1) Answer all giving short explanations.
(a) Let $V$ be a vector space and $\mathbf{v} \in V$. When is $\{\mathbf{v}\}$ linearly independent? [No need to explain this one.]

Solution. Remember, a single vector is linearly independent if, and only if, this vector is non-zero. [Since a linear combination of the single vector is $k \mathbf{v}$. If $k \mathbf{v}=\mathbf{0}$, then either $k=0$ or $\mathbf{v}=\mathbf{0}$. So, it's linearly independent if, and only if, $\mathbf{v} \neq \mathbf{0}$.]
(b) Is the set $\{(1,2,3,4,5),(-2,-4,-6,-8,-9)\}$ linearly independent $\left[\right.$ in $\left.\mathbb{R}^{5}\right]$ ?

Solution. Yes, since one is not a multiple of the other.
(c) Is the set $\{(-5, \sqrt{2}),(\pi, e),(\ln (3), 1 / 2)\}$ linearly independent $\left[\right.$ in $\left.\mathbb{R}^{2}\right]$ ?

Solution. No, since $\operatorname{dim} \mathbb{R}^{2}=2$ and we have 3 vectors. [More vectors than the dimension always gives us linearly dependent sets.]
(d) Does the set $\left\{1+x+x^{3},-2+x^{2}, 1+x-x^{2}+x^{3}\right\}$ span all of $P_{3}$ [i.e., all polynomials of degree less than or equal to 3]?

Solution. No, since $\operatorname{dim} P_{3}=4$ and we only have 3 vectors. [Less vectors than the dimension of the space cannot span the space.]
2) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear operator for which

$$
T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad T\left(\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right]\right)=\left[\begin{array}{r}
2 \\
-2 \\
6
\end{array}\right], \quad T\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right] .
$$

(a) Find the matrix $[T]$ associated to the linear transformation $T$.

Solution. We have

$$
[T]=\left[\begin{array}{lll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & T\left(\mathbf{e}_{3}\right)
\end{array}\right]
$$

But $T\left(2 \mathbf{e}_{2}\right)=(2,-2,6)$, and since $T$ is linear, we have that $T\left(2 \mathbf{e}_{2}\right)=2 T\left(\mathbf{e}_{2}\right)$. So, $T\left(\mathbf{e}_{2}\right)=(1,-1,3)$.

We have that $T\left(\mathbf{e}_{1}+\mathbf{e}_{3}\right)=(3,2,1)$. But since $T$ is linear, we have that $T\left(\mathbf{e}_{1}+\mathbf{e}_{3}\right)=$ $T\left(\mathbf{e}_{1}\right)+T\left(\mathbf{e}_{3}\right)$. So, $T\left(\mathbf{e}_{3}\right)=(3,2,1)-(2,-1,0)=(1,3,1)$.

Thus,

$$
[T]=\left[\begin{array}{rrr}
2 & 1 & 1 \\
-1 & -1 & 3 \\
0 & 3 & 1
\end{array}\right]
$$

(b) Is $T$ one-to-one? Is it onto? [Don't forget to justify!!]

Solution. We have that $\operatorname{det}[T]=-22 \neq 0$, we have that $T$ is both onto and one-to-one.
3) Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $W$ be the range of $T$. In other words, the elements of $W$ are of the form $T(\mathbf{v})$, where $\mathbf{v} \in \mathbb{R}^{m}$. Prove that $W$ is a vector space.

Solution. Since $W \subseteq \mathbb{R}^{n}$ [with the same addition and scalar multiplication], we just need to show it is a subspace of $\mathbb{R}^{n}$, which is a lot simpler.
[Note that $W$ is not empty, since, for instance, $T(\mathbf{0})=\mathbf{0} \in W$.]
Two elements of $W$ are of the form $T(\mathbf{v})$ and $T(\mathbf{w})$ where $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{m}$. Then, since $T$ is linear, $T(\mathbf{v})+T(\mathbf{w})=T(\mathbf{v}+\mathbf{w})$. Since $\mathbf{v}+\mathbf{w} \in \mathbb{R}^{m}$, we have that $T(\mathbf{v})+T(\mathbf{w})=T(\mathbf{v}+\mathbf{w}) \in$ $W$. [So it's closed under addition.]

Now, if $k \in \mathbb{R}$, then, since $T$ is linear, $k T(\mathbf{v})=T(k \mathbf{v})$. Since $k \mathbf{v} \in \mathbb{R}^{n}$, we have that $k T(\mathbf{v})=T(k \mathbf{v}) \in W$. [So it's closed under scalar multiplication.]

So, since $W$ in a non-empty subset of $\mathbb{R}^{m}$ which is closed under addition and scalar multiplication, we have that $W$ is a subspace of $\mathbb{R}^{m}$ and hence it is itself a vector space.

Here is another solution. Let $[T]$ be the matrix associated to $T$. Then the range of $T$ is the set of vectors $T(\mathbf{x})=[T] \cdot \mathbf{x}$ such that $\mathbf{x} \in \mathbb{R}^{m}$. But, if $[T]=\left[\mathbf{c}_{1} \cdots \mathbf{c}_{m}\right]$ [i.e., the $\mathbf{c}_{i}$ 's are the columns of $[T]]$, then

$$
[T] \cdot \mathbf{x}=\left[\begin{array}{lll}
\mathbf{c}_{1} & \cdots & \mathbf{c}_{m}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right]=x_{1} \mathbf{c}_{1}+\cdots x_{m} \mathbf{c}_{m}
$$

where $x_{1}, \ldots, x_{m} \in \mathbb{R}$. Hence, the range of $T$ is $\operatorname{span}\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}$, i.e., the column sapce of $[T]$. Therefore, it's a vector space [in fact, a subspace of $\left.\mathbb{R}^{n}\right]$.
4) Let

$$
A=\left[\begin{array}{rrrrr}
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & -4 \\
1 & 0 & -1 & 0 & 2 \\
2 & 2 & 2 & 0 & 4
\end{array}\right]
$$

(a) Find bases for the nullspace, column space, and row space of $A$, with the requirement that the basis for the column space of $A$ is composed of columns of $A$. [There is no requirement for the row and null spaces.]

Solution. Putting $A$ in reduced echelon form, we get:

$$
\left[\begin{array}{rrrrr}
1 & 0 & -1 & 0 & 2 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So, the basis for the row space of $A$ is

$$
S_{\text {row }}=\{(1,0,-1,0,2),(0,1,2,0,0),(0,0,0,1,-2)\}
$$

Since the first, second, and fourth columns have the leading ones, we get that a basis for the column space $A$ [made of columns of $A$ ] is:

$$
S_{\mathrm{col}}=\{(0,0,1,2),(1,0,0,2),(0,2,0,0)\}
$$

For the nullspace, note that the general solution of $A \mathbf{x}=\mathbf{b}$ is [from the echelon form]:

$$
\mathbf{x}=\left[\begin{array}{c}
t-2 s \\
-2 t \\
t \\
2 s \\
s
\end{array}\right]=t \cdot\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+s \cdot\left[\begin{array}{c}
-2 \\
0 \\
0 \\
2 \\
1
\end{array}\right]
$$

So, the basis for the nullspace of $A$ is

$$
S_{\mathrm{null}}=\{(1,-2,1,0,0),(-2,0,0,2,1)\} .
$$

(b) Let $S$ be the basis for the column space that you've found in (a). Then, for each column $\mathbf{c}_{i}$ of $A$, find $\left(\mathbf{c}_{i}\right)_{S}$ [i.e., write the coordinate vector of this column with respect to the basis $S]$.

Solution. Let $\mathbf{c}_{i}^{\prime}$ denote the columns of the echelon form. Then, we can easily see that

$$
\mathbf{c}_{3}^{\prime}=-\mathbf{c}_{1}^{\prime}+2 \mathbf{c}_{2}^{\prime}+0 \mathbf{c}_{4}^{\prime} \quad \text { and } \quad \mathbf{c}_{5}^{\prime}=2 \mathbf{c}_{1}^{\prime}+0 \mathbf{c}_{2}^{\prime}-2 \mathbf{c}_{4}^{\prime} .
$$

So, we have:

$$
\mathbf{c}_{3}=-\mathbf{c}_{1}+2 \mathbf{c}_{2}+0 \mathbf{c}_{4} \quad \text { and } \quad \mathbf{c}_{5}=2 \mathbf{c}_{1}+0 \mathbf{c}_{2}-2 \mathbf{c}_{4}
$$

Since, $S=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{4}\right\}$, we have $\left(\mathbf{c}_{3}\right)_{S}=(1,2,0)$ and $\left(\mathbf{c}_{5}\right)=(2,0,-2)$. Also, clearly $\left(\mathbf{c}_{1}\right)_{s}=(1,0,0),\left(\mathbf{c}_{2}\right)_{S}=(0,1,0)$, and $\left(\mathbf{c}_{4}\right)_{S}=(0,0,1)$.

