1) Let $G \stackrel{\text { def }}{=} C_{4} \times C_{8}$. [As usual, C_{n} denotes the cyclic group of order n.] Let x and y denote the generators of C_{4} and C_{8} respectively, i.e., $C_{4}=\langle x\rangle$ and $C_{8}=\langle y\rangle$, and let $H \stackrel{\text { def }}{=}\left\langle\left(x, y^{7}\right)\right\rangle$.
(a) Give the elements of H explicitly.

Solution.

$$
\begin{aligned}
H & =\left\langle\left(x, y^{7}\right)\right\rangle=\left\{\left(x, y^{7}\right)^{k}: k \in \mathbb{Z}\right\} \\
& =\left\{(1,1),\left(x, y^{7}\right),\left(x^{2}, y^{6}\right),\left(x^{3}, y^{5}\right),\left(1, y^{4}\right),\left(x, y^{3}\right),\left(x^{2}, y^{2}\right),\left(x^{3}, y\right)\right\}
\end{aligned}
$$

(b) Describe G / H as a set. [In other words, give its elements.]

Solution. We know that $|G|=4 \cdot 8=32$ and $|H|=8$. Thus, $|G / H|=|G| /|H|=4$. [This makes our lives easier, since we now have only to find three cosets besides H itself.] Since $(x, 1)$ is not in H, we have that $(x, 1) H \neq H$. We also have $\left(x^{2}, 1\right) \notin H,(x, 1) H$, so it gives another coset. Finally, since $\left(x^{3}, 1\right) \notin H,(x, 1) H,\left(x^{2}, 1\right) H$, we have that

$$
G / H=\left\{H,(x, 1) H,\left(x^{2}, 1\right) H,\left(x^{3}, 1\right) H\right\} .
$$

(c) To what group is G / H isomorphic? [Give a precise description, like $S_{3}, Q_{8}, C_{7}, C_{2} \times$ C_{2}, \mathbb{Z}, etc.]

Solution. We have that

$$
G / H=\langle(x, 1) H\rangle
$$

and hence $G / H \cong C_{4}$.
2) Let $G=(0, \infty) \times \mathbb{R}$ act on $S \stackrel{\text { def }}{=} \mathbb{R}^{2}$ by: given $(r, t) \in G$ and $(x, y) \in S$,

$$
f_{(r, t)}(x, y) \stackrel{\text { def }}{=}(r x, y+t) .
$$

(a) Prove that this indeed defines a group action.

Solution.

(i) The identity of $(0, \infty) \times \mathbb{R}$ is $(1,0)$. Then:

$$
f_{(1,0)}(x, y)=(1 \cdot x, y+0)=(x, y)
$$

Thus, $f_{(1,0)}$ is the identity function.
(ii) Given $\left(r_{1}, t_{1}\right),\left(r_{2}, t_{2}\right) \in(0, \infty) \times \mathbb{R}$, we have

$$
\begin{aligned}
f_{\left(r_{1}, t_{1}\right)} \circ f_{\left(r_{2}, t_{2}\right)}(x, y) & =f_{\left(r_{1}, t_{1}\right)}\left(r_{2} x, y+t_{2}\right) \\
& =\left(r_{1} r_{2} x, y+t_{1}+t_{2}\right) \\
& =f_{\left(r_{1} r_{2}, t_{1}+t_{2}\right)}(x, y) \\
& =f_{\left(r_{1}, t_{1}\right)\left(r_{2}, t_{2}\right)}(x, y) .
\end{aligned}
$$

(b) Describe the orbits of $(-\sqrt{2}, \pi)$ and $(0,1)$.

Solution. We have:

$$
\begin{aligned}
O_{(-\sqrt{2}, \pi)} & =\left\{f_{(r, t)}(-\sqrt{2}, \pi):(r, s) \in(0, \infty) \times \mathbb{R}\right\} \\
& =\{(-r \sqrt{2}, \pi+t):(r, s) \in(0, \infty) \times \mathbb{R}\} \\
& =\{(x, y): x<0\}
\end{aligned}
$$

Hence, this orbit is the half plane on the left of the y-axis.
Also,

$$
\begin{aligned}
O_{(0,1)} & =\left\{f_{(r, t)}(0,1):(r, s) \in(0, \infty) \times \mathbb{R}\right\} \\
& =\{(0,1+t):(r, s) \in(0, \infty) \times \mathbb{R}\} \\
& =\{(0, y): y \in \mathbb{R}\}
\end{aligned}
$$

Hence, this orbit is the y-axis.
(c) Describe the stabilizers of $(-\sqrt{2}, \pi)$ and $(0,1)$.

Solution. We have:

$$
\begin{aligned}
G_{(-\sqrt{2}, \pi)} & =\left\{(r, t) \in G: f_{(r, t)}(-\sqrt{2}, \pi)=(-\sqrt{2}, \pi)\right\} \\
& =\{(r, t) \in G: \quad(-r \sqrt{2}, \pi+t)=(-\sqrt{2}, \pi)\} \\
& =\{(1,0)\} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
G_{(0,1)} & =\left\{(r, t) \in G: f_{(r, t)}(0,1)=(0,1)\right\} \\
& =\{(r, t) \in G:(0,1+t)=(0,1)\} \\
& =(0, \infty) \times\{0\} .
\end{aligned}
$$

3) Let G be a group with normal subgroups of orders 3 and 5 . Prove that G has an element of order 15 .
[If you don't think you can do this, you can try to do it with the assumption that G is Abelian. It's easier, but you will only get half of the credit.]

Solution. Let H be the subgroup of order 3 and K be the subgroup of order 5 . Since $H \cap K$ is a subgroup of both H and K, its order dividers both orders, i.e., it divides both 3 and 5 . Hence, $|H \cap K|=1$, i.e., $H \cap K=\left\{1_{G}\right\}$.

For G Abelian: Since their orders are prime, they are both cyclic generated by any nonidentity element. Let x and y be their respective generators.

We claim that $x y$ has order 15: since G is Abelian, we have that $(x y)^{k}=x^{k} y^{k}$. Then $(x y)^{15}=x^{15} y^{15}=1_{G}$. So, the order of $x y$ divides 15 . But $(x y)^{3}=x^{3} y^{3}=y^{3} \neq 1_{G}$ and $(x y)^{5}=x^{5} y^{5}=x^{2} \neq 1_{G}$. Hence the order of $x y$ is indeed 15 .

For G not Abelian: Now, let us not assume that G is Abelian, but that $H, K \triangleleft G$. By Proposition 2.8.6 from Artin's text, we have that $H K \cong H \times K$. [Note that we don't necessarily have that $H K=G!!]$ But then, since $H \cong C_{3}$ and $K \cong C_{5}$ and $\operatorname{gcd}(3,5)=1$, we have that $H \times K \cong C_{15}$ and hence it has an element of order 15. Therefore, so does $H K$ [and hence, since $H K \subseteq G$, so does G].
[In fact, if you look at the proof given in Proposition 2.8.6, you see that if $H, K \triangleleft G$ with $H \cap K=\left\{1_{G}\right\}$, then for all $h \in H$ and $k \in K$, we have $h k=k h$. (Note that this is not the same as $H K=K H!!!!)$ But then, you can also copy the proof for Abelian groups, since the generators will commute with each other!]
4) Let $G \stackrel{\text { def }}{=} \mathbb{Z} \times \mathbb{Z}$ and

$$
H \stackrel{\text { def }}{=}\{(n,-n): n \in \mathbb{Z}\} .
$$

Prove that $H \triangleleft G$ and $G / H \cong \mathbb{Z}$.
Solution. Let $\phi: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $\phi(n, m)=n+m$.
(i) ϕ is a homomorphism: Let $\left(n_{1}, m_{1}\right),\left(n_{2}, m_{2}\right) \in \mathbb{Z} \times \mathbb{Z}$. Then,

$$
\begin{aligned}
\phi\left(\left(n_{1}, m_{1}\right)+\left(n_{2}, m_{2}\right)\right) & =\phi\left(n_{1}+n_{2}, m_{1}+m_{2}\right) \\
& =n_{1}+n_{2}+m_{1}+m_{2} \\
& =\left(n_{1}+m_{1}\right)+\left(n_{2}+m_{2}\right) \\
& =\phi\left(n_{1}, m_{1}\right)+\phi\left(n_{2}, m_{2}\right) .
\end{aligned}
$$

(ii) $\operatorname{ker} \phi=H: \phi(n, m)=0$ iff $n+m=0$ iff $m=-n$ iff $(n, m) \in H$. This gives us also that $H \triangleleft G$.
(iii) ϕ is onto: given $n \in \mathbb{Z}$, we have $\phi(n, 0)=n$.

Therefore, by the First Isomorphism Theorem, we have that $G / H \cong \mathbb{Z}$.

