1) Let $\mathbf{u}=(1,-1,2)$ and $\mathbf{v}=(2,0,1)$.
(a) Is the angle between \mathbf{u} and \mathbf{v} greater than $\pi / 2$, smaller than $\pi / 2$ or equal to $\pi / 2$? [Remember, the angle between two vectors is always in the interval $[0, \pi]$.

Solution:

We have $\mathbf{u} \cdot \mathbf{v}=1 \cdot 2+(-1) \cdot 0+2 \cdot 1=4>0$. So the smaller than $\pi / 2$. [The cosine being positive, means that the angle is in the first quadrant.]
(b) Compute $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

Solution:

We have

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}} \mathbf{v}=\frac{4}{2^{2}+0^{2}+1^{2}}(2,0,1)=\left(\frac{8}{5}, 0, \frac{4}{5}\right)
$$

(c) Compute the length of the orthogonal component of \mathbf{u} with respect to the direction of v .

Solution:

We can just use Pythagoras [draw a picture!]: if \mathbf{w} is the orthogonal component, then $\|\mathbf{u}\|^{2}=\left\|\operatorname{proj}_{\mathbf{v}} \mathbf{u}\right\|^{2}+\|\mathbf{w}\|^{2}$. Hence,

$$
\|\mathrm{w}\|=\sqrt{6-\frac{80}{25}}=\sqrt{\frac{70}{25}}=\frac{\sqrt{70}}{5} .
$$

[Or, you could remember that $\mathbf{w}=\left(\mathbf{u}-\operatorname{proj}_{\mathbf{v}} \mathbf{u}\right)$, and compute its length.]
2) If $\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=3$, then compute [justifying or showing work!]:
(a) $\left|\begin{array}{ccc}a / 7 & b / 7 & c / 7 \\ -2 d & -2 e & -2 f \\ g & h & i\end{array}\right|=$

Solution:
$=\frac{1}{7}\left|\begin{array}{ccc}a & b & c \\ -2 d & -2 e & -2 f \\ g & h & i\end{array}\right|=\frac{-2}{7}\left|\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=\frac{-2}{7} \cdot 3=-\frac{6}{7} . \quad$ [Factor $1 / 7$ from the first row and -2 from the second.].
(b) $\left|\begin{array}{lll}f & d & e \\ c & a & b \\ i & g & h\end{array}\right|=$

Solution:
$=-\left|\begin{array}{ccc}c & a & b \\ f & d & e \\ i & g & h\end{array}\right|=\left|\begin{array}{lll}a & c & b \\ d & f & e \\ g & i & h\end{array}\right|=-\left|\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=-3$. [Switch first and second row,
then switch first and second column, then switch second and third column.]
(c) $\left|\begin{array}{ccc}a-2 d & b-2 e & c-2 f \\ g & h & i \\ d+g & e+h & f+i\end{array}\right|=$

Solution:
$=\left|\begin{array}{ccc}a-2 d & b-2 e & c-2 f \\ g & h & i \\ d & e & f\end{array}\right|=-\left|\begin{array}{ccc}a-2 d & b-2 e & c-2 f \\ d & e & f \\ g & h & i\end{array}\right|=-\left|\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=-3$
[Subtract the second row from the third, switch second and third rows, add twice the second row to the first.]
3) Let $A=\left[\begin{array}{rrrrr}3 & 1 & 1 & 0 & 2 \\ 0 & 2 & 0 & 0 & 1 \\ -3 & 5 & 1 & 1 & 3 \\ 2 & 0 & 1 & 0 & 2 \\ 1 & -1 & 2 & 0 & 4\end{array}\right]$.
(a) How many solutions does the homogeneous system $A \mathbf{x}=\mathbf{0}$ have? [You do not have to find the solutions!!! Just tell me how many and justify.]

Solution:

$$
\begin{aligned}
& \left|\begin{array}{rrrrr}
3 & 1 & 1 & 0 & 2 \\
0 & 2 & 0 & 0 & 1 \\
-3 & 5 & 1 & 1 & 3 \\
2 & 0 & 1 & 0 & 2 \\
1 & -1 & 2 & 0 & 4
\end{array}\right|=-\left|\begin{array}{rrrr}
3 & 1 & 1 & 2 \\
0 & 2 & 0 & 1 \\
2 & 0 & 1 & 2 \\
1 & -1 & 2 & 4
\end{array}\right| \\
& =-\left(2\left|\begin{array}{lll}
3 & 1 & 2 \\
2 & 1 & 2 \\
1 & 2 & 4
\end{array}\right|+\left|\begin{array}{rrr}
3 & 1 & 1 \\
2 & 0 & 1 \\
1 & -1 & 2
\end{array}\right|\right) \quad \text { [using the 2nd row] } \\
& =-\left(0+\left|\begin{array}{rrr}
3 & 1 & 1 \\
2 & 0 & 1 \\
1 & -1 & 2
\end{array}\right|\right) \quad[\text { a col. is a mult. of another] } \\
& =-(0+1-2-(0-3+4))=2
\end{aligned}
$$

Thus, $\operatorname{det} A \neq 0$, and since the system is homogeneous [i.e., $\mathbf{b}=\mathbf{0}$], we have exactly one solution [namely $\mathbf{x}=\mathbf{0}$].
(b) Is A^{T} invertible? If so, compute $\operatorname{det}\left(\left(A^{\mathrm{T}}\right)^{-3}\right)$, if not, justify.

Solution:

We have $\operatorname{det} A^{\mathrm{T}}=\operatorname{det} A=2 \neq 0$. Thus A^{T} is invertible.
So,

$$
\operatorname{det}\left(\left(A^{\mathrm{T}}\right)^{-3}\right)=\left(\operatorname{det} A^{\mathrm{T}}\right)^{-3}=(\operatorname{det} A)^{-3}=2^{-3}=\frac{1}{8} .
$$

4) Let $A=\left[\begin{array}{ccc}-4 & 5 & 2 \\ 1 & -2 & -1 \\ -2 & 1 & 0\end{array}\right], \mathbf{b}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$, and $\mathbf{c}=\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right]$. Solve, if possible, the two systems:

$$
A \mathbf{x}=\mathbf{b} \quad \text { and } \quad A \mathbf{x}=\mathbf{c}
$$

Solution:

Solve simultaneously:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c|c}
-4 & 5 & 2 & 1 & 2 \\
1 & -2 & -1 & 0 & 1 \\
-2 & 1 & 0 & -1 & 4
\end{array}\right] \sim\left[\begin{array}{ccc|c|c}
1 & -2 & -1 & 0 & 1 \\
-4 & 5 & 2 & 1 & 2 \\
-2 & 1 & 0 & -1 & 4
\end{array}\right] \sim} \\
& \sim\left[\begin{array}{ccc|c|c}
1 & -2 & -1 & 0 & 1 \\
0 & -3 & -2 & 1 & 6 \\
0 & -3 & -2 & -1 & 6
\end{array}\right] \sim\left[\begin{array}{ccc|c|c}
1 & -2 & -1 & 0 & 1 \\
0 & -3 & -2 & 1 & 6 \\
0 & 0 & 0 & -2 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c|c}
1 & -2 & -1 & 0 & 1 \\
0 & 1 & 2 / 3 & -1 / 3 & -2 \\
0 & 0 & 0 & -2 & 0
\end{array}\right] .
\end{aligned}
$$

So, $A \mathbf{x}=\mathbf{b}$ has no solutions. As for $A \mathbf{x}=\mathbf{c}$, we have

$$
x_{2}=-2-\frac{2}{3} x_{3}, \quad x_{1}=1+2 x_{2}+x_{3}=-3-\frac{1}{3} x_{3} .
$$

Thus, the solutions are

$$
\mathbf{x}=\left[\begin{array}{c}
-3-t \\
-2-2 t \\
3 t
\end{array}\right], \quad \text { for all } t \in \mathbb{R} .
$$

[Or,

$$
\left.\mathbf{x}=\left[\begin{array}{c}
-3-t / 3 \\
-2-2 t / 3 \\
t
\end{array}\right], \quad \text { for all } t \in \mathbb{R} .\right]
$$

5) Let $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{rrr}1 & -4 & -4 \\ -2 & 5 & 7 \\ -1 & 2 & 4\end{array}\right]$. Compute $A \cdot\left(B^{\mathrm{T}}\right)^{-1}$.

Solution:
Let's compute $\left(B^{\mathrm{T}}\right)^{-1}$:

$$
\begin{gathered}
{\left[\begin{array}{rrr|rrr}
1 & -2 & -1 & 1 & 0 & 0 \\
-4 & 5 & 2 & 0 & 1 & 0 \\
-4 & 7 & 4 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{rrr|rrr}
1 & -2 & -1 & 1 & 0 & 0 \\
0 & -3 & -2 & 4 & 1 & 0 \\
0 & -1 & 0 & 4 & 0 & 1
\end{array}\right]} \\
\sim\left[\begin{array}{rrr|rrr}
1 & -2 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & -4 & 0 & -1 \\
0 & -3 & -2 & 4 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{rrrrrrr}
1 & -2 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & -4 & 0 & -1 \\
0 & 0 & -2 & -8 & 1 & -3
\end{array}\right] \\
\sim\left[\begin{array}{rrrr|rrr}
1 & 0 & -1 & -7 & 0 & -2 \\
0 & 1 & 0 & -4 & 0 & -1 \\
0 & 0 & 1 & 4 & -1 / 2 & 3 / 2
\end{array}\right] \sim\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & -3 & -1 / 2 & -1 / 2 \\
0 & 1 & 0 & -4 & 0 & -1 \\
0 & 0 & 1 & 4 & -1 / 2 & 3 / 2
\end{array}\right]
\end{gathered}
$$

So,

$$
A \cdot\left(B^{\mathrm{T}}\right)^{-1}=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{rrr}
-3 & -1 / 2 & -1 / 2 \\
-4 & 0 & -1 \\
4 & -1 / 2 & 3 / 2
\end{array}\right]=\left[\begin{array}{rrr}
-2 & -\frac{3}{2} & \frac{1}{2} \\
-4 & 0 & -1
\end{array}\right]
$$

