1) Suppose that |G| = 2p, where p is a prime different from 2. Prove that either G = Cy, or
G = Dy,

Proof. By the First Sylow Theorem, [since 2 and p are both primes and p # 2| there are
subgroups H and K such that |H| = p and |K| = 2. Hence, since they have prime orders,
H=C,and K = C,. Let H = (z) and K = (y).

Since [G : H| = 2, we have that H < G. [We could also obtain that from Third Sylow
Theorem.] We also have that H N K = {1} [since their orders are relatively prime|, and, by
Proposition 2.8.6(a), since |H| - |K| = |G|, we have H - K = G. Therefore,

G={l,n2° . . . 2"y zy 2%y, ... 2" 'y}

If K < G, then we have, by Proposition 2.8.6(c), that G = H x K = C), x Cy =2 (. [In
the last equality, we used the fact that p # 2.]

Suppose then that K is not normal. By the Second Sylow Theorem, we have that there
is more than one Sylow 2-subgroup, while there is only one Sylow p-subgroup |[namely, H].
By the Third Sylow Theorem, sy [i.e., the number of Sylow 2-subgroups| divides p, so it is
either 1 or p. Since it is not 1 [as we’ve seen above], it must be p. So, we have p elements
of orders 2. Since all p elements of H do not have order 2 [they have order p or 1], all other
elements must have order 2. So, v, zy,...,2P 'y all have order two. So, zy has order two,
and:

(zy =zyzy=1 = yr=a'y '=zy

[since y also has order two]. Thus, G = (x, %), = has order p, y has order 2, and yzr = z~1y.
Therefore G' = D,
]



2) Let H < G, K < G/H, and

Kdéf{xEG . x € gH for some gH € K}

[i.e., K is the union of all cosets in K].

(a)

Prove that K is a subgroup of G containing H.

Solution. Let z,y € K. So, [by defn. of K] there are g1 H, g, H € K such that x € gi H
and y € goH. Thus, y™* € Hgy,' = g;'H = (g2 H)™! [since H < G and K < G/H].
Therefore zy~t € (g1H)(g2H)™ . Since K < G/H, we have that (g1 H)(g.H)™! =
(919, )H € K. Hence, zy~' € K. By the one-step method, K < G.

Now, since 1- H = H € K, all its elements are in K.

Prove that K = {kH : k € K}.

Solution. Let gH € K. Then g-1 = g € K. Therefore, gH € {kH : k € K}, and
KC{kH : ke K).

Let k € K. Then k € gH for some gH € K. So, kH = gH [since the cosets are
disjoint]. Hence, kH € K, and {kH : k€ K} C K.

Thus, K = {kH : k € K}.



3) Let M,N < G.

()

Prove that (NM) < G, M < (NM), and (NN M) < N.

Solution. Since, M, N < G, by Proposition 2.8.6(b), NM < G.
Let me M and g € NM. Since NM C G and M < G, gmg™ € M, and so M < NM.

We will prove that (N N M) < N in (b) below. [Or, you can just quote Proposition
2.7.1)]

Prove that N/(NNM) = (NM)/M.

Solution. Let ¢ : N — (NM)/M defined by ¢(n) = nM. [Note that since N C NM,
we have nM € (NM)/M ]

We have ¢(ning) = (ning)M = (nyM)(naM), and hence ¢ is a homomorphism.

Given nmM € (NM)/M, we have that nmM = nM, since nmm~' =n € nmM [and

cosets are disjoint]. So, ¢(n) = nM = nmM, and ¢ is onto.

We have that ¢(n) = M iff nM = M iff n € M. Since we also have that n € N, we
obtain ker ¢ = N N M. [In particular, this proves that (N N M) < N for part (a).]

By the First Isomorphism Theorem, N/(N N M) = (NM)/M.



4) Let G be an Abelian group, H < G and ¢ : G — H be a homomorphism such that
¢(h) = h for all h € H. Prove that G = H X ker ¢. [Hint: Remember that ¢(g) = ¢(¢') iff

g 1g € ker¢.

Solution. Yet again, we use Proposition 2.8.6.

[H,ker ¢ <« G:] Since G is Abelian, both H and ker ¢ are normal subgroups of G.

[HNker¢p = {1}:] Let g € HNker ¢. In particular g € H, and so ¢(g) = g. On the other
hand, also g € ker ¢, and so ¢(g) = 1. Thus, g = ¢(g9) = 1, and H Nker ¢ = {1} [since we
proved that an arbitrary element of H N ker ¢ has to be equal to 1].

[H-ker ¢ = G:] Let g € G. Then ¢(g) € H. So, denote h o ®(g). Then, since h € H, we
have that ¢(h) = h = ¢(g). By the hint, h='g € ker ¢. But then, g =h-(h~'g) € H - ker ¢.
Since g was arbitrary, we have H - ker ¢ = G.

By Proposition 2.8.6(c), G = H X ker ¢.



5) Let R be a [not necessarily commutative] ring in which a? = a for all a € R.

(a) Prove that for all a € R, we have a = —a.

Solution. We have —a = (—a)? = (—a)(—a) = a®> = a. [Remember that it was proved

in class that (—x)(—y) = zy.|

[
(b) Prove that R is commutative. [Hint: Expand (a + b)? in the ring.]
Solution. We have
(a+b)* = (a+b)(a+D)
=a(a+b) +bla+0)
= a® + ab + ba + b*
=a+ab+ ba + .
On the other hand, (a + b)* = (a + b). So,
at+ab+ba+b=a+b = ab+ba=0
= ab= —ba
= ab=ba.
[where the last statement comes from part (a)].
[



