Extra Credit Problem

(Due in class on Monday 10/30.)
Math 455

Problem from this years "UT Math Contest" (Fermat II) for high school students.

Problem: Let $a, b, c \in\{1,2, \ldots, 2005\}$ and

$$
f(X) \stackrel{\text { def }}{=} a X^{101}+b X^{100}+c .
$$

Prove that if $f(2006)$ is prime, then $f(X)$ has no integral root, i.e., there is no $n \in \mathbb{Z}$ such that

$$
a n^{101}+b n^{100}+c=0
$$

Proof. Suppose that $n \in \mathbb{Z}$ is a root. Then

$$
c=-a n^{101}-b n^{100}=-n^{100}(a n+b)
$$

Since, $c>0$, we must have $a n+b<0$, and since $a, b>0$, we must have $n<0$.

If $n \leq-2$, then

$$
c \geq-(-2)^{100}(-2 a+b)=2^{100}(b-2 a) \geq 2^{100}>2005
$$

[Remember that $-2 a+b<0$.] But this cannot happen [since $c \leq 2005$].
So, [since $n<0$ and $n \geq-2$] we must have $n=-1$, and thus $c=a-b$. Then,

$$
f(2006)=a 2006^{101}+b 2006^{100}+(a-b)=a\left(2006^{101}+1\right)+b\left(2006^{100}-1\right)
$$

is a prime. On the other hand $2006 \equiv-1(\bmod 3)$ [since $2007=2006+1$ is divisible by 3 .] So,

$$
\begin{aligned}
f(2006) & \equiv a\left(2006^{101}+1\right)+b\left(2006^{100}-1\right) \\
& \equiv a\left((-1)^{101}+1\right)+b\left((-1)^{100}-1\right) \\
& \equiv a(-1+1)+b(1-1) \\
& \equiv 0 \quad(\bmod 3) .
\end{aligned}
$$

Thus, 3 divides the prime $f(2006)$, and so this prime should be 3 . But,

$$
f(2006)=a 2006^{101}+b 2006^{100}+c>2006^{101}+2006^{100}+1
$$

[since $a, b, c>0$], and so it cannot be 3 .

Therfore, if $f(2006)$ is prime, then $f(X)$ has no integral root.

