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1. Let p be a prime and G be a non-abelian group of order p®. Prove that Z(G) [the
center of G| has order p and that it is equal to the commutator subgroup G’ [also
denoted by [G, G]].

Proof. Since G is a p-group, we have that Z(G) # 1, and since G is not abelian, we
have that Z(G) # G. So, we must have |Z(G)| = p or p*. If |Z(G)| = p?, we would
have that |G/Z(G)| = p, and hence cyclic. [Note that Z(G) is always normal in G.]
But a previous result, we have that G would the be abelian, which is a contradiction.
Therefore, |Z(G)| = p.

Now, |G/Z(G)| = p?, and hence [by another previous result], G must be abelian. So,
G' < Z(G) [by yet another result]. Hence, |G'| =1 or G’ = Z(G). But G' = 1 if, and
only if, G is abelian, and hence G' = Z(G).

]



2. Let p, q,r be three primes such that p < ¢ < r and G be a group with |G| = pgr. Prove
that G is solvable. [You can use neither Feit-Thompson’s nor Burnside’s Theorems,
which we did not prove in class.|

Proof. We prove two claims first.

Claim: If |G| = pg with p and ¢ primes and p < ¢, then G is solvable. [These p, and
q are any primes, not necessarily the ones from the statement.]

Proof. We prove that GG has a normal subgroup of order q. By Sylow’s Theorem, G
has a subgroup of order ¢, and since its index is the least prime divisor of |G|, it is
normal.

[Alternatively, one can also use Sylow’s Theorem again: if n, o ny(G) € {1,p}, but
ng =1 (mod q). Since ¢ > p, we must have n, = 1. So, if {Q} = Syl (G), we have
that Q@ <G and |Q| = ¢.]

So, we have that G/@Q has order p, and hence it is abelian. Since @) also has prime

order, () is also abelian. Thus,
1<4@Q <G,

is a solvable series.

Claim: The group G [from the statement] has a normal subgroup of prime order.

Proof. By Sylow’s Theorem, we have that n, def n.(G) € {1,p,q,pq}. Since r > p,q,
we have that n, is either 1 or pq. If the former, we are done. So suppose n, = pq.

Then, we have pg(r — 1) elements of order 7.

If G does not have a normal subgroup of order ¢, then we have: n, € {1,p,r,pr} and
ny =1 (mod ¢). So, we must have n, > r [since n, # 1 and p < ¢|. Thus, we would
have at least r(q — 1) elements of order q.

But then, since we have at least p—1 elements of order p and one element of order 1, then
G would have at least pg(r—1)+7r(¢—1)+(p—1)+1 = pgr+(r—p)(¢—1) > pgr = |G|
elements, a contradiction.

Hence, either we have a normal subgroup of order r or a normal subgroup of order q.

]

So, let N be the normal subgroup of prime order of G and G /N be its quotient. Since
N is abelian, it’s solvable. Since |G/N| is a product of two distinct primes, G/N is
also solvable by the first claim. Thus, G is solvable. [Using correspondence, if H/N is
the normal subgroup of prime order in G/N, we have that:

1aN<aH<«G

is a solvable series, since each quotient has prime order.]



3. Let R be a DVR with field of fractions F. [You can use any theorem proved in class,
but state it clearly.]

(a)

Is Q[z,y] a DVR?

Proof. Suffice to show that Q|x,y] is not a PID. But (y) is a prime ideal, since
Q[z,y]/(y) = Q|z], a domain, but not a field. Hence, (y) is prime but not maxi-
mal, and thus Q[z,y] is not a PID.

]

Show that if @ € F' and f € R[z] is monic polynomial such that f(a) = 0, then
a € R. [This says that R is integrally closed.]

Proof. Let v: F — ZU{oco} be the valuation of F'. Suppose that v(a) = —k < 0.
If f(z) =2" + b, 12" '+ -+ byx + by € R[z] [and so v(b;) > 0] and f(a) = 0,
then

a” = —b,_1a"t — - —bia — by,
and thus,
—kn =v(a")
=v(—by_1a™ " — - —bia — by)

> min{—ik +v(b;) : i €{0,...,(n—1)}}
> min{—ik : 1 €{0,...,(n—1)}}
> —(n—1)k

> —kn,

which is a contradiction. Thus, v(a) >0, i.e., a € R.
[Alternatively, one can prove a more general result. A DVR is a UFD, and every
UFD is integrally closed: if a € F' is a root, then f(z) = (z — a)g(x) in Flz].
Then, by [a consequence of]| Gauss’s Lemma, there are a, § € F such that f(z) =
alx —a) - Bg(x), with a(x — a), Bg(x) € R[z]. [This is Proposition 9.3.5.] Since f
is monic, so is g, and thus a8 = 1. Since a(x — a) € R[z], we must have a € R,
and since fg(x) € R[z| and ¢ is monic, 5 € R. So, fa(x —a) = (x — a) € R[]
and thus a € R.]

O

Show that F' is not algebraically closed, i.e., that there exists a non-constant
polynomial g € F[x] — F that has no roots in F.

Proof. Let t be a uniformizer, i.e., an element of R such that v(t) = 1. [So, we
have that the unique maximal ideal of R [which is local| is [principal] generated
by t.]
Let 22 —t € R[z]. [By (b), if this polynomial has a root, it must be in R.] Let «
be such a root. Then o? = ¢, and hence v(a) = v(t)/2 = 1/2. But the range of v
is Z U {oo}, and so this is a contradiction.

[l



4. Let R be a UFD.

(a) Prove that R[z1,xzs,...] is also a UFD. [So, this ring is a non-Noetherian UFD.]

Proof. We have seen in class [as an application of Gauss’s Lemma] that S, &t

Rlxy,...,z,] is an UFD for all n. Let’s also denote S o Rlxy,z5,...]. Now let
f € 5. Then, there exists n such that f € S,,.

Claim: f is irreducible in S if, and only if, it is irreducible in S,,.

Proof. The “only if” part is trivial, since the units of both rings are the same,
namely R*. [We have to be a bit careful herel]

Now, if f = gh, with g,h € S — R*, then there exists m > n such that g, h € 5,,,
which can be taken to be minimal. If m > n, then we have that 0 = deg, f =
deg, ¢+ deg, h [since R[z1,...,Ty_1] is a domain, since R is a domain]. But
then, g, h € S,,_1, contradicting the minimality of m. Thus, g, h € S,,, and hence
f is reducible in .5,,.

]

We now show that if f is irreducible in S, then it must be prime. [Remember
that this guarantees uniqueness of factorization.| Suppose that f | gh in S. Then,
there exists m > n such that f,g,h € S, and f | gh in S,,. But S,, is a UFD,
and by the claim, f must be irreducible in S, and therefore prime in S,,. Thus,
flgor f|hin S, and therefore in S.

Finally, it just remains to show the ezistence of factorization. Take f € S. Then,
there exists n such that f € S,,. Since 5, is a UFD, there are fi,...,fr € 5,
irreducibles, such that f = f;--- fi. But, by the claim, these are irreducibles in
S also, and hence this is a factorization of f in S.

[Another way to see this existence is using the chain of principal ideals. Suppose
we have

(f) =) S(fi)C(f) .

Suppose that f € S,. Since f; | f, there exists g; € Sy, for some m > n such
that f = ¢ f1 in S,, [and hence, f; € S,,]. By taking degrees in x,, again, we can
show that m < n. So, f; € S,,. Repeating the argument, we have that f; € S,, for
all 4, and f; | fi_1 in S,,. Since S, is a UFD, this sequence is eventually stationary,
and hence there exists factorization in S']

]



(b) Prove that if for all a,b € R, there is ¢ € R such that (a,b) = (¢) [i.e.,, R is a
Bezout domain], then R is a PID. [We are still assuming that R is a UFD]]

Proof. Let I be an ideal which is not finitely generated. The, there are a, as,... €
I such that

(a1) ; (a1, az) ; (a1, a2, as3) ; .

But then, since R is Bezout, for each i, there exists b; such that (aq,...,a;) = (b;).
[There is a little induction here, but we’ve mentioned it in class.] So, we have

(@) G (52) G (b) G-

But, the existence of factorization in R guarantees that this sequence eventually
stops. [If you want to see it explicitly, just note that each b; is a divisor of ay,
and if a; has finitely many divisors, up to multiplication by units [which does not
affect the ideals]. In particular, if a; = py - - pg, with p; irreducible, the longest
sequence of of principal ideals, as above, would have k 4 1 ideals in it:

(pr--ok) G (1 0k—1) G (P pr—2) G (p1) & (1) ]

[Alternatively, one can let a € I with the least number of factors, if I # (0), R,
and prove that I = (a).]

]



