Soltution for the Midterm

M551 - Abstract Algebra

1. Let $H \triangleleft G$.
(a) Show that if G is finite and G / H has an element of order n, for some positive integer n, then G also has an element of order n.

Proof. Let $\bar{g}=g H \in G / H$ with $|\bar{g}|=n$.
If $g^{k} \in H$, then $\bar{g}^{k}=(g H)^{k}=g^{k} H=H=\overline{1}$ and thus $n \mid k$. In particular, if $k=|g|$ [since $|G|<\infty]$, then $g^{k}=1 \in H$ and $n \mid k$.
Therefore, $\left|g^{k / n}\right|=k /(k, k / n)=n$.
(b) Show that the conclusion of part (a) doesn't always hold if G is infinite.

Proof. Let $G=\mathbb{Z}$ and $H=2 \mathbb{Z}$. Then G / H has an element of order 2 , but \mathbb{Z} has only elements of order 1 or infinite order.
2. Let $H \leq \operatorname{Aut}(N)$, and assume that no non-identity element of H fixes any non-identity element of N. [I.e., if $h \neq 1$ and $n \neq 1$, then $h(n) \neq n$.] Let $G \stackrel{\text { def }}{=} N \rtimes H$ and identify N and H with the corresponding subgroups of G.
(a) Show that $H \cap g H g^{-1}=1$ for all $g \in G-H$.

Proof. Let $g \in G-H$. Since $G=N H$ [with the proper identifications], we have that $g=n h$, with $n \neq 1$, and $g H g^{-1}=n H n^{-1}$.

Now, if $h_{2} \in H \cap n H n^{-1}$, then there exists $h_{1} \in H$ such that $n h_{1} n^{-1}=h_{2}$.
This implies that $n h_{1} n^{-1} h_{1}^{-1}=h_{2} h_{1}^{-1} \in H$. But, since $N \triangleleft G$, we have that $h_{1} n^{-1} h_{1}^{-1}=n_{1} \in N$. In fact, by the construction of the semidirect product, $n_{1}=h_{1}\left(n^{-1}\right)$. So $n n_{1}=h_{2} h_{1}^{-1} \in N \cap H=1$. Thus, $n_{1}=h_{1}\left(n^{-1}\right)=n^{-1}$ [and $h_{2} h_{1}^{-1}=1$], and since $n \neq 1$ [and hence $n^{-1} \neq 1$], and with our assumption on the action of H, we must have that $h_{1}=1$. Since we also have $h_{2} h_{1}^{-1}=1$, we get $h_{2}=1$.

Thus, $g H g^{-1} \cap H=n H n^{-1} \cap H=1$.
(b) If G is finite, show that $G=N \cup\left(\bigcup_{g \in G} g H g^{-1}\right)$.

Proof. Again since $G=N H$, we have that $\bigcup_{g \in G} g H g^{-1}=\bigcup_{n \in N} n H n^{-1}$. If $n_{1}, n_{2} \in N$ are such that $n_{1} H n_{1}^{-1} \cap n_{2} H n_{2}^{-1} \neq 1$, then, by (a), $n_{1} n_{2}^{-1} \in H \cap N=1$, i.e., $n_{1}=n_{2}$. So all the sets in $\bigcup_{n \in N} n H n^{-1}$ intersect only at 1 , and hence,

$$
\left|\bigcup_{g \in G} g H g^{-1}\right|=\left|\bigcup_{n \in N} n H n^{-1}\right|=|N| \cdot(|H|-1)+1
$$

[Note that $\left|n H^{-1}\right|=|H|$.]
Moreover, if $m \in N \cap n H n^{-1}$, then $m=n h n^{-1}$ for some $h \in H$. But then, $n^{-1} m n=h \in N \cap H=1$. So, $h=1$ and thus $m=1$. Therefore,

$$
\left|N \cup\left(\bigcup_{g \in G} g H g^{-1}\right)\right|=|N|+\left|\bigcup_{g \in G} g H g^{-1}\right|-1=|N||H|=|G| .
$$

Since, clearly $N \cup\left(\bigcup_{g \in G} g H g^{-1}\right) \subseteq G$, we must have equality.
3. Prove that if G is nilpotent [possibly infinite], and $H<G$, then $H<N_{G}(H)$.

Proof. We prove by induction on the nilpotency class, say c, of G.
If $c=1$, then $G=Z(G)$, and so G is abelian. Therefore, for all $H \leq G$, we have $N_{G}(H)=G$. Thus, if $H<G$, then $H<N_{G}(H)=G$.

Suppose the statement holds for all nilpotent groups of nilpotency class less than c. Let G be a group of nilpotency class c and $H<G$. If $Z \stackrel{\text { def }}{=} Z(G)$ is not contained in H, then there is an element $x \in Z-H$, which is clearly in $N_{G}(H)$. Since we always have $H \leq N_{G}(H)$, this means that $H<N_{G}(H)$.

So, suppose that $Z \leq H$, and consider $\bar{G}=G / Z$. So, \bar{G} has nilpotency class $(c-1)$. [I showed in class that $Z_{k}(\bar{G})=Z_{k+1}(G) / Z$.] Also, since $Z \leq H<G$, we have that $1 \leq \bar{H} \stackrel{\text { def }}{=} H / Z<\bar{G}$ by correspondence. By the induction hypothesis, $\bar{H} \nexists_{\bar{G}}(\bar{H}) \leq \bar{G}$, and hence, by correspondence, there exists $N \leq G$ such that $N / Z=N_{\bar{G}}(\bar{H})$ and $H \underset{\neq}{\nexists} \leq G$. Thus $H<N \leq N_{G}(H)$. [In fact, using the fact the $N_{G}(H)$ is the maximal subset of G in which H is normal, one can easily prove, using correspondence, that $N=N_{G}(H)$, but we don't need it here.]
4. Let G be a group with $|G|=p(p+1)$, where $p>2$ is prime. Assume that G has no normal Sylow p-subgroup.
(a) Let $P \in \operatorname{Syl}_{p}(G),|x| \neq 1, p$, and $S \stackrel{\text { def }}{=}\{1\} \cup\left\{y x y^{-1}: y \in P\right\}$. Prove that $|S|=p+1$, and if $z \in S$, then $z^{2}=1$.

Proof. By Sylow's Theorem, we must have that $n_{p}=(p+1)$. Since $p \nmid(p+1)$, we have that P is cyclic of order p, and hence we have $(p+1)(p-1)=p^{2}-1$ elements of order p in $|G|$, leaving only $(p+1)$ elements for all other possible orders.

Moreover, remember that $n_{p}=\left|G: N_{G}(P)\right|$, and hence $\left|N_{G}(P)\right|=p$. Since we always have $P \leq N_{G}(P)$, we must have, in fact, $P=N_{G}(P)$.
Let now $y_{1}, y_{2} \in P$ such that $y_{1} x y_{1}^{-1}=y_{2} x y_{2}^{-1}$. Then, $x\left(y^{-1} y_{2}\right)=\left(y_{1}^{-1} y_{2}\right) x$, i.e., $x \in C_{G}\left(y_{1}^{-1} y_{2}\right)$. If $y_{1} \neq y_{2}$, then $P=\left\langle y_{1}^{-1} y_{2}\right\rangle$ [since every non-identity element of P generates P], and thus $x \in N_{G}(P)$. But $|x| \neq 1, p$, and hence $x \notin P=N_{G}(P)$. So, $y_{1} x y_{1}^{-1}=y_{2} x y_{2}^{-1}$ if, and only if, $y_{1}=y_{2}$. Therefore, $\left|\left\{y x y^{-1}: y \in P\right\}\right|=|P|=p$.
Also, if $y x y^{-1}=1$ for any $y \in P$, then $x=1$, which cannot happen since $|x| \neq 1$. Therefore, $|S|=p+1$.

Note that if $|x|=r$, then $|y x y|=r$ for all $y \in G$. So, every non-identity element of S has order r.

But, by our initial remarks [in the first paragraph], observe that a non-identity element of G is either in a Sylow p-subgroup [and hence has order p] or in S [and hence has order r]. But, by Cauchy, since $2 \mid(p+1)$ [since p is odd], there is an element of order 2. This cannot be in a Sylow p-subgroup, since p is odd, and hence it is in S. Therefore, all non-identity elements of S have order 2 [i.e., $r=2$].
(b) Prove that $(p+1)=2^{r}$ for some positive integer r, and that G has a normal subgroup of order $(p+1)$.

Proof. By our work in part (a), an element in G has either order 1 [i.e., it's the identity], p [i.e., it's in a Sylow p-subgroup], or 2 [i.e., it's in S]. Hence, by Cauchy, there is no prime divisor for $p(p+1)$ besides p and 2 . Since $p \nmid(p+1)$, we must have $(p+1)=2^{r}$ for some positive integer r.

So, the Sylow 2-subgroup of G has order $2^{r}=(p+1)=|S|$. Also, since the elements of such group do not have order p, it must be contained in S, and therefore $S \in \operatorname{Syl}_{2}(G)$ [since they have the same order]. Since this argument holds for every Sylow 2-subgroup, it's unique, and hence normal.

Thus, G has a normal subgroup of order $(p+1)=2^{r}$ [i.e., the Sylow 2-subgroup $S]$.

