1) Give the conjugacy classes and the class equation for Q_8 . [Hint: Let Q_8 act on itself by *conjugation*. Then the conjugacy classes are the distinct orbits, and the class equation is given by the orders of these classes. The class equation is something like: "8 = 1 + 1 + 1 + 2 + 3".]

Solution. Since $Z(Q_8) = \{1, -1\}$, we have $O_1 = \{1\}$ and $O_{-1} = \{-1\}$. [Moreover, these are the only orbits, or conjugacy classes in this case, that have only one element.]

Observe that for all $x, y \in Q_8$, we have

$$(-x) \cdot y \cdot (-x)^{-1} = -1 \cdot x \cdot y \cdot (-1 \cdot x)^{-1}$$

= -1 \cdot x \cdot y \cdot x^{-1} \cdot (-1)^{-1}
= -1 \cdot x \cdot y \cdot x^{-1} \cdot -1
= x \cdot y \cdot x^{-1}

[since $-1 \in Z(Q_8)$]. This makes things easier to compute, and one gets:

$$O_i = \{i, -i\}, \qquad O_j = \{j, -j\}, \qquad O_k = \{k, -k\},$$

Hence the class equation is:

$$8 = 1 + 1 + 2 + 2 + 2$$

2) Let R be a ring [with identity, as usual]. Prove that R^{\times} , with the operation of multiplication, is a group.

Solution. [Note that we cannot prove it is a subgroup, since R is not a group with respect to multiplication!]

(0) Law of composition: Let $x, y \in \mathbb{R}^{\times}$. Hence, there are $x^{-1}, y^{-1} \in \mathbb{R}$ such that $xx^{-1} = x^{-1}x = 1_R$ and $yy^{-1} = y^{-1}y = 1_R$. So,

$$(y^{-1}x^{-1})xy = y^{-1}y = 1_R$$
 $xy(y^{-1}x^{-1}) = xx^{-1} = 1_R.$

Hence, [since xy has a multiplicative inverse in R] $xy \in R^{\times}$.

- (1) *Identity:* We have that $1_R \cdot 1_R = 1_R$, so $1_R \in R^{\times}$. Since $x \cdot 1_R = 1_R \cdot x$ for all $x \in R$ [from the definition of a *ring*], we have that 1_R is the [multiplicative] identity of R^{\times} .
- (2) Associativity: Since $R^{\times} \subset R$ and R is associative with respect to multiplication, then so is R^{\times} .
- (3) Inverses: Let $x \in \mathbb{R}^{\times}$. By definition, there is $x^{-1} \in \mathbb{R}$ [not, a priori, in \mathbb{R}^{times}] such that $x^{-1}x = xx^{-1} = 1_{\mathbb{R}}$. But this equation tells us that $x^{-1} \in \mathbb{R}^{\times}$ and is the multiplicative inverse of x.

Hence, R^{\times} is a group.

3) Let R be a ring. An element $a \in R$ is a zero-divisor if $a \neq 0_R$ and there exists $b \neq 0_R$ in R such that $a \cdot b = 0_R$. Prove that if R is a *field* [i.e., $1_R \neq 0_R$, and every element but zero has a *multiplicative* inverse], then it has no zero divisors. [Note that, by definition, 0_R is not a zero divisor.]

Solution. Assume that R is a field and that we have $a, b \in R - \{0\}$ such that $a \cdot b = 0$. Since $a \neq 0$ [and R is a field], there is a multiplicative inverse a^{-1} . Thus

$$\begin{aligned} a \cdot b &= 0 \Rightarrow a^{-1} \cdot (a \cdot b) = a^{-1} \cdot 0 \quad \text{[multiply by } a^{-1}\text{]} \\ &\Rightarrow (a^{-1} \cdot a) \cdot b = 0 \quad \text{[rings are associative, and we proved that } x \cdot 0 = 0 \cdot x = 0\text{]} \\ &\Rightarrow b = 0 \end{aligned}$$

But we assumed that $b \neq 0$, hence we get a contradiction and R as no zero divisors.

4) Prove that the dihedral group D_{2n} [for $n \ge 3$] is never simple.

Solution. Remember that

$$D_{2n} = \langle x, y : x^n = 1, y^2 = 1, yx = x^{-1}y \rangle.$$

Let $H \stackrel{\text{def}}{=} \langle x \rangle$. Hence, |H| = n. So, $[D_{2n} : H] = |D_{2n}| / |H| = (2n)/n = 2$, and thus $H \triangleleft G$. Since 1 < n < 2n, H is a proper normal subgroup.

5) Let $G \stackrel{\text{def}}{=} \langle x, y, z : yxyz^{-2} = 1 \rangle$. Prove that $G = \langle y, z \rangle$, i.e., that G can be generated by y and z only.

Solution. We have that

$$yxyz^{-2} = 1,$$

and solving for x [in the group], we obtain

$$x = y^{-1} z^2 y^{-1}.$$

Hence $x \in \langle y, z \rangle$. Since, clearly also $y, z \in \langle y, z \rangle$, and x, y and z generate G, we have that $\langle y, z \rangle = G$.

6) Prove that if |G| = 8 and |G'| = 25, then the only

homomorphism $\phi: G \to G'$ is the one that takes every element of G to the identity of G'.

Solution. Since G and G' are finite, we have that $|\operatorname{im} \phi|$ divides both $|G| = \operatorname{and} |G'| = 25$. [This is Corollary 2.6.15 in Artin, and is a consequence of the facts that $\operatorname{im} \phi < G'$ and $|G| = |\ker \phi| \cdot |\operatorname{im} \phi|$.] Since the only [positive] common divisor of 8 and 25 is 1, we must have $|\operatorname{im} \phi| = 1$, i.e., there is only one element in the image, i.e., all elements of G are sent to the same element of G'. Since $\phi(1_G) = 1_{G'}$ [since ϕ is a homomorphism], we have that ϕ takes all elements of G to $1_{G'}$.