1) Give the conjugacy classes and the class equation for $Q_{8}$. [Hint: Let $Q_{8}$ act on itself by conjugation. Then the conjugacy classes are the distinct orbits, and the class equation is given by the orders of these classes. The class equation is something like: " $8=1+1+1+2+3$ ". ]

Solution. Since $Z\left(Q_{8}\right)=\{1,-1\}$, we have $O_{1}=\{1\}$ and $O_{-1}=\{-1\}$. [Moreover, these are the only orbits, or conjugacy classes in this case, that have only one element.]

Observe that for all $x, y \in Q_{8}$, we have

$$
\begin{aligned}
(-x) \cdot y \cdot(-x)^{-1} & =-1 \cdot x \cdot y \cdot(-1 \cdot x)^{-1} \\
& =-1 \cdot x \cdot y \cdot x^{-1} \cdot(-1)^{-1} \\
& =-1 \cdot x \cdot y \cdot x^{-1} \cdot-1 \\
& =x \cdot y \cdot x^{-1}
\end{aligned}
$$

[since $\left.-1 \in Z\left(Q_{8}\right)\right]$. This makes things easier to compute, and one gets:

$$
O_{i}=\{i,-i\}, \quad O_{j}=\{j,-j\}, \quad O_{k}=\{k,-k\},
$$

Hence the class equation is:

$$
8=1+1+2+2+2
$$

2) Let $R$ be a ring [with identity, as usual]. Prove that $R^{\times}$, with the operation of multiplication, is a group.

Solution. [Note that we cannot prove it is a subgroup, since $R$ is not a group with respect to multiplication!]
(0) Law of composition: Let $x, y \in R^{\times}$. Hence, there are $x^{-1}, y^{-1} \in R$ such that $x x^{-1}=$ $x^{-1} x=1_{R}$ and $y y^{-1}=y^{-1} y=1_{R}$. So,

$$
\left(y^{-1} x^{-1}\right) x y=y^{-1} y=1_{R} \quad x y\left(y^{-1} x^{-1}\right)=x x^{-1}=1_{R} .
$$

Hence, [since $x y$ has a multiplicative inverse in $R] x y \in R^{\times}$.
(1) Identity: We have that $1_{R} \cdot 1_{R}=1_{R}$, so $1_{R} \in R^{\times}$. Since $x \cdot 1_{R}=1_{R} \cdot x$ for all $x \in R$ [from the definition of a ring], we have that $1_{R}$ is the [multiplicative] identity of $R^{\times}$.
(2) Associativity: Since $R^{\times} \subset R$ and $R$ is associative with respect to multiplication, then so is $R^{\times}$.
(3) Inverses: Let $x \in R^{\times}$. By definition, there is $x^{-1} \in R$ [not, a priori, in $R^{\text {times }] ~ s u c h ~ t h a t ~}$ $x^{-1} x=x x^{-1}=1_{R}$. But this equation tells us that $x^{-1} \in R^{\times}$and is the multiplicative inverse of $x$.

Hence, $R^{\times}$is a group.
3) Let $R$ be a ring. An element $a \in R$ is a zero-divisor if $a \neq 0_{R}$ and there exists $b \neq 0_{R}$ in $R$ such that $a \cdot b=0_{R}$. Prove that if $R$ is a field [i.e., $1_{R} \neq 0_{R}$, and every element but zero has a multiplicative inverse], then it has no zero divisors. [Note that, by definition, $0_{R}$ is not a zero divisor.]

Solution. Assume that $R$ is a field and that we have $a, b \in R-\{0\}$ such that $a \cdot b=0$. Since $a \neq 0$ [and $R$ is a field], there is a multiplicative inverse $a^{-1}$. Thus

$$
\begin{aligned}
a \cdot b=0 & \Rightarrow a^{-1} \cdot(a \cdot b)=a^{-1} \cdot 0 & & {\left[\text { multiply by } a^{-1}\right] } \\
& \Rightarrow\left(a^{-1} \cdot a\right) \cdot b=0 & & \text { [rings are associative, and we proved that } x \cdot 0=0 \cdot x=0] \\
& \Rightarrow b=0 & &
\end{aligned}
$$

But we assumed that $b \neq 0$, hence we get a contradiction and $R$ as no zero divisors.
4) Prove that the dihedral group $D_{2 n}[$ for $n \geq 3]$ is never simple.

Solution. Remember that

$$
D_{2 n}=\left\langle x, y: x^{n}=1, y^{2}=1, y x=x^{-1} y\right\rangle
$$

Let $H \stackrel{\text { def }}{=}\langle x\rangle$. Hence, $|H|=n$. So, $\left[D_{2 n}: H\right]=\left|D_{2 n}\right| /|H|=(2 n) / n=2$, and thus $H \triangleleft G$. Since $1<n<2 n, H$ is a proper normal subgroup.
5) Let $G \stackrel{\text { def }}{=}\left\langle x, y, z: y x y z^{-2}=1\right\rangle$. Prove that $G=\langle y, z\rangle$, i.e., that $G$ can be generated by $y$ and $z$ only.

Solution. We have that

$$
y x y z^{-2}=1,
$$

and solving for $x$ [in the group], we obtain

$$
x=y^{-1} z^{2} y^{-1} .
$$

Hence $x \in\langle y, z\rangle$. Since, clearly also $y, z \in\langle y, z\rangle$, and $x, y$ and $z$ generate $G$, we have that $\langle y, z\rangle=G$.
6) Prove that if $|G|=8$ and $\left|G^{\prime}\right|=25$, then the only
homomorphism $\phi: G \rightarrow G^{\prime}$ is the one that takes every element of $G$ to the identity of $G^{\prime}$.

Solution. Since $G$ and $G^{\prime}$ are finite, we have that $|\operatorname{im} \phi|$ divides both $|G|=$ and $\left|G^{\prime}\right|=25$. [This is Corollary 2.6.15 in Artin, and is a consequence of the facts that $\operatorname{im} \phi<G^{\prime}$ and $|G|=|\operatorname{ker} \phi| \cdot|\operatorname{im} \phi|$. ] Since the only [positive] common divisor of 8 and 25 is 1 , we must have $|\operatorname{im} \phi|=1$, i.e., there is only one element in the image, i.e., all elements of $G$ are sent to the same element of $G^{\prime}$. Since $\phi\left(1_{G}\right)=1_{G^{\prime}}$ [since $\phi$ is a homomorphism], we have that $\phi$ takes all elements of $G$ to $1_{G^{\prime}}$.

