible in S if, and only if, it is irreducible in S_n .

Proof. The "only if" part is trivial, since the units of both rings are the same, namely R^{\times} . [We have to be a bit careful here!]

Now, if f = gh, with $g, h \in S - R^{\times}$, then there exists $m \ge n$ such that $g, h \in S_m$, which can be taken to be minimal. If m > n, then we have that $0 = \deg_{x_m} f = \deg_{x_m} g + \deg_{x_m} h$ [since $R[x_1, \ldots, x_{m-1}]$ is a domain, since R is a domain]. But then, $g, h \in S_{m-1}$, contradicting the minimality of m. Thus, $g, h \in S_n$, and hence f is reducible in S_n .

We now show that if f is irreducible in S, then it must be prime. [Remember that this guarantees uniqueness of factorization.] Suppose that $f \mid gh$ in S. Then, there exists $m \geq n$ such that $f, g, h \in S_m$ and $f \mid gh$ in S_m . But S_m is a UFD, and by the claim, f must be irreducible in S_m and therefore prime in S_m . Thus, $f \mid g$ or $f \mid h$ in S_m and therefore in S.

Finally, it just remains to show the existence of factorization. Take $f \in S$. Then, there exists n such that $f \in S_n$. Since S_n is a UFD, there are $f_1, \ldots, f_k \in S_n$ irreducibles, such that $f = f_1 \cdots f_k$. But, by the claim, these are irreducibles in S also, and hence this is a factorization of f in S.

[Another way to see this existence is using the chain of principal ideals. Suppose we have

$$(f) = (f_0) \subseteq (f_1) \subseteq (f_2) \subseteq \cdots$$

Suppose that $f \in S_n$. Since $f_1 | f$, there exists $g_1 \in S_m$, for some $m \ge n$ such that $f = g_1 f_1$ in S_m [and hence, $f_1 \in S_m$]. By taking degrees in x_m again, we can show that $m \le n$. So, $f_1 \in S_n$. Repeating the argument, we have that $f_i \in S_n$ for all i, and $f_i | f_{i-1}$ in S_n . Since S_n is a UFD, this sequence is eventually stationary, and hence there exists factorization in S.]

(b) Prove that if for all $a, b \in R$, there is $c \in R$ such that (a, b) = (c) [i.e., R is a Bezout domain], then R is a PID. [We are still assuming that R is a UFD!]

Proof. Let I be an ideal which is not finitely generated. The, there are $a_1, a_2, \ldots \in I$ such that

$$(a_1) \subsetneqq (a_1, a_2) \subsetneqq (a_1, a_2, a_3) \subsetneqq \cdots$$

But then, since R is Bezout, for each i, there exists b_i such that $(a_1, \ldots, a_i) = (b_i)$. [There is a little induction here, but we've mentioned it in class.] So, we have

$$(a_1) \subsetneqq (b_2) \subsetneqq (b_3) \subsetneqq \cdots$$
.

But, the existence of factorization in R guarantees that this sequence eventually stops. [If you want to see it explicitly, just note that each b_i is a divisor of a_1 , and if a_1 has finitely many divisors, up to multiplication by units [which does not affect the ideals]. In particular, if $a_1 = p_1 \cdots p_k$, with p_i irreducible, the longest sequence of of principal ideals, as above, would have k + 1 ideals in it:

$$(p_1 \cdots p_k) \subsetneqq (p_1 \cdots p_{k-1}) \subsetneqq (p_1 \cdots p_{k-2}) \subsetneqq (p_1) \subsetneqq (1).$$

[Alternatively, one can let $a \in I$ with the least number of factors, if $I \neq (0), R$, and prove that I = (a).]