Groups of Order 18

Math 455 – Fall 2006

Question: Classify all groups of order 18.

Solution. Let $|G| = 18 = 2 \cdot 3^2$ and s_p denote the number of Sylow p-subgroups. Then, by the Sylow Third Theorem, $s_3 \mid 2$ [and so $s_3 \in \{1,2\}$] and $s_3 \equiv 1 \pmod{3}$. Thus $s_3 = 1$ and we have only one subgroup of order 9, say H.

Since $|H| = 9$, by Corollary 6.1.14, $H \cong C_9$ or $H \cong C_3 \times C_3$.

Now, $s_2 \in \{1, 3, 9\}$ [since $s_2 \mid 9$]. We split the problem in cases.

Case 1: Assume that $s_2 = 1$. Then, if K is the [only] subgroup of order 2, we have that $K \triangleleft G$ [since $s_2 = 1$], $H \cap K = \{1\}$ [since the groups have relatively prime orders], and $|H| |K| = |G|$. So, by Proposition 2.8.6, we have that $G \cong H \times K$. Therefore,

$$
G \cong C_3 \times C_3 \times C_2 \cong C_3 \times C_6
$$

[if $H \cong C_3 \times C_3$], or

$$
G \cong C_9 \times C_2 \cong C_{18}
$$

[if $H \cong C_9$].

Case 2: Assume that $s_2 = 9$. This means that there are 9 elements of order 2 [one in each Sylow 2-subgroup]. Since H already has 9 elements, this means that every element not in H has order 2.

Let $y \in G - H$. [Hence y has order 2.] Then $G = H \cup Hy$ [since $[G : H] = 2$, or using Proposition 2.8.6 again]. If $h \in H$, then hy has order 2 [since it is not in H], i.e.,

$$
(hy)^2 = 1 \Rightarrow hyhy = 1
$$

$$
\Rightarrow yhy = h^{-1}
$$

$$
\Rightarrow yh = h^{-1}y.
$$

(i) If $H \cong C_9$ and $H = \langle x \rangle$, then we have that

$$
G = H \dot{\cup} Hy = \{1, x, x^2, \dots, x^8, y, xy, x^2, \dots, x^8y\},\
$$

the order of x is 9, the order of y is 2 and $yx^{i} = x^{-i}y$. Thus,

$$
G \cong D_{18}.
$$

 $[D_{18}$ is the *dihedral group of order* 18, as we've seen in class. It is completely characterized by the properties given above.]

(ii) If $H \cong C_3 \times C_3$, we can write

$$
H = \{1, x_1, x_1^2, x_2, x_2^2, x_1x_2, x_1^2x_2, x_1x_2^2, x_1^2x_2^2\}
$$

where x_1 and x_2 have order 3 and commute with each other. Hence,

$$
G = H \dot{\cup} Hy = \{1, x_1, x_1^2, x_2, x_2^2, x_1x_2, x_1^2x_2, x_1x_2^2, x_1^2x_2^2,
$$

$$
y, x_1y, x_1^2y, x_2y, x_2^2y, x_1x_2y, x_1^2x_2y, x_1x_2^2y, x_1^2x_2^2y\},
$$

and for any $h \in H$, $yh = h^{-1}y$. We have not encountered this group before, but we can check that these properties indeed give us a group: the properties allows us to make a multiplication table and check all the requirements. Note for example that, since x_1 and x_2 commute with each other, we have:

$$
(x_1^ix_2^jy)^2 = x_1^ix_2^jyx_1^ix_2^jy = x_1^ix_2^j(x_1^ix_2^j)^{-1}y^2 = x_1^ix_2^jx_1^{-i}x_2^{-j} = 1.
$$

So, every element not in H indeed has order 2, as we knew it should be the case. This group is in fact the *semi-direct product of* $C_3 \times C_3$ with C_2 , but we haven't seen those.

Case 3: Assume, finally, that $s_2 = 3$. We have in this case only 3 elements of order 2. The elements of H can have order 1 [the identity], 3, or 9 [if any]. Therefore, all the elements left [i.e., not of order 2 and not in H] must have order 6, since their orders has to divide $|G| = 18$, and cannot be equal to 1 [because $1 \in H$], 2 [because we're excluding those], 3 [these must be in H], 9 [these, if exist, must also be in H], or 18 [since if we have an element of order 18, G would be cyclic, and hence all subgroups would be normal, and we would have to have $s_2 = 1$, not 3. Hence, we have 9 elements [of order 1, 3 or 9] in H, 3 elements of order 2, and 6 elements of order 6.

Let y be an element of order 2. So, $y \in G - H$, and as before, $G = H \cup Hy$.

(i) If $H = C_9$, let x be a generator. Let's find what are the other two elements of order 2 [besides y]. If $x^i y$ [which is how every element not in H can be represented] has order 2, then, as before,

$$
(x^{i}y)^{2} = 1 \Rightarrow x^{i}yx^{i}y = 1
$$

$$
\Rightarrow yx^{i}y = x^{-i}
$$

$$
\Rightarrow yx^{i} = x^{-i}y.
$$

But then,

$$
yx^{ki} = yx^{i}x^{(k-1)i} = x^{-i}yx^{(k-1)i}
$$

$$
= x^{-i}yx^{i}x^{(k-2)i} = x^{-2i}yx^{(k-2)i}
$$

$$
\vdots
$$

$$
= x^{-(k-1)i}yx^{i} = x^{-ki}y,
$$

and thus

$$
(x^{ki}y)^2 = x^{ki}yx^{ki}y = x^{ki}x^{-ki}yy = 1.
$$

Hence, if $x^i y$ has order 2, so does $x^{2i} y$, $x^{3i} y$, etc. Since we have only 3 elements of order 2, they have to be $\{y, x^3y, x^6y\}.$

We can conclude that xy has order 6 [since it's not in H and doesn't have order 2]. But then, $(xy)^2$ has order 3. But the only elements of order 3 [which must be in H] are x^3 and x^6 , and so,

$$
(xy)3 = (xy)2xy = x3xy = x4y
$$

or

$$
(xy)3 = (xy)2xy = x6xy = x7y.
$$

But $(xy)^3$ must have order 2 [since xy has order 6], so $(xy)^3 \in \{y, x^3y, x^6y\}$, giving us a contradiction, which means that if $s_2 = 3$, then $H \not\cong C_9$.

(ii) So, assume that $H = C_3 \times C_3$. Then, there is some element of Hy besides y that also has order 2. [Remember that y has order 2.] Let $x \in H - \{1\}$ be an element such that xy has order 2. Again, this means that $yx = x^{-1}y$, and we can easily check that x^2y also has order 2. [Note that since $x \in H - \{1\}$, it must have order 3.] So, the subset

$$
S \stackrel{\text{def}}{=} \{1, x, x^2, y, xy, xy^2\}
$$

satisfy: x has order 3, y has order 2, and $yx = x^2y$. So, S is in fact a subgroup and is isomorphic to S_3 .

We will now prove that $S \triangleleft G$: let $q \in G$ and $a \in S$. [We need to show that $qaq^{-1} \in S$.] If a has order 2 [i.e., $a \in \{y, xy, x^2y\}$], then gag^{-1} also has order 2. But since S contain all 3 elements of order 2, we must have that $qaq^{-1} \in S$. If a does not have order 2, then $a \in H \cap S$ [more precisely $a \in \{1, x, x^2\}$]. But since $G = H \cap yH$, we can write $g = yⁱh$, where $i \in \{0, 1\}$ and $h \in H$. But then, $gag^{-1} = yⁱhah^{-1}yⁱ$ [since $yⁱ = y⁻ⁱ$]. Since $h, a \in H$ and H is commutative, we have that $hah^{-1} = a$. Thus, $gag^{-1} = y^i ay^i$. Since $a, y \in S$, we have that $gag^{-1} = y^i ay^i \in S$. Therefore, $S \triangleleft G$.

Now, let S be the set of subgroups of order 3 in G. Then $|\mathcal{S}| = 4$ [i.e., the 4 subgroups of order 3 of $H \cong C_3 \times C_3$. Then, $\langle y \rangle = \{1, y\}$ acts on S by conjugation [since conjugation does not change the order]. So, the orbits must have order 1 or 2 [since it must divide $|\langle y \rangle| = 2$. Also, since $S \triangleleft G$, the orbit of $\{1, x, x^2\}$ has only one element [namely, itself]. So,

$$
4 = |\mathcal{S}| = 1 + \sum_{O \text{ orbit}} |O|
$$

So, there must be another orbit of order 1. [If not, the right hand side would be odd!] Let K be this subgroup, and so $yKy = K$.

We will now show that $K \triangleleft G$. Let $g \in G$. Then, as before, $g = y^i h$, with $i \in \{0, 1\}$ and $h \in H$. Since $K < H$ and H is Abelian, we have that $hKh^{-1} = K$. And, since $yKy=K$, we have that $gKg^{-1} = y^ihKh^{-1}y^i = y^iKy^i = K$, and hence $K \triangleleft G$.

Thus, $S, K \triangleleft G$ and $|S||K| = |G|$ [remember that $K \in S$, i.e., $|K| = 3$]. Also, $S \cap K = \{1\}$, since $K \neq \{1, x, x^2\}$ [by our choice of K]. Using Proposition 2.8.6, we have that $G \cong S \times K$, i.e.,

$$
G \cong S_3 \times C_3.
$$

Therefore, there are five groups of order 18 up to isomorphism: C_{18} , $C_3 \times C_6$, D_{18} , the semi-direct product of $C_3 \times C_3$ with C_2 [which we haven't seen before], and $S_3 \times C_3$.

 \Box