
1) Give the conjugacy classes and the class equation for Q8. [Hint: Let Q8 act on itself by
conjugation. Then the conjugacy classes are the distinct orbits, and the class equation is given
by the orders of these classes. The class equation is something like: “8 = 1 + 1 + 1 + 2 + 3”.]

Solution. Since Z(Q8) = {1,−1}, we have O1 = {1} and O−1 = {−1}. [Moreover, these are
the only orbits, or conjugacy classes in this case, that have only one element.]

Observe that for all x, y ∈ Q8, we have

(−x) · y · (−x)−1 = −1 · x · y · (−1 · x)−1

= −1 · x · y · x−1 · (−1)−1

= −1 · x · y · x−1 · −1

= x · y · x−1

[since −1 ∈ Z(Q8)]. This makes things easier to compute, and one gets:

Oi = {i,−i}, Oj = {j,−j}, Ok = {k,−k},

Hence the class equation is:

8 = 1 + 1 + 2 + 2 + 2

1



2) Let R be a ring [with identity, as usual]. Prove that R×, with the operation of multipli-
cation, is a group.

Solution. [Note that we cannot prove it is a subgroup, since R is not a group with respect to
multiplication!]

(0) Law of composition: Let x, y ∈ R×. Hence, there are x−1, y−1 ∈ R such that xx−1 =
x−1x = 1R and yy−1 = y−1y = 1R. So,

(y−1x−1)xy = y−1y = 1R xy(y−1x−1) = xx−1 = 1R.

Hence, [since xy has a multiplicative inverse in R] xy ∈ R×.

(1) Identity: We have that 1R · 1R = 1R, so 1R ∈ R×. Since x · 1R = 1R · x for all x ∈ R
[from the definition of a ring ], we have that 1R is the [multiplicative] identity of R×.

(2) Associativity: Since R× ⊂ R and R is associative with respect to multiplication, then
so is R×.

(3) Inverses: Let x ∈ R×. By definition, there is x−1 ∈ R [not, a priori, in Rtimes] such that
x−1x = xx−1 = 1R. But this equation tells us that x−1 ∈ R× and is the multiplicative
inverse of x.

Hence, R× is a group.
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3) Let R be a ring. An element a ∈ R is a zero-divisor if a 6= 0R and there exists b 6= 0R in
R such that a · b = 0R. Prove that if R is a field [i.e., 1R 6= 0R, and every element but zero
has a multiplicative inverse], then it has no zero divisors. [Note that, by definition, 0R is not
a zero divisor.]

Solution. Assume that R is a field and that we have a, b ∈ R−{0} such that a · b = 0. Since
a 6= 0 [and R is a field], there is a multiplicative inverse a−1. Thus

a · b = 0 ⇒ a−1 · (a · b) = a−1 · 0 [multiply by a−1]

⇒ (a−1 · a) · b = 0 [rings are associative, and we proved that x · 0 = 0 · x = 0]

⇒ b = 0

But we assumed that b 6= 0, hence we get a contradiction and R as no zero divisors.
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4) Prove that the dihedral group D2n [for n ≥ 3] is never simple.

Solution. Remember that

D2n =
〈
x, y : xn = 1, y2 = 1, yx = x−1y

〉
.

Let H
def
= 〈x〉. Hence, |H| = n. So, [D2n : H] = |D2n| / |H| = (2n)/n = 2, and thus H / G.

Since 1 < n < 2n, H is a proper normal subgroup.
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5) Let G
def
= 〈x, y, z : yxyz−2 = 1〉. Prove that G = 〈y, z〉, i.e., that G can be generated by

y and z only.

Solution. We have that
yxyz−2 = 1,

and solving for x [in the group], we obtain

x = y−1z2y−1.

Hence x ∈ 〈y, z〉. Since, clearly also y, z ∈ 〈y, z〉, and x, y and z generate G, we have that
〈y, z〉 = G.
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6) Prove that if |G| = 8 and |G′| = 25, then the only
homomorphism φ : G → G′ is the one that takes every element of G to the identity of

G′.

Solution. Since G and G′ are finite, we have that |im φ| divides both |G| = and |G′| = 25.
[This is Corollary 2.6.15 in Artin, and is a consequence of the facts that im φ < G′ and
|G| = |ker φ| · |im φ|.] Since the only [positive] common divisor of 8 and 25 is 1, we must
have |im φ| = 1, i.e., there is only one element in the image, i.e., all elements of G are sent
to the same element of G′. Since φ(1G) = 1G′ [since φ is a homomorphism], we have that φ
takes all elements of G to 1G′ .
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