
Soltution for the Midterm

M551 – Abstract Algebra

1. Let H / G.

(a) Show that if G is finite and G/H has an element of order n, for some positive

integer n, then G also has an element of order n.

Proof. Let ḡ = gH ∈ G/H with |ḡ| = n.

If gk ∈ H, then ḡk = (gH)k = gkH = H = 1̄ and thus n | k. In particular, if

k = |g| [since |G| < ∞], then gk = 1 ∈ H and n | k.

Therefore,
∣∣gk/n

∣∣ = k/(k, k/n) = n.

(b) Show that the conclusion of part (a) doesn’t always hold if G is infinite.

Proof. Let G = Z and H = 2Z. Then G/H has an element of order 2, but Z has

only elements of order 1 or infinite order.
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2. Let H ≤ Aut(N), and assume that no non-identity element of H fixes any non-identity

element of N . [I.e., if h 6= 1 and n 6= 1, then h(n) 6= n.] Let G
def
= N o H and identify

N and H with the corresponding subgroups of G.

(a) Show that H ∩ gHg−1 = 1 for all g ∈ G−H.

Proof. Let g ∈ G−H. Since G = NH [with the proper identifications], we have

that g = nh, with n 6= 1, and gHg−1 = nHn−1.

Now, if h2 ∈ H ∩ nHn−1, then there exists h1 ∈ H such that nh1n
−1 = h2.

This implies that nh1n
−1h−1

1 = h2h
−1
1 ∈ H. But, since N / G, we have that

h1n
−1h−1

1 = n1 ∈ N . In fact, by the construction of the semidirect product,

n1 = h1(n
−1). So nn1 = h2h

−1
1 ∈ N ∩ H = 1. Thus, n1 = h1(n

−1) = n−1 [and

h2h
−1
1 = 1], and since n 6= 1 [and hence n−1 6= 1], and with our assumption on

the action of H, we must have that h1 = 1. Since we also have h2h
−1
1 = 1, we get

h2 = 1.

Thus, gHg−1 ∩H = nHn−1 ∩H = 1.

(b) If G is finite, show that G = N ∪

(⋃
g∈G

gHg−1

)
.

Proof. Again since G = NH, we have that
⋃

g∈G gHg−1 =
⋃

n∈N nHn−1. If

n1, n2 ∈ N are such that n1Hn−1
1 ∩n2Hn−1

2 6= 1, then, by (a), n1n
−1
2 ∈ H∩N = 1,

i.e., n1 = n2. So all the sets in
⋃

n∈N nHn−1 intersect only at 1, and hence,∣∣∣∣∣⋃
g∈G

gHg−1

∣∣∣∣∣ =

∣∣∣∣∣⋃
n∈N

nHn−1

∣∣∣∣∣ = |N | · (|H| − 1) + 1.

[Note that |nHn−1| = |H|.]

Moreover, if m ∈ N ∩ nHn−1, then m = nhn−1 for some h ∈ H. But then,

n−1mn = h ∈ N ∩H = 1. So, h = 1 and thus m = 1. Therefore,∣∣∣∣∣N ∪

(⋃
g∈G

gHg−1

)∣∣∣∣∣ = |N |+

∣∣∣∣∣⋃
g∈G

gHg−1

∣∣∣∣∣− 1 = |N | |H| = |G| .

Since, clearly N ∪
(⋃

g∈G gHg−1
)
⊆ G, we must have equality.
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3. Prove that if G is nilpotent [possibly infinite], and H < G, then H < NG(H).

Proof. We prove by induction on the nilpotency class, say c, of G.

If c = 1, then G = Z(G), and so G is abelian. Therefore, for all H ≤ G, we have

NG(H) = G. Thus, if H < G, then H < NG(H) = G.

Suppose the statement holds for all nilpotent groups of nilpotency class less than c.

Let G be a group of nilpotency class c and H < G. If Z
def
= Z(G) is not contained in

H, then there is an element x ∈ Z − H, which is clearly in NG(H). Since we always

have H ≤ NG(H), this means that H < NG(H).

So, suppose that Z ≤ H, and consider Ḡ = G/Z. So, Ḡ has nilpotency class (c − 1).

[I showed in class that Zk(Ḡ) = Zk+1(G)/Z.] Also, since Z ≤ H < G, we have that

1 ≤ H̄
def
= H/Z < Ḡ by correspondence. By the induction hypothesis, H̄ /

6=
NḠ(H̄) ≤ Ḡ,

and hence, by correspondence, there exists N ≤ G such that N/Z = NḠ(H̄) and

H /
6=

N ≤ G. Thus H < N ≤ NG(H). [In fact, using the fact the NG(H) is the maximal

subset of G in which H is normal, one can easily prove, using correspondence, that

N = NG(H), but we don’t need it here.]
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4. Let G be a group with |G| = p(p + 1), where p > 2 is prime. Assume that G has no

normal Sylow p-subgroup.

(a) Let P ∈ Sylp(G), |x| 6= 1, p, and S
def
= {1} ∪ {yxy−1 : y ∈ P}. Prove that

|S| = p + 1, and if z ∈ S, then z2 = 1.

Proof. By Sylow’s Theorem, we must have that np = (p+1). Since p - (p+1), we

have that P is cyclic of order p, and hence we have (p+1)(p−1) = p2−1 elements

of order p in |G|, leaving only (p + 1) elements for all other possible orders.

Moreover, remember that np = |G : NG(P )|, and hence |NG(P )| = p. Since we

always have P ≤ NG(P ), we must have, in fact, P = NG(P ).

Let now y1, y2 ∈ P such that y1xy−1
1 = y2xy−1

2 . Then, x(y−1y2) = (y−1
1 y2)x,

i.e., x ∈ CG(y−1
1 y2). If y1 6= y2, then P =

〈
y−1

1 y2

〉
[since every non-identity

element of P generates P ], and thus x ∈ NG(P ). But |x| 6= 1, p, and hence

x 6∈ P = NG(P ). So, y1xy−1
1 = y2xy−1

2 if, and only if, y1 = y2. Therefore,

|{yxy−1 : y ∈ P}| = |P | = p.

Also, if yxy−1 = 1 for any y ∈ P , then x = 1, which cannot happen since |x| 6= 1.

Therefore, |S| = p + 1.

Note that if |x| = r, then |yxy| = r for all y ∈ G. So, every non-identity element

of S has order r.

But, by our initial remarks [in the first paragraph], observe that a non-identity

element of G is either in a Sylow p-subgroup [and hence has order p] or in S [and

hence has order r]. But, by Cauchy, since 2 | (p + 1) [since p is odd], there is an

element of order 2. This cannot be in a Sylow p-subgroup, since p is odd, and

hence it is in S. Therefore, all non-identity elements of S have order 2 [i.e., r = 2].

(b) Prove that (p + 1) = 2r for some positive integer r, and that G has a normal

subgroup of order (p + 1).

Proof. By our work in part (a), an element in G has either order 1 [i.e., it’s the

identity], p [i.e., it’s in a Sylow p-subgroup], or 2 [i.e., it’s in S]. Hence, by Cauchy,

there is no prime divisor for p(p + 1) besides p and 2. Since p - (p + 1), we must

have (p + 1) = 2r for some positive integer r.
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So, the Sylow 2-subgroup of G has order 2r = (p + 1) = |S|. Also, since the

elements of such group do not have order p, it must be contained in S, and

therefore S ∈ Syl2(G) [since they have the same order]. Since this argument

holds for every Sylow 2-subgroup, it’s unique, and hence normal.

Thus, G has a normal subgroup of order (p + 1) = 2r [i.e., the Sylow 2-subgroup

S].
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