1) Let $f_{1}, f_{2} \in S_{4}$ be defined as:

$$
\begin{array}{rlr}
f_{1}: & 1 \mapsto 2 & f_{2}: \\
2 \mapsto 1 & 1 \mapsto 3 \\
2 \mapsto 1 & 2 \mapsto 1 \\
3 & \mapsto 4 & \\
4 \mapsto 2 & & 4 \mapsto 4
\end{array}
$$

(a) Find $f_{2} \circ f_{1}$ and f_{2}^{-1}. [Your answer should be given in the same form as f_{1} and f_{2} are given above.]

Solution.

$$
\begin{array}{rlrl}
f_{2} \circ f_{1}: & 1 \mapsto f_{2}\left(f_{1}(1)\right)=f_{2}(2)=1 & f_{2}^{-1}: 1 \mapsto 2 \\
& 2 \mapsto f_{2}\left(f_{1}(2)\right)=f_{2}(1)=3 & & 2 \mapsto 3 \\
& 3 \mapsto f_{2}\left(f_{1}(3)\right)=f_{2}(4)=4 & 3 \mapsto 1 \\
& 4 \mapsto f_{2}\left(f_{1}(4)\right)=f_{2}(3)=2 & 4 \mapsto 4
\end{array}
$$

(b) Find the 4×4 matrix $M_{f_{2}}$ associated to f_{2}. [You do not need to justify this one.]

Solution.

$$
M_{f_{2}}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(c) Find $\operatorname{sign}\left(f_{2}\right)$.

Solution.

$$
\operatorname{sign}\left(f_{2}\right)=\operatorname{det} M_{f_{2}}=\left|\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|=-1 \cdot\left|\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right|=-1 \cdot(-1)=1
$$

2) Let G be a group and $a \in G$. Prove that the subset

$$
C_{a}(G) \stackrel{\text { def }}{=}\{x \in G: a x=x a\}
$$

is a subgroup of G.
[Note: $C_{a}(G)$ is not the center of G. The center has all elements of G that commute with every other element of G, while $C_{a}(G)$ has all elements of G that commute with a. But, the proof that $C_{a}(G)$ is a subgroup is very similar to the proof the the center is a subgroup, done in class.]

Solution. We should show that $C_{a}(G) \neq \varnothing$, since the empty set is not a subgroup of G. But once can easily see that 1_{G} and a are both in $C_{a}(G)$.

We will do it with the two-step method. [The one step is not as nice in this case.]
(1) Closed under multiplication: Let $x, y \in C_{a}(G)$. [We need to prove that $x \cdot y \in C_{a}(G)$.] We have:

$$
\begin{aligned}
& (x \cdot y) \cdot a=x \cdot y \cdot a=x \cdot a \cdot y \quad\left[y \in C_{a}(G)\right] \\
& =a \cdot x \cdot y=a \cdot(x \cdot y) \quad\left[x \in C_{a}(G)\right] .
\end{aligned}
$$

(2) Inverses: Let $x \in C_{a}(G)$. [We need to show that $x^{-1} \in C_{a}(G)$, i.e., $x^{-1} \cdot a=a \cdot x^{-1}$.] Then:

$$
\begin{aligned}
x \cdot a=a \cdot x & \Rightarrow a=x^{-1} \cdot a \cdot x & & \text { [multiply by } \left.x^{-1} \text { on the left }\right] \\
& \Rightarrow a \cdot x^{-1}=x^{-1} \cdot a & & {\left[\text { multiply by } x^{-1}\right. \text { on the right] }}
\end{aligned}
$$

Note: The subgroup $C_{a}(G)$ is called the centralizer of a in G.
3) Let $\phi: G \rightarrow G^{\prime}$ be an isomorphism and $H \triangleleft G$. Show that $\phi(H) \triangleleft G^{\prime}$.
[Note: Remember that

$$
\phi(H) \stackrel{\text { def }}{=}\{\phi(x): x \in H\} .]
$$

Solution. First we prove that $\phi(H)<G^{\prime}$, using the one-step method: Let $a^{\prime}, b^{\prime} \in \phi(H)$. [We need to show that $a^{\prime} \cdot\left(b^{\prime}\right)^{-1} \in \phi(H)$]. Then, [by definition of $\phi(H)$], there are $a, b \in H$, such that $\phi(a)=a^{\prime}$ and $\phi(b)=b^{\prime}$. Then, $a^{\prime} \cdot\left(b^{\prime}\right)^{-1}=\phi(a) \cdot(\phi(b))^{-1}=\phi(a) \cdot \phi\left(b^{-1}\right)=\phi\left(a \cdot b^{-1}\right)$. Since $a \cdot b^{-1} \in H[$ since $H<G]$, we have that $a^{\prime} \cdot\left(b^{\prime}\right)^{-1} \in \phi(H)$.

We now show that H is normal. Let $g^{\prime} \in G^{\prime}$ and $h^{\prime} \in \phi(H)$. [We need to show that $g^{\prime} \cdot h^{\prime} \cdot\left(g^{\prime}\right)^{-1} \in \phi(H)$, i.e., that there is some $x \in H$ such that $g^{\prime} \cdot h^{\prime} \cdot\left(g^{\prime}\right)^{-1}=\phi(x)$.] Since $h^{\prime} \in \phi(H)$, by definition there is $h \in H$ such that $h^{\prime}=\phi(h)$. Also, since ϕ is an isomorphism, it is onto, and then there is $g \in G$ such that $g^{\prime}=\phi(g)$. Then:

$$
g^{\prime} \cdot h^{\prime} \cdot\left(g^{\prime}\right)^{-1}=\phi(g) \cdot \phi(h) \cdot \phi(g)^{-1}=\phi(g) \cdot \phi(h) \cdot \phi\left(g^{-1}\right)=\phi\left(g \cdot h \cdot g^{-1}\right) .
$$

Since $H \triangleleft G$, and $h \in H$, we have that $g \cdot h \cdot g^{-1} \in H$. Since $g^{\prime} \cdot h^{\prime} \cdot\left(g^{\prime}\right)^{-1}=\phi\left(g \cdot h \cdot g^{-1}\right)$, we have that $g^{\prime} \cdot h^{\prime} \cdot\left(g^{\prime}\right)^{-1} \in \phi(H)$.

Note: We never used the fact that ϕ is one-to-one. Thus, the statement is true for homorphisms that are only onto.
4) Let S be the set of all real numbers except -1 , and define the operation "*" by:

$$
a * b=a+b+a b
$$

Prove that $(S, *)$ is an Abelian group, in which the identity is 0 and the inverse of $a \in S$ is $\tilde{a} \xlongequal{\text { def }}-a /(1+a)$. [I am not using a^{-1} for the inverse a for you not to think that it is $1 / a$. With the operation " $*$ ", the inverse of a is not a^{-1}, is the \tilde{a} above.]
[Note: It might be helpful to prove it is commutative (i.e., Abelian) first. Then, start with the easy parts!]

Solution. (0) Closed under "*": Let $a, b \in S$. Then $a * b \in S$ if it is a real number different from -1 . Since $a, b \in S \subseteq \mathbb{R}$, and sums and products of real numbers are also real numbers, we need to show only that $a * b \neq-1$. But [by contradiction]:

$$
\begin{aligned}
a * b=-1 & \Rightarrow a+b+a \cdot b=-1 \\
& \Rightarrow a+b \cdot(1+a)=-1 \\
& \Rightarrow b(1+a)=-(1+a) \quad \\
& \Rightarrow b=-1 \quad[\text { since } a \neq-1, \text { we can divide by }(1+a)]
\end{aligned}
$$

But, since $b \in S$, we have that $b \neq-1$. [Contradiction!] Thus, if a, b in S, then $a * b \in S$.
(1) Commutative: We have

$$
a * b=a+b+a \cdot b=b+a+b \cdot a=b * a
$$

[since the addition and multiplication of \mathbb{R} are commutative]. So, if S is a group, it is an Abelian group.
(2) Identity: For all a in S,

$$
a * 0=a+0+a \cdot 0=a .
$$

Since it is commutative, we also have $0 * a=a$. Hence 0 is the identity of S.
(3) Associative: Let $a, b, c \in S$. Then

$$
\begin{aligned}
a *(b * c) & =a *(b+c+b c) \\
& =a+(b+c+b c)+a(b+c+b c) \\
& =a+b+c+b c+a b+a c+a b c \\
& =(a+b+a b)+c+(a+b+a b) c \\
& =(a * b)+c+(a * b) c \\
& =(a * b) * c .
\end{aligned}
$$

(4) Inverse: Let $a \in S$. Then, $-a /(1+a)$ is well defined [since $a \neq-1$, the denominator is not zero] and in S [if $-a /(1+a)=-1$, then $a=(1+a)$, which can never happen since $0 \neq 1]$. Moreover,

$$
a *\left(\frac{-a}{1+a}\right)=a+\left(\frac{-a}{1+a}\right)+\frac{-a^{2}}{1+a}=\frac{a+a^{2}-a-a^{2}}{1+a}=0 .
$$

[Note that 0 is the identity of S.] Since S is commutative, we also have $(-a /(1+a)) * a=$ 0 . Thus, $-a /(1+a)$ is the inverse of a in S.

Thus, S is a group.

