Hint for Problem 5.5.8(a)

(from Artin's "Algebra")
Math 455

Here are some facts from Linear Algebra (which you should know). The first one is Proposition 3.3.15 from Artin (pg. 92):

Theorem (Base Completion). Let V be a vector space of dimension n. If the set $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent (and so $m \leq n$), then there are $v_{m+1}, \ldots, v_{n} \in V$ such that $\left\{v_{1}, \ldots, v_{m}, v_{m+1}, \ldots, v_{n}\right\}$ is a basis of V.

This second one is a consequence of Corollary 3.4.23 from Artin (pg. 99):

Theorem (Change of Basis). If V is a vector space and $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ are two bases of V, then there is a (necessarily invertible) linear transformation T such that $T\left(v_{i}\right)=w_{i}$.

In particular, if $V=\mathbb{R}^{n}$, then there is a matrix $M \in \mathrm{GL}_{n}(\mathbb{R})$ such that $M\left(v_{i}\right)=w_{i}$.

