1) Answer all giving short explanations.

()

Let V be a vector space and v € V. When is {v} linearly independent? [No need to

explain this one.]

Solution. Remember, a single vector is linearly independent if, and only if, this vector
is non-zero. [Since a linear combination of the single vector is kv. If kv = 0, then

either £ = 0 or v = 0. So, it’s linearly independent if, and only if, v # 0.]

Is the set {(1,2,3,4,5), (=2, —4,—6,—8,—9)} linearly independent [in R®]?

Solution. Yes, since one is not a multiple of the other.

Is the set {(—5,v/2), (7, e), (In(3),1/2)} linearly independent [in R?]?

Solution. No, since dim R? = 2 and we have 3 vectors. [More vectors than the dimen-

sion always gives us linearly dependent sets.]

Does the set {1+ x + 2%, -2+ 2% 1+ 2 — 2% + 23} span all of P [i.e., all polynomials

of degree less than or equal to 3|?

Solution. No, since dim P; = 4 and we only have 3 vectors. [Less vectors than the

dimension of the space cannot span the space.]



2) Let T : R® — R? be a linear operator for which

1 2 0 2 1 3
T =|-1(, T||2]||=|-2],. T||o]|]|=]2
0 0 6 1 1

(a) Find the matrix [T] associated to the linear transformation 7.

Solution. We have

[T]=| T(er) T(ez) T(es)
But T'(2e3) = (2,—2,6), and since T is linear, we have that 7'(2e;) = 27(ey). So,
T(ey) = (1,—-1,3).
We have that T'(e; + e3) = (3,2,1). But since T is linear, we have that T'(e; + e3) =
T(ey)+T(es). So, T'(e3) = (3,2,1) —(2,—1,0) = (1,3,1).

Thus,
2 11
T)=1] -1 -1 3
0 31

(b) Is T one-to-one? Is it onto? [Don’t forget to justify!!]

Solution. We have that det[T] = —22 # 0, we have that T is both onto and one-to-one.
O



3) Let T : R™ — R™ and W be the range of T. In other words, the elements of W are of

the form 7T'(v), where v € R™. Prove that W is a vector space.

Solution. Since W C R™ [with the same addition and scalar multiplication], we just need to
show it is a subspace of R™, which is a lot simpler.

[Note that W is not empty, since, for instance, 7'(0) =0 € W]

Two elements of W are of the form T'(v) and T'(w) where v,w € R™. Then, since 7T is
linear, T'(v)+T(w) = T'(v+w). Since v+w € R™, we have that T'(v)+T(w) = T(v+w) €
W. [So it’s closed under addition.]

Now, if & € R, then, since T is linear, kT (v) = T'(kv). Since kv € R", we have that
kT (v) =T(kv) € W. [So it’s closed under scalar multiplication.]

So, since W in a non-empty subset of R™ which is closed under addition and scalar

multiplication, we have that W is a subspace of R™ and hence it is itself a vector space.

Here is another solution. Let [T] be the matrix associated to 7. Then the range of T is
the set of vectors T'(x) = [T - x such that x € R™. But, if [T] = [c; -+ ¢y [i-e., the ¢;’s

are the columns of [T], then

T
[T]-x=[c1 -+~ cn)- | 1 | =@101+ Ty,
Tm
where z1,...,x, € R. Hence, the range of T" is span{cy,...,c,}, i.e., the column sapce of

[T]. Therefore, it’s a vector space [in fact, a subspace of R"].
O



4) Let

01 20 0

0 0 2 —4
A=

1 -1 0 2

2 2 0 4

(a) Find bases for the nullspace, column space, and row space of A, with the requirement
that the basis for the column space of A is composed of columns of A. [There is no

requirement for the row and null spaces.|

Solution. Putting A in reduced echelon form, we get:

10 -1 0 2
01 20 0
00 01 =2
00 00 0

So, the basis for the row space of A is
Srow = {(1,0,-1,0,2),(0,1,2,0,0),(0,0,0,1,—2)}.

Since the first, second, and fourth columns have the leading ones, we get that a basis

for the column space A [made of columns of A] is:

Seat = {(0,0,1,2),(1,0,0,2),(0,2,0,0)}.

For the nullspace, note that the general solution of Ax = b is [from the echelon form]:

[t —2s ] 1 —2
—2t —2 0
X = t =t-| 1 | +s-] 0
2s 2

| s ] | 0 | 1]

So, the basis for the nullspace of A is

Snull = {(17 _27 ]-7 07 0)7 (_27 07 07 27 1)}



(b) Let S be the basis for the column space that you've found in (a). Then, for each
column c¢; of A, find (c;)g [i-e., write the coordinate vector of this column with respect

to the basis S].

Solution. Let ¢, denote the columns of the echelon form. Then, we can easily see that
¢y = —c} + 2¢, + 0c)y and  c; = 2c] + 0c), — 2c).

So, we have:
c3 = —c1 + 2cy + Ocy and Ccs = 2¢1 + 0cy — 2¢4.

Since, S = {c1,c2, ¢4}, we have (c3)s = (1,2,0) and (c5) = (2,0,—2). Also, clearly
(c1)s = (1,0,0), (c2)s = (0,1,0), and (c4)s = (0,0, 1).



