Final (In Class Part)

M551 - Abstract Algebra

December 13th, 2007

1. Let p be a prime and G be a non-abelian group of order p^{3}. Prove that $Z(G)$ [the center of G] has order p and that it is equal to the commutator subgroup G^{\prime} [also denoted by $[G, G]]$.

Proof. Since G is a p-group, we have that $Z(G) \neq 1$, and since G is not abelian, we have that $Z(G) \neq G$. So, we must have $|Z(G)|=p$ or p^{2}. If $|Z(G)|=p^{2}$, we would have that $|G / Z(G)|=p$, and hence cyclic. [Note that $Z(G)$ is always normal in G.] But a previous result, we have that G would the be abelian, which is a contradiction. Therefore, $|Z(G)|=p$.
Now, $|G / Z(G)|=p^{2}$, and hence [by another previous result], G must be abelian. So, $G^{\prime} \leq Z(G)$ [by yet another result]. Hence, $\left|G^{\prime}\right|=1$ or $G^{\prime}=Z(G)$. But $G^{\prime}=1$ if, and only if, G is abelian, and hence $G^{\prime}=Z(G)$.
2. Let p, q, r be three primes such that $p<q<r$ and G be a group with $|G|=p q r$. Prove that G is solvable. [You can use neither Feit-Thompson's nor Burnside's Theorems, which we did not prove in class.]

Proof. We prove two claims first.
Claim: If $|G|=p q$ with p and q primes and $p<q$, then G is solvable. [These p, and q are any primes, not necessarily the ones from the statement.]

Proof. We prove that G has a normal subgroup of order q. By Sylow's Theorem, G has a subgroup of order q, and since its index is the least prime divisor of $|G|$, it is normal.
[Alternatively, one can also use Sylow's Theorem again: if $n_{q} \stackrel{\text { def }}{=} n_{q}(G) \in\{1, p\}$, but $n_{q} \equiv 1(\bmod q)$. Since $q>p$, we must have $n_{q}=1$. So, if $\{Q\}=\operatorname{Syl}_{q}(G)$, we have that $Q \triangleleft G$ and $|Q|=q$.]
So, we have that G / Q has order p, and hence it is abelian. Since Q also has prime order, Q is also abelian. Thus,

$$
1 \triangleleft Q \triangleleft G,
$$

is a solvable series.

Claim: The group G [from the statement] has a normal subgroup of prime order.
Proof. By Sylow's Theorem, we have that $n_{r} \stackrel{\text { def }}{=} n_{r}(G) \in\{1, p, q, p q\}$. Since $r>p, q$, we have that n_{r} is either 1 or $p q$. If the former, we are done. So suppose $n_{r}=p q$. Then, we have $p q(r-1)$ elements of order r.
If G does not have a normal subgroup of order q, then we have: $n_{q} \in\{1, p, r, p r\}$ and $n_{q} \equiv 1(\bmod q)$. So, we must have $n_{q} \geq r\left[\right.$ since $n_{q} \neq 1$ and $\left.p<q\right]$. Thus, we would have at least $r(q-1)$ elements of order q.
But then, since we have at least $p-1$ elements of order p and one element of order 1 , then G would have at least $p q(r-1)+r(q-1)+(p-1)+1=p q r+(r-p)(q-1)>p q r=|G|$ elements, a contradiction.
Hence, either we have a normal subgroup of order r or a normal subgroup of order q.

So, let N be the normal subgroup of prime order of G and G / N be its quotient. Since N is abelian, it's solvable. Since $|G / N|$ is a product of two distinct primes, G / N is also solvable by the first claim. Thus, G is solvable. [Using correspondence, if H / N is the normal subgroup of prime order in G / N, we have that:

$$
1 \triangleleft N \triangleleft H \triangleleft G
$$

is a solvable series, since each quotient has prime order.]
3. Let R be a DVR with field of fractions F. [You can use any theorem proved in class, but state it clearly.]
(a) Is $\mathbb{Q}[x, y]$ a DVR?

Proof. Suffice to show that $\mathbb{Q}[x, y]$ is not a PID. But (y) is a prime ideal, since $\mathbb{Q}[x, y] /(y)=\mathbb{Q}[x]$, a domain, but not a field. Hence, (y) is prime but not maximal, and thus $\mathbb{Q}[x, y]$ is not a PID.
(b) Show that if $a \in F$ and $f \in R[x]$ is monic polynomial such that $f(a)=0$, then $a \in R$. [This says that R is integrally closed.]

Proof. Let $\nu: F \rightarrow \mathbb{Z} \cup\{\infty\}$ be the valuation of F. Suppose that $\nu(a)=-k<0$. If $f(x)=x^{k}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0} \in R[x]\left[\right.$ and so $\left.\nu\left(b_{i}\right) \geq 0\right]$ and $f(a)=0$, then

$$
a^{n}=-b_{n-1} a^{n-1}-\cdots-b_{1} a-b_{0},
$$

and thus,

$$
\begin{aligned}
-k n & =\nu\left(a^{n}\right) \\
& =\nu\left(-b_{n-1} a^{n-1}-\cdots-b_{1} a-b_{0}\right) \\
& \geq \min \left\{-i k+\nu\left(b_{i}\right): i \in\{0, \ldots,(n-1)\}\right\} \\
& \geq \min \{-i k: i \in\{0, \ldots,(n-1)\}\} \\
& \geq-(n-1) k \\
& >-k n
\end{aligned}
$$

which is a contradiction. Thus, $\nu(a) \geq 0$, i.e., $a \in R$.
[Alternatively, one can prove a more general result. A DVR is a UFD, and every UFD is integrally closed: if $a \in F$ is a root, then $f(x)=(x-a) g(x)$ in $F[x]$. Then, by [a consequence of] Gauss's Lemma, there are $\alpha, \beta \in F$ such that $f(x)=$ $\alpha(x-a) \cdot \beta g(x)$, with $\alpha(x-a), \beta g(x) \in R[x]$. [This is Proposition 9.3.5.] Since f is monic, so is g, and thus $\alpha \beta=1$. Since $\alpha(x-a) \in R[x]$, we must have $\alpha \in R$, and since $\beta g(x) \in R[x]$ and g is monic, $\beta \in R$. So, $\beta \alpha(x-a)=(x-a) \in R[x]$ and thus $a \in R$.]
(c) Show that F is not algebraically closed, i.e., that there exists a non-constant polynomial $g \in F[x]-F$ that has no roots in F.

Proof. Let t be a uniformizer, i.e., an element of R such that $\nu(t)=1$. [So, we have that the unique maximal ideal of R [which is local] is [principal] generated by t.]
Let $x^{2}-t \in R[x]$. [By (b), if this polynomial has a root, it must be in R.] Let α be such a root. Then $\alpha^{2}=t$, and hence $\nu(\alpha)=\nu(t) / 2=1 / 2$. But the range of ν is $\mathbb{Z} \cup\{\infty\}$, and so this is a contradiction.
4. Let R be a UFD.
(a) Prove that $R\left[x_{1}, x_{2}, \ldots\right]$ is also a UFD. [So, this ring is a non-Noetherian UFD.]

Proof. We have seen in class [as an application of Gauss's Lemma] that $S_{n} \stackrel{\text { def }}{=}$ $R\left[x_{1}, \ldots, x_{n}\right]$ is an UFD for all n. Let's also denote $S \stackrel{\text { def }}{=} R\left[x_{1}, x_{2}, \ldots\right]$. Now let $f \in S$. Then, there exists n such that $f \in S_{n}$.
Claim: f is irreducible in S if, and only if, it is irreducible in S_{n}.
Proof. The "only if" part is trivial, since the units of both rings are the same, namely R^{\times}. [We have to be a bit careful here!]
Now, if $f=g h$, with $g, h \in S-R^{\times}$, then there exists $m \geq n$ such that $g, h \in S_{m}$, which can be taken to be minimal. If $m>n$, then we have that $0=\operatorname{deg}_{x_{m}} f=$ $\operatorname{deg}_{x_{m}} g+\operatorname{deg}_{x_{m}} h$ [since $R\left[x_{1}, \ldots, x_{m-1}\right]$ is a domain, since R is a domain]. But then, $g, h \in S_{m-1}$, contradicting the minimality of m. Thus, $g, h \in S_{n}$, and hence f is reducible in S_{n}.

We now show that if f is irreducible in S, then it must be prime. [Remember that this guarantees uniqueness of factorization.] Suppose that $f \mid g h$ in S. Then, there exists $m \geq n$ such that $f, g, h \in S_{m}$ and $f \mid g h$ in S_{m}. But S_{m} is a UFD, and by the claim, f must be irreducible in S_{m} and therefore prime in S_{m}. Thus, $f \mid g$ or $f \mid h$ in S_{m} and therefore in S.
Finally, it just remains to show the existence of factorization. Take $f \in S$. Then, there exists n such that $f \in S_{n}$. Since S_{n} is a UFD, there are $f_{1}, \ldots, f_{k} \in S_{n}$ irreducibles, such that $f=f_{1} \cdots f_{k}$. But, by the claim, these are irreducibles in S also, and hence this is a factorization of f in S.
[Another way to see this existence is using the chain of principal ideals. Suppose we have

$$
(f)=\left(f_{0}\right) \subseteq\left(f_{1}\right) \subseteq\left(f_{2}\right) \subseteq \cdots
$$

Suppose that $f \in S_{n}$. Since $f_{1} \mid f$, there exists $g_{1} \in S_{m}$, for some $m \geq n$ such that $f=g_{1} f_{1}$ in S_{m} [and hence, $f_{1} \in S_{m}$]. By taking degrees in x_{m} again, we can show that $m \leq n$. So, $f_{1} \in S_{n}$. Repeating the argument, we have that $f_{i} \in S_{n}$ for all i, and $f_{i} \mid f_{i-1}$ in S_{n}. Since S_{n} is a UFD, this sequence is eventually stationary, and hence there exists factorization in S.]
(b) Prove that if for all $a, b \in R$, there is $c \in R$ such that $(a, b)=(c)$ [i.e., R is a Bezout domain], then R is a PID. [We are still assuming that R is a UFD!]

Proof. Let I be an ideal which is not finitely generated. The, there are $a_{1}, a_{2}, \ldots \in$ I such that

$$
\left(a_{1}\right) \varsubsetneqq\left(a_{1}, a_{2}\right) \varsubsetneqq\left(a_{1}, a_{2}, a_{3}\right) \varsubsetneqq \cdots .
$$

But then, since R is Bezout, for each i, there exists b_{i} such that $\left(a_{1}, \ldots, a_{i}\right)=\left(b_{i}\right)$. [There is a little induction here, but we've mentioned it in class.] So, we have

$$
\left(a_{1}\right) \varsubsetneqq\left(b_{2}\right) \varsubsetneqq\left(b_{3}\right) \varsubsetneqq \cdots
$$

But, the existence of factorization in R guarantees that this sequence eventually stops. [If you want to see it explicitly, just note that each b_{i} is a divisor of a_{1}, and if a_{1} has finitely many divisors, up to multiplication by units [which does not affect the ideals]. In particular, if $a_{1}=p_{1} \cdots p_{k}$, with p_{i} irreducible, the longest sequence of of principal ideals, as above, would have $k+1$ ideals in it:

$$
\left.\left(p_{1} \cdots p_{k}\right) \varsubsetneqq\left(p_{1} \cdots p_{k-1}\right) \varsubsetneqq\left(p_{1} \cdots p_{k-2}\right) \varsubsetneqq\left(p_{1}\right) \varsubsetneqq(1) .\right]
$$

[Alternatively, one can let $a \in I$ with the least number of factors, if $I \neq(0), R$, and prove that $I=(a)$.]

