1) Let $f_1, f_2 \in S_4$ be defined as:

$$\begin{array}{ccccccc} f_1: & 1 \mapsto 2 & & f_2: & 1 \mapsto 3 \\ & 2 \mapsto 1 & & 2 \mapsto 1 \\ & 3 \mapsto 4 & & 3 \mapsto 2 \\ & 4 \mapsto 3 & & 4 \mapsto 4 \end{array}$$

(a) Find $f_2 \circ f_1$ and f_2^{-1} . [Your answer should be given in the same form as f_1 and f_2 are given above.]

Solution.

$$f_{2} \circ f_{1} : 1 \mapsto f_{2}(f_{1}(1)) = f_{2}(2) = 1 \qquad f_{2}^{-1} : 1 \mapsto 2$$

$$2 \mapsto f_{2}(f_{1}(2)) = f_{2}(1) = 3 \qquad 2 \mapsto 3$$

$$3 \mapsto f_{2}(f_{1}(3)) = f_{2}(4) = 4 \qquad 3 \mapsto 1$$

$$4 \mapsto f_{2}(f_{1}(4)) = f_{2}(3) = 2 \qquad 4 \mapsto 4$$

(b) Find the 4×4 matrix M_{f_2} associated to f_2 . [You do not need to justify this one.]

Solution.

 $M_{f_2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

(c) Find $\operatorname{sign}(f_2)$.

Solution.

$$\operatorname{sign}(f_2) = \det M_{f_2} = \begin{vmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = -1 \cdot \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} = -1 \cdot (-1) = 1.$$

1

2) Let G be a group and $a \in G$. Prove that the subset

$$C_a(G) \stackrel{\text{def}}{=} \{ x \in G : ax = xa \}$$

is a subgroup of G.

[Note: $C_a(G)$ is not the center of G. The center has all elements of G that commute with every other element of G, while $C_a(G)$ has all elements of G that commute with a. But, the proof that $C_a(G)$ is a subgroup is very similar to the proof the the center is a subgroup, done in class.]

Solution. We should show that $C_a(G) \neq \emptyset$, since the empty set is not a subgroup of G. But once can easily see that 1_G and a are both in $C_a(G)$.

We will do it with the *two-step method*. [The one step is not as nice in this case.]

(1) Closed under multiplication: Let $x, y \in C_a(G)$. [We need to prove that $x \cdot y \in C_a(G)$.] We have:

$$(x \cdot y) \cdot a = x \cdot y \cdot a = x \cdot a \cdot y \qquad [y \in C_a(G)]$$
$$= a \cdot x \cdot y = a \cdot (x \cdot y) \qquad [x \in C_a(G)].$$

(2) Inverses: Let $x \in C_a(G)$. [We need to show that $x^{-1} \in C_a(G)$, i.e., $x^{-1} \cdot a = a \cdot x^{-1}$.] Then:

 $\begin{array}{lll} x \cdot a = a \cdot x & \Rightarrow & a = x^{-1} \cdot a \cdot x & \qquad [\text{multiply by } x^{-1} \text{ on the left}] \\ & \Rightarrow & a \cdot x^{-1} = x^{-1} \cdot a & \qquad [\text{multiply by } x^{-1} \text{ on the right}] \end{array}$

Note: The subgroup $C_a(G)$ is called the *centralizer of a in G*.

3) Let $\phi: G \to G'$ be an isomorphism and $H \triangleleft G$. Show that $\phi(H) \triangleleft G'$.

[Note: Remember that

$$\phi(H) \stackrel{\text{def}}{=} \{\phi(x) : x \in H\}.]$$

Solution. First we prove that $\phi(H) < G'$, using the one-step method: Let $a', b' \in \phi(H)$. [We need to show that $a' \cdot (b')^{-1} \in \phi(H)$]. Then, [by definition of $\phi(H)$], there are $a, b \in H$, such that $\phi(a) = a'$ and $\phi(b) = b'$. Then, $a' \cdot (b')^{-1} = \phi(a) \cdot (\phi(b))^{-1} = \phi(a) \cdot \phi(b^{-1}) = \phi(a \cdot b^{-1})$. Since $a \cdot b^{-1} \in H$ [since H < G], we have that $a' \cdot (b')^{-1} \in \phi(H)$.

We now show that H is normal. Let $g' \in G'$ and $h' \in \phi(H)$. [We need to show that $g' \cdot h' \cdot (g')^{-1} \in \phi(H)$, i.e., that there is some $x \in H$ such that $g' \cdot h' \cdot (g')^{-1} = \phi(x)$.] Since $h' \in \phi(H)$, by definition there is $h \in H$ such that $h' = \phi(h)$. Also, since ϕ is an isomorphism, it is onto, and then there is $g \in G$ such that $g' = \phi(g)$. Then:

$$g' \cdot h' \cdot (g')^{-1} = \phi(g) \cdot \phi(h) \cdot \phi(g)^{-1} = \phi(g) \cdot \phi(h) \cdot \phi(g^{-1}) = \phi(g \cdot h \cdot g^{-1}).$$

Since $H \triangleleft G$, and $h \in H$, we have that $g \cdot h \cdot g^{-1} \in H$. Since $g' \cdot h' \cdot (g')^{-1} = \phi(g \cdot h \cdot g^{-1})$, we have that $g' \cdot h' \cdot (g')^{-1} \in \phi(H)$.

Note: We never used the fact that ϕ is one-to-one. Thus, the statement is true for homorphisms that are only onto.

4) Let S be the set of all real numbers except -1, and define the operation "*" by:

$$a * b = a + b + ab.$$

Prove that (S, *) is an *Abelian* group, in which the identity is 0 and the inverse of $a \in S$ is $\tilde{a} \stackrel{\text{def}}{=} -a/(1+a)$. [I am not using a^{-1} for the inverse a for you not to think that it is 1/a. With the operation "*", the inverse of a is not a^{-1} , is the \tilde{a} above.]

[Note: It might be helpful to prove it is commutative (i.e., Abelian) first. Then, start with the easy parts!]

Solution. (0) Closed under "*": Let $a, b \in S$. Then $a * b \in S$ if it is a real number different from -1. Since $a, b \in S \subseteq \mathbb{R}$, and sums and products of real numbers are also real numbers, we need to show only that $a * b \neq -1$. But [by contradiction]:

$$\begin{array}{ll} a*b=-1 & \Rightarrow & a+b+a \cdot b=-1 \\ & \Rightarrow & a+b \cdot (1+a)=-1 \\ & \Rightarrow & b(1+a)=-(1+a) \\ & \Rightarrow & b=-1 \end{array} \qquad [\text{since } a\neq -1, \text{ we can divide by } (1+a)] \end{array}$$

But, since $b \in S$, we have that $b \neq -1$. [Contradiction!] Thus, if a, b in S, then $a * b \in S$.

(1) *Commutative:* We have

$$a * b = a + b + a \cdot b = b + a + b \cdot a = b * a$$

[since the addition and multiplication of \mathbb{R} are commutative]. So, if S is a group, it is an *Abelian* group.

(2) Identity: For all a in S,

$$a * 0 = a + 0 + a \cdot 0 = a$$

Since it is commutative, we also have 0 * a = a. Hence 0 is the identity of S.

(3) Associative: Let $a, b, c \in S$. Then

$$a * (b * c) = a * (b + c + bc)$$

= a + (b + c + bc) + a(b + c + bc)
= a + b + c + bc + ab + ac + abc
= (a + b + ab) + c + (a + b + ab)c
= (a * b) + c + (a * b)c
= (a * b) * c.

(4) Inverse: Let $a \in S$. Then, -a/(1+a) is well defined [since $a \neq -1$, the denominator is not zero] and in S [if -a/(1+a) = -1, then a = (1+a), which can never happen since $0 \neq 1$]. Moreover,

$$a * \left(\frac{-a}{1+a}\right) = a + \left(\frac{-a}{1+a}\right) + \frac{-a^2}{1+a} = \frac{a+a^2-a-a^2}{1+a} = 0.$$

[Note that 0 is the identity of S.] Since S is commutative, we also have (-a/(1+a))*a = 0. Thus, -a/(1+a) is the inverse of a in S.

Thus, S is a group.