
1) Suppose that |G| = 2p, where p is a prime different from 2. Prove that either G ∼= C2p or

G ∼= D2p.

Proof. By the First Sylow Theorem, [since 2 and p are both primes and p 6= 2] there are

subgroups H and K such that |H| = p and |K| = 2. Hence, since they have prime orders,

H ∼= Cp and K ∼= C2. Let H = 〈x〉 and K = 〈y〉.
Since [G : H] = 2, we have that H / G. [We could also obtain that from Third Sylow

Theorem.] We also have that H ∩K = {1} [since their orders are relatively prime], and, by

Proposition 2.8.6(a), since |H| · |K| = |G|, we have H ·K = G. Therefore,

G = {1, x, x2, . . . , xp−1, y, xy, x2y, . . . , xp−1y}.

If K / G, then we have, by Proposition 2.8.6(c), that G ∼= H ×K ∼= Cp ×C2
∼= C2p. [In

the last equality, we used the fact that p 6= 2.]

Suppose then that K is not normal. By the Second Sylow Theorem, we have that there

is more than one Sylow 2-subgroup, while there is only one Sylow p-subgroup [namely, H].

By the Third Sylow Theorem, s2 [i.e., the number of Sylow 2-subgroups] divides p, so it is

either 1 or p. Since it is not 1 [as we’ve seen above], it must be p. So, we have p elements

of orders 2. Since all p elements of H do not have order 2 [they have order p or 1], all other

elements must have order 2. So, y, xy, . . . , xp−1y all have order two. So, xy has order two,

and:

(xy)2 = xyxy = 1 ⇒ yx = x−1y−1 = x−1y

[since y also has order two]. Thus, G = 〈x, y〉, x has order p, y has order 2, and yx = x−1y.

Therefore G ∼= D2p.
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2) Let H / G, K̄ < G/H, and

K
def
= {x ∈ G : x ∈ gH for some gH ∈ K̄}

[i.e., K is the union of all cosets in K̄].

(a) Prove that K is a subgroup of G containing H.

Solution. Let x, y ∈ K. So, [by defn. of K] there are g1H, g2H ∈ K̄ such that x ∈ g1H

and y ∈ g2H. Thus, y−1 ∈ Hg−1
2 = g−1

2 H = (g2H)−1 [since H / G and K̄ < G/H].

Therefore xy−1 ∈ (g1H)(g2H)−1. Since K̄ < G/H, we have that (g1H)(g2H)−1 =

(g1g
−1
2 )H ∈ K̄. Hence, xy−1 ∈ K. By the one-step method, K < G.

Now, since 1 ·H = H ∈ K̄, all its elements are in K.

(b) Prove that K̄ = {kH : k ∈ K}.

Solution. Let gH ∈ K̄. Then g · 1 = g ∈ K. Therefore, gH ∈ {kH : k ∈ K}, and

K̄ ⊆ {kH : k ∈ K}.

Let k ∈ K. Then k ∈ gH for some gH ∈ K̄. So, kH = gH [since the cosets are

disjoint]. Hence, kH ∈ K̄, and {kH : k ∈ K} ⊆ K̄.

Thus, K̄ = {kH : k ∈ K}.
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3) Let M, N / G.

(a) Prove that (NM) < G, M / (NM), and (N ∩M) / N .

Solution. Since, M, N / G, by Proposition 2.8.6(b), NM < G.

Let m ∈ M and g ∈ NM . Since NM ⊆ G and M / G, gmg−1 ∈ M , and so M / NM .

We will prove that (N ∩ M) / N in (b) below. [Or, you can just quote Proposition

2.7.1.]

(b) Prove that N/(N ∩M) ∼= (NM)/M .

Solution. Let φ : N → (NM)/M defined by φ(n) = nM . [Note that since N ⊆ NM ,

we have nM ∈ (NM)/M .]

We have φ(n1n2) = (n1n2)M = (n1M)(n2M), and hence φ is a homomorphism.

Given nmM ∈ (NM)/M , we have that nmM = nM , since nmm−1 = n ∈ nmM [and

cosets are disjoint]. So, φ(n) = nM = nmM , and φ is onto.

We have that φ(n) = M iff nM = M iff n ∈ M . Since we also have that n ∈ N , we

obtain ker φ = N ∩M . [In particular, this proves that (N ∩M) / N for part (a).]

By the First Isomorphism Theorem, N/(N ∩M) ∼= (NM)/M .
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4) Let G be an Abelian group, H < G and φ : G → H be a homomorphism such that

φ(h) = h for all h ∈ H. Prove that G ∼= H × ker φ. [Hint: Remember that φ(g) = φ(g′) iff

g−1g′ ∈ ker φ.]

Solution. Yet again, we use Proposition 2.8.6.

[H, ker φ / G:] Since G is Abelian, both H and ker φ are normal subgroups of G.

[H ∩ker φ = {1}:] Let g ∈ H ∩ker φ. In particular g ∈ H, and so φ(g) = g. On the other

hand, also g ∈ ker φ, and so φ(g) = 1. Thus, g = φ(g) = 1, and H ∩ ker φ = {1} [since we

proved that an arbitrary element of H ∩ ker φ has to be equal to 1].

[H ·ker φ = G:] Let g ∈ G. Then φ(g) ∈ H. So, denote h
def
= φ(g). Then, since h ∈ H, we

have that φ(h) = h = φ(g). By the hint, h−1g ∈ ker φ. But then, g = h · (h−1g) ∈ H · ker φ.

Since g was arbitrary, we have H · ker φ = G.

By Proposition 2.8.6(c), G ∼= H × ker φ.
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5) Let R be a [not necessarily commutative] ring in which a2 = a for all a ∈ R.

(a) Prove that for all a ∈ R, we have a = −a.

Solution. We have −a = (−a)2 = (−a)(−a) = a2 = a. [Remember that it was proved

in class that (−x)(−y) = xy.]

(b) Prove that R is commutative. [Hint: Expand (a + b)2 in the ring.]

Solution. We have

(a + b)2 = (a + b)(a + b)

= a(a + b) + b(a + b)

= a2 + ab + ba + b2

= a + ab + ba + b.

On the other hand, (a + b)2 = (a + b). So,

a + ab + ba + b = a + b ⇒ ab + ba = 0

⇒ ab = −ba

⇒ ab = ba.

[where the last statement comes from part (a)].
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