
1) Let G
def
= C4×C8. [As usual, Cn denotes the cyclic group of order n.] Let x and y denote

the generators of C4 and C8 respectively, i.e., C4 = 〈x〉 and C8 = 〈y〉, and let H
def
= 〈(x, y7)〉.

(a) Give the elements of H explicitly.

Solution.

H =
〈
(x, y7)

〉
= {(x, y7)k : k ∈ Z}

= {(1, 1), (x, y7), (x2, y6), (x3, y5), (1, y4), (x, y3), (x2, y2), (x3, y)}.

(b) Describe G/H as a set. [In other words, give its elements.]

Solution. We know that |G| = 4 · 8 = 32 and |H| = 8. Thus, |G/H| = |G| / |H| = 4.
[This makes our lives easier, since we now have only to find three cosets besides H itself.]
Since (x, 1) is not in H, we have that (x, 1)H 6= H. We also have (x2, 1) 6∈ H, (x, 1)H,
so it gives another coset. Finally, since (x3, 1) 6∈ H, (x, 1)H, (x2, 1)H, we have that

G/H = {H, (x, 1)H, (x2, 1)H, (x3, 1)H}.

(c) To what group is G/H isomorphic? [Give a precise description, like S3, Q8, C7, C2 ×
C2, Z, etc.]

Solution. We have that
G/H = 〈(x, 1)H〉 ,

and hence G/H ∼= C4.
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2) Let G = (0,∞)× R act on S
def
= R2 by: given (r, t) ∈ G and (x, y) ∈ S,

f(r,t)(x, y)
def
= (rx, y + t).

(a) Prove that this indeed defines a group action.

Solution.

(i) The identity of (0,∞)× R is (1, 0). Then:

f(1,0)(x, y) = (1 · x, y + 0) = (x, y).

Thus, f(1,0) is the identity function.

(ii) Given (r1, t1), (r2, t2) ∈ (0,∞)× R, we have

f(r1,t1) ◦ f(r2,t2)(x, y) = f(r1,t1)(r2x, y + t2)

= (r1r2x, y + t1 + t2)

= f(r1r2,t1+t2)(x, y)

= f(r1,t1)(r2,t2)(x, y).

(b) Describe the orbits of (−
√

2, π) and (0, 1).

Solution. We have:

O(−
√

2,π) = {f(r,t)(−
√

2, π) : (r, s) ∈ (0,∞)× R}

= {(−r
√

2, π + t) : (r, s) ∈ (0,∞)× R}
= {(x, y) : x < 0}.

Hence, this orbit is the half plane on the left of the y-axis.

Also,

O(0,1) = {f(r,t)(0, 1) : (r, s) ∈ (0,∞)× R}
= {(0, 1 + t) : (r, s) ∈ (0,∞)× R}
= {(0, y) : y ∈ R}.

Hence, this orbit is the y-axis.

[Continues on next page!]

2



(c) Describe the stabilizers of (−
√

2, π) and (0, 1).

Solution. We have:

G(−
√

2,π) = {(r, t) ∈ G : f(r,t)(−
√

2, π) = (−
√

2, π)}

= {(r, t) ∈ G : (−r
√

2, π + t) = (−
√

2, π)}
= {(1, 0)}.

Also,

G(0,1) = {(r, t) ∈ G : f(r,t)(0, 1) = (0, 1)}
= {(r, t) ∈ G : (0, 1 + t) = (0, 1)}
= (0,∞)× {0}.
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3) Let G be a group with normal subgroups of orders 3 and 5. Prove that G has an element
of order 15.
[If you don’t think you can do this, you can try to do it with the assumption that G is
Abelian. It’s easier, but you will only get half of the credit.]

Solution. Let H be the subgroup of order 3 and K be the subgroup of order 5. Since H ∩K
is a subgroup of both H and K, its order dividers both orders, i.e., it divides both 3 and 5.
Hence, |H ∩K| = 1, i.e., H ∩K = {1G}.

For G Abelian: Since their orders are prime, they are both cyclic generated by any non-
identity element. Let x and y be their respective generators.

We claim that xy has order 15: since G is Abelian, we have that (xy)k = xkyk. Then
(xy)15 = x15y15 = 1G. So, the order of xy divides 15. But (xy)3 = x3y3 = y3 6= 1G and
(xy)5 = x5y5 = x2 6= 1G. Hence the order of xy is indeed 15.

For G not Abelian: Now, let us not assume that G is Abelian, but that H, K / G. By
Proposition 2.8.6 from Artin’s text, we have that HK ∼= H × K. [Note that we don’t
necessarily have that HK = G!!] But then, since H ∼= C3 and K ∼= C5 and gcd(3, 5) = 1,
we have that H ×K ∼= C15 and hence it has an element of order 15. Therefore, so does HK
[and hence, since HK ⊆ G, so does G].

[In fact, if you look at the proof given in Proposition 2.8.6, you see that if H, K / G with
H ∩K = {1G}, then for all h ∈ H and k ∈ K, we have hk = kh. (Note that this is not the
same as HK = KH!!!! ) But then, you can also copy the proof for Abelian groups, since
the generators will commute with each other!]
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4) Let G
def
= Z× Z and

H
def
= {(n,−n) : n ∈ Z}.

Prove that H / G and G/H ∼= Z.

Solution. Let φ : Z× Z → Z be defined by φ(n, m) = n + m.

(i) φ is a homomorphism: Let (n1, m1), (n2, m2) ∈ Z× Z. Then,

φ((n1, m1) + (n2, m2)) = φ(n1 + n2, m1 + m2)

= n1 + n2 + m1 + m2

= (n1 + m1) + (n2 + m2)

= φ(n1, m1) + φ(n2, m2).

(ii) ker φ = H: φ(n, m) = 0 iff n + m = 0 iff m = −n iff (n, m) ∈ H. This gives us also
that H / G.

(iii) φ is onto: given n ∈ Z, we have φ(n, 0) = n.

Therefore, by the First Isomorphism Theorem, we have that G/H ∼= Z.
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