Soltution for the Midterm

Mb551 — Abstract Algebra

1. Let H «G.

(a)

Show that if G is finite and G/H has an element of order n, for some positive

integer n, then GG also has an element of order n.

Proof. Let g = gH € G/H with |g| = n.

If ¢* € H, then g* = (gH)* = ¢*H = H = 1 and thus n | k. In particular, if
k = |g| [since |G| < oc], then g* =1 € H and n | k.

"] = k) (k. /m) = n.

Therefore,

Show that the conclusion of part (a) doesn’t always hold if G is infinite.

Proof. Let G = Z and H = 27Z. Then G/H has an element of order 2, but Z has

only elements of order 1 or infinite order. m



2. Let H < Aut(N), and assume that no non-identity element of H fixes any non-identity

def

element of N. [Le.,if h # 1 and n # 1, then h(n) # n.] Let G = N x H and identify
N and H with the corresponding subgroups of G.

(a)

Show that HNgHg ' =1forallgc G — H.

Proof. Let g € G — H. Since G = NH |with the proper identifications], we have
that g = nh, with n # 1, and gHg™* = nHn ™'

Now, if hy € H NnHn™", then there exists hy € H such that nhin=! = hs.

This implies that nhyn='h;* = hyhi* € H. But, since N <G, we have that
hin~'hi' = n; € N. In fact, by the construction of the semidirect product,
ny = hi(n™"). So nny = hohy' € NN H = 1. Thus, n; = hi(n~!) = n~! [and
hohi' = 1], and since n # 1 [and hence n~' # 1], and with our assumption on
the action of H, we must have that h; = 1. Since we also have hyh;' = 1, we get
he = 1.

Thus, gHg 'NH =nHn 'NH = 1.

If G is finite, show that G = N U (U gHg—1>.

geG
Proof. Again since G = NH, we have that UgeGgHg*1 = UpeynHn=t. If
ni,ng € N are such that nyHn; ' NnoHny ' # 1, then, by (a), nyny* € HNN =1,

i.e., n; = ny. So all the sets in .y nHn~! intersect only at 1, and hence,

U gHg™! U nHn™*

geG neN

= [N|-(H]=1) + L

[Note that [nHn™!| = |H|.|
Moreover, if m € N NnHn™!, then m = nhn~! for some h € H. But then,
n'mn=h& NNH=1. So, h =1 and thus m = 1. Therefore,

'N U (U gHg—1> UgHg™!

geG gelG

=N+ —1=|N[|H[=G].

Since, clearly N U <UgeG gHg*) C (G, we must have equality.



3. Prove that if G is nilpotent [possibly infinite|, and H < G, then H < Ng(H).

Proof. We prove by induction on the nilpotency class, say ¢, of G.

If ¢ =1, then G = Z(G), and so G is abelian. Therefore, for all H < G, we have
N¢(H) =G, Thus, if H < G, then H < Ng(H) = G.

Suppose the statement holds for all nilpotent groups of nilpotency class less than c.

Let G be a group of nilpotency class ¢ and H < G. If Z < Z(G) is not contained in

H, then there is an element © € Z — H, which is clearly in Ng(H). Since we always
have H < N¢(H), this means that H < Ng(H).

So, suppose that Z < H, and consider G = G//Z. So, G has nilpotency class (¢ — 1).

[I showed in class that Z,(G) = Zx11(G)/Z.] Also, since Z < H < G, we have that

1<AY H/Z < G by correspondence. By the induction hypothesis, HiN@(H) <G,

and hence, by correspondence, there exists N < G such that N/Z = Ng(H) and
HiN < G. Thus H < N < Ng(H). [In fact, using the fact the Ng(H) is the mazimal
subset of G' in which H is normal, one can easily prove, using correspondence, that

N = N¢(H), but we don’t need it here.]



4. Let G be a group with |G| = p(p + 1), where p > 2 is prime. Assume that G has no

normal Sylow p-subgroup.

(a)

Let P € Syl,(G), |z| # 1,p, and S o {1} U{yzy™' : y € P}. Prove that
|S|=p+1, and if z € S, then 2% = 1.

Proof. By Sylow’s Theorem, we must have that n, = (p+1). Since p{ (p+1), we
have that P is cyclic of order p, and hence we have (p+1)(p—1) = p?>—1 elements
of order p in |G|, leaving only (p + 1) elements for all other possible orders.

Moreover, remember that n, = |G : Ng(P)|, and hence |Ng(P)| = p. Since we
always have P < Ng(P), we must have, in fact, P = Ng(P).

Let now y,y, € P such that yizy;t = yery, ' Then, 2(y 'yo) = (y; ‘o),
ie, v € Caly;'y2). If y1 # yo, then P = <y1_1y2> [since every non-identity
element of P generates P], and thus © € Ng(P). But |z| # 1,p, and hence
v & P = Ng(P). So, yizy;' = wxy, ' if, and only if, y; = ys. Therefore,
{yzy™ 1 y € P} = |P|=p.

Also, if yzy~' =1 for any y € P, then = 1, which cannot happen since |z| # 1.
Therefore, |S| =p+ 1.

Note that if |x| = r, then |yzy| = r for all y € G. So, every non-identity element

of S has order r.

But, by our initial remarks [in the first paragraph], observe that a non-identity
element of G is either in a Sylow p-subgroup [and hence has order p| or in S [and
hence has order r]. But, by Cauchy, since 2 | (p + 1) [since p is odd], there is an
element of order 2. This cannot be in a Sylow p-subgroup, since p is odd, and

hence it is in S. Therefore, all non-identity elements of S have order 2 [i.e., r = 2].

O

Prove that (p + 1) = 2" for some positive integer r, and that G has a normal

subgroup of order (p + 1).

Proof. By our work in part (a), an element in G has either order 1 [i.e., it’s the
identity], p [i.e., it’s in a Sylow p-subgroup], or 2 [i.e., it’s in S]. Hence, by Cauchy,
there is no prime divisor for p(p + 1) besides p and 2. Since p{ (p + 1), we must

have (p + 1) = 2" for some positive integer r.



So, the Sylow 2-subgroup of G has order 2" = (p 4+ 1) = |S|. Also, since the
elements of such group do not have order p, it must be contained in S, and
therefore S € Syly(G) [since they have the same order]. Since this argument
holds for every Sylow 2-subgroup, it’s unique, and hence normal.
Thus, G has a normal subgroup of order (p+ 1) = 2" [i.e., the Sylow 2-subgroup
S].

O



