Quadratic Equation

Math 455 - Fall 2006

August 24, 2006

For given values of a, b and c, we want to find an x such that:

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{1}
\end{equation*}
$$

Note that if we had an equation of the form

$$
\begin{equation*}
(p x+q)^{2}+r=0 \tag{2}
\end{equation*}
$$

then it would be easy to find a solution:

$$
\begin{aligned}
(p x+q)^{2}+r=0 & \Rightarrow \\
(p x+q)^{2}=-r & \Rightarrow \\
p x+q= \pm \sqrt{-r} & \Rightarrow \\
p x=-q \pm \sqrt{-r} & \Rightarrow \\
x=\frac{-q \pm \sqrt{-r}}{p} &
\end{aligned}
$$

So, we want to go from equation (1), to something similar to equation (2). In order to do so, we complete the square. Remember that for all X and Y,

$$
\begin{equation*}
(X+Y)^{2}=X^{2}+2 X Y+Y^{2} \tag{3}
\end{equation*}
$$

Hence:

$$
\left(\sqrt{a} x+\frac{b}{2 \sqrt{a}}\right)^{2}=a x^{2}+b x+\left(\frac{b^{2}}{4 a}\right)
$$

or,

$$
\begin{equation*}
a x^{2}+b x=\left(\sqrt{a} x+\frac{b}{2 \sqrt{a}}\right)^{2}-\left(\frac{b^{2}}{4 a}\right) . \tag{4}
\end{equation*}
$$

Therefore:

$$
\begin{equation*}
a x^{2}+b x+c=\left(\sqrt{a} x+\frac{b}{2 \sqrt{a}}\right)^{2}+\left[c-\left(\frac{b^{2}}{4 a}\right)\right] . \tag{5}
\end{equation*}
$$

So, we are now in the same situation as equation (2) with

$$
p=\sqrt{a}, \quad q=\frac{b}{2 \sqrt{a}}, \quad r=c-\left(\frac{b^{2}}{4 a}\right) .
$$

So,

$$
\begin{aligned}
x & =\frac{-q \pm \sqrt{-r}}{p} \\
& =\frac{-b /(2 \sqrt{a}) \pm \sqrt{b^{2} /(4 a)-c}}{\sqrt{a}} \\
& \left.=\frac{-b \pm 2 \sqrt{a} \cdot \sqrt{b^{2} /(4 a)-c}}{2 a} \quad \text { [multiply top and bottom by } 2 \sqrt{a} .\right] \\
& =\frac{-b \pm \sqrt{4 a} \cdot \sqrt{b^{2} /(4 a)-c}}{2 a} \\
& =\frac{-b \pm \sqrt{4 a \cdot\left(b^{2} /(4 a)-c\right)}}{2 a} \\
& =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

