1) Suppose that $|G|=2 p$, where p is a prime different from 2 . Prove that either $G \cong C_{2 p}$ or $G \cong D_{2 p}$.

Proof. By the First Sylow Theorem, [since 2 and p are both primes and $p \neq 2$] there are subgroups H and K such that $|H|=p$ and $|K|=2$. Hence, since they have prime orders, $H \cong C_{p}$ and $K \cong C_{2}$. Let $H=\langle x\rangle$ and $K=\langle y\rangle$.

Since $[G: H]=2$, we have that $H \triangleleft G$. [We could also obtain that from Third Sylow Theorem.] We also have that $H \cap K=\{1\}$ [since their orders are relatively prime], and, by Proposition 2.8.6(a), since $|H| \cdot|K|=|G|$, we have $H \cdot K=G$. Therefore,

$$
G=\left\{1, x, x^{2}, \ldots, x^{p-1}, y, x y, x^{2} y, \ldots, x^{p-1} y\right\}
$$

If $K \triangleleft G$, then we have, by Proposition 2.8.6(c), that $G \cong H \times K \cong C_{p} \times C_{2} \cong C_{2 p}$. [In the last equality, we used the fact that $p \neq 2$.]

Suppose then that K is not normal. By the Second Sylow Theorem, we have that there is more than one Sylow 2-subgroup, while there is only one Sylow p-subgroup [namely, H]. By the Third Sylow Theorem, s_{2} [i.e., the number of Sylow 2-subgroups] divides p, so it is either 1 or p. Since it is not 1 [as we've seen above], it must be p. So, we have p elements of orders 2 . Since all p elements of H do not have order 2 [they have order p or 1], all other elements must have order 2 . So, $y, x y, \ldots, x^{p-1} y$ all have order two. So, $x y$ has order two, and:

$$
(x y)^{2}=x y x y=1 \quad \Rightarrow \quad y x=x^{-1} y^{-1}=x^{-1} y
$$

[since y also has order two]. Thus, $G=\langle x, y\rangle, x$ has order p, y has order 2 , and $y x=x^{-1} y$. Therefore $G \cong D_{2 p}$.
2) Let $H \triangleleft G, \bar{K}<G / H$, and

$$
K \stackrel{\text { def }}{=}\{x \in G: x \in g H \text { for some } g H \in \bar{K}\}
$$

[i.e., K is the union of all cosets in \bar{K}].
(a) Prove that K is a subgroup of G containing H.

Solution. Let $x, y \in K$. So, [by defn. of K] there are $g_{1} H, g_{2} H \in \bar{K}$ such that $x \in g_{1} H$ and $y \in g_{2} H$. Thus, $y^{-1} \in H g_{2}^{-1}=g_{2}^{-1} H=\left(g_{2} H\right)^{-1}[$ since $H \triangleleft G$ and $\bar{K}<G / H]$. Therefore $x y^{-1} \in\left(g_{1} H\right)\left(g_{2} H\right)^{-1}$. Since $\bar{K}<G / H$, we have that $\left(g_{1} H\right)\left(g_{2} H\right)^{-1}=$ $\left(g_{1} g_{2}^{-1}\right) H \in \bar{K}$. Hence, $x y^{-1} \in K$. By the one-step method, $K<G$.

Now, since $1 \cdot H=H \in \bar{K}$, all its elements are in K.
(b) Prove that $\bar{K}=\{k H: k \in K\}$.

Solution. Let $g H \in \bar{K}$. Then $g \cdot 1=g \in K$. Therefore, $g H \in\{k H: k \in K\}$, and $\bar{K} \subseteq\{k H: k \in K\}$.

Let $k \in K$. Then $k \in g H$ for some $g H \in \bar{K}$. So, $k H=g H$ [since the cosets are disjoint]. Hence, $k H \in \bar{K}$, and $\{k H: k \in K\} \subseteq \bar{K}$.

Thus, $\bar{K}=\{k H: k \in K\}$.
3) Let $M, N \triangleleft G$.
(a) Prove that $(N M)<G, M \triangleleft(N M)$, and $(N \cap M) \triangleleft N$.

Solution. Since, $M, N \triangleleft G$, by Proposition 2.8.6(b), $N M<G$.
Let $m \in M$ and $g \in N M$. Since $N M \subseteq G$ and $M \triangleleft G, g m g^{-1} \in M$, and so $M \triangleleft N M$.
We will prove that $(N \cap M) \triangleleft N$ in (b) below. [Or, you can just quote Proposition 2.7.1.]
(b) Prove that $N /(N \cap M) \cong(N M) / M$.

Solution. Let $\phi: N \rightarrow(N M) / M$ defined by $\phi(n)=n M$. [Note that since $N \subseteq N M$, we have $n M \in(N M) / M$.

We have $\phi\left(n_{1} n_{2}\right)=\left(n_{1} n_{2}\right) M=\left(n_{1} M\right)\left(n_{2} M\right)$, and hence ϕ is a homomorphism.
Given $n m M \in(N M) / M$, we have that $n m M=n M$, since $n m m^{-1}=n \in n m M$ [and cosets are disjoint]. So, $\phi(n)=n M=n m M$, and ϕ is onto.

We have that $\phi(n)=M$ iff $n M=M$ iff $n \in M$. Since we also have that $n \in N$, we obtain $\operatorname{ker} \phi=N \cap M$. [In particular, this proves that $(N \cap M) \triangleleft N$ for part (a).]

By the First Isomorphism Theorem, $N /(N \cap M) \cong(N M) / M$.
4) Let G be an Abelian group, $H<G$ and $\phi: G \rightarrow H$ be a homomorphism such that $\phi(h)=h$ for all $h \in H$. Prove that $G \cong H \times \operatorname{ker} \phi$. [Hint: Remember that $\phi(g)=\phi\left(g^{\prime}\right)$ iff $g^{-1} g^{\prime} \in \operatorname{ker} \phi$.]

Solution. Yet again, we use Proposition 2.8.6.
[$H, \operatorname{ker} \phi \triangleleft G:]$ Since G is Abelian, both H and $\operatorname{ker} \phi$ are normal subgroups of G.
$[H \cap \operatorname{ker} \phi=\{1\}:]$ Let $g \in H \cap \operatorname{ker} \phi$. In particular $g \in H$, and so $\phi(g)=g$. On the other hand, also $g \in \operatorname{ker} \phi$, and so $\phi(g)=1$. Thus, $g=\phi(g)=1$, and $H \cap \operatorname{ker} \phi=\{1\}$ [since we proved that an arbitrary element of $H \cap \operatorname{ker} \phi$ has to be equal to 1].
$[H \cdot \operatorname{ker} \phi=G:]$ Let $g \in G$. Then $\phi(g) \in H$. So, denote $h \stackrel{\text { def }}{=} \phi(g)$. Then, since $h \in H$, we have that $\phi(h)=h=\phi(g)$. By the hint, $h^{-1} g \in \operatorname{ker} \phi$. But then, $g=h \cdot\left(h^{-1} g\right) \in H \cdot \operatorname{ker} \phi$. Since g was arbitrary, we have $H \cdot \operatorname{ker} \phi=G$.

By Proposition 2.8.6(c), $G \cong H \times \operatorname{ker} \phi$.
5) Let R be a [not necessarily commutative] ring in which $a^{2}=a$ for all $a \in R$.
(a) Prove that for all $a \in R$, we have $a=-a$.

Solution. We have $-a=(-a)^{2}=(-a)(-a)=a^{2}=a$. [Remember that it was proved in class that $(-x)(-y)=x y$.]
(b) Prove that R is commutative. [Hint: Expand $(a+b)^{2}$ in the ring.]

Solution. We have

$$
\begin{aligned}
(a+b)^{2} & =(a+b)(a+b) \\
& =a(a+b)+b(a+b) \\
& =a^{2}+a b+b a+b^{2} \\
& =a+a b+b a+b .
\end{aligned}
$$

On the other hand, $(a+b)^{2}=(a+b)$. So,

$$
\begin{aligned}
a+a b+b a+b=a+b & \Rightarrow a b+b a=0 \\
& \Rightarrow a b=-b a \\
& \Rightarrow a b=b a .
\end{aligned}
$$

[where the last statement comes from part (a)].

