
1) Let f1, f2 ∈ S4 be defined as:

f1 : 1 7→ 2
2 7→ 1
3 7→ 4
4 7→ 3

f2 : 1 7→ 3
2 7→ 1
3 7→ 2
4 7→ 4

(a) Find f2 ◦ f1 and f−1
2 . [Your answer should be given in the same form as f1 and f2 are

given above.]

Solution.

f2 ◦ f1 : 1 7→ f2(f1(1)) = f2(2) = 1
2 7→ f2(f1(2)) = f2(1) = 3
3 7→ f2(f1(3)) = f2(4) = 4
4 7→ f2(f1(4)) = f2(3) = 2

f−1
2 : 1 7→ 2

2 7→ 3
3 7→ 1
4 7→ 4

(b) Find the 4× 4 matrix Mf2 associated to f2. [You do not need to justify this one.]

Solution.

Mf2 =


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1



(c) Find sign(f2).

Solution.

sign(f2) = det Mf2 =

∣∣∣∣∣∣∣∣
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

∣∣∣∣∣∣∣∣ = −1 ·

∣∣∣∣∣∣
0 1 0
1 0 0
0 0 1

∣∣∣∣∣∣ = −1 · (−1) = 1.
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2) Let G be a group and a ∈ G. Prove that the subset

Ca(G)
def
= {x ∈ G : ax = xa}

is a subgroup of G.

[Note: Ca(G) is not the center of G. The center has all elements of G that commute with
every other element of G, while Ca(G) has all elements of G that commute with a. But,
the proof that Ca(G) is a subgroup is very similar to the proof the the center is a subgroup,
done in class.]

Solution. We should show that Ca(G) 6= ∅, since the empty set is not a subgroup of G. But
once can easily see that 1G and a are both in Ca(G).

We will do it with the two-step method. [The one step is not as nice in this case.]

(1) Closed under multiplication: Let x, y ∈ Ca(G). [We need to prove that x · y ∈ Ca(G).]
We have:

(x · y) · a = x · y · a = x · a · y [y ∈ Ca(G)]

= a · x · y = a · (x · y) [x ∈ Ca(G)].

(2) Inverses: Let x ∈ Ca(G). [We need to show that x−1 ∈ Ca(G), i.e., x−1 · a = a · x−1.]
Then:

x · a = a · x ⇒ a = x−1 · a · x [multiply by x−1 on the left]

⇒ a · x−1 = x−1 · a [multiply by x−1 on the right]

Note: The subgroup Ca(G) is called the centralizer of a in G.
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3) Let φ : G → G′ be an isomorphism and H / G. Show that φ(H) / G′.

[Note: Remember that

φ(H)
def
= {φ(x) : x ∈ H}.]

Solution. First we prove that φ(H) < G′, using the one-step method : Let a′, b′ ∈ φ(H). [We
need to show that a′ · (b′)−1 ∈ φ(H)]. Then, [by definition of φ(H)], there are a, b ∈ H, such
that φ(a) = a′ and φ(b) = b′. Then, a′ · (b′)−1 = φ(a) · (φ(b))−1 = φ(a) · φ(b−1) = φ(a · b−1).
Since a · b−1 ∈ H [since H < G], we have that a′ · (b′)−1 ∈ φ(H).

We now show that H is normal. Let g′ ∈ G′ and h′ ∈ φ(H). [We need to show that
g′ · h′ · (g′)−1 ∈ φ(H), i.e., that there is some x ∈ H such that g′ · h′ · (g′)−1 = φ(x).] Since
h′ ∈ φ(H), by definition there is h ∈ H such that h′ = φ(h). Also, since φ is an isomorphism,
it is onto, and then there is g ∈ G such that g′ = φ(g). Then:

g′ · h′ · (g′)−1 = φ(g) · φ(h) · φ(g)−1 = φ(g) · φ(h) · φ(g−1) = φ(g · h · g−1).

Since H / G, and h ∈ H, we have that g · h · g−1 ∈ H. Since g′ · h′ · (g′)−1 = φ(g · h · g−1),
we have that g′ · h′ · (g′)−1 ∈ φ(H).

Note: We never used the fact that φ is one-to-one. Thus, the statement is true for homor-
phisms that are only onto.
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4) Let S be the set of all real numbers except −1, and define the operation “∗” by:

a ∗ b = a + b + ab.

Prove that (S, ∗) is an Abelian group, in which the identity is 0 and the inverse of a ∈ S is

ã
def
= −a/(1 + a). [I am not using a−1 for the inverse a for you not to think that it is 1/a.

With the operation “∗”, the inverse of a is not a−1, is the ã above.]

[Note: It might be helpful to prove it is commutative (i.e., Abelian) first. Then, start with
the easy parts!]

Solution. (0) Closed under “∗”: Let a, b ∈ S. Then a∗b ∈ S if it is a real number different
from −1. Since a, b ∈ S ⊆ R, and sums and products of real numbers are also real
numbers, we need to show only that a ∗ b 6= −1. But [by contradiction]:

a ∗ b = −1 ⇒ a + b + a · b = −1

⇒ a + b · (1 + a) = −1

⇒ b(1 + a) = −(1 + a)

⇒ b = −1 [since a 6= −1, we can divide by (1 + a)]

But, since b ∈ S, we have that b 6= −1. [Contradiction!] Thus, if a, b in S, then
a ∗ b ∈ S.

(1) Commutative: We have

a ∗ b = a + b + a · b = b + a + b · a = b ∗ a

[since the addition and multiplication of R are commutative]. So, if S is a group, it is
an Abelian group.

(2) Identity: For all a in S,
a ∗ 0 = a + 0 + a · 0 = a.

Since it is commutative, we also have 0 ∗ a = a. Hence 0 is the identity of S.

(3) Associative: Let a, b, c ∈ S. Then

a ∗ (b ∗ c) = a ∗ (b + c + bc)

= a + (b + c + bc) + a(b + c + bc)

= a + b + c + bc + ab + ac + abc

= (a + b + ab) + c + (a + b + ab)c

= (a ∗ b) + c + (a ∗ b)c

= (a ∗ b) ∗ c.
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(4) Inverse: Let a ∈ S. Then, −a/(1 + a) is well defined [since a 6= −1, the denominator
is not zero] and in S [if −a/(1 + a) = −1, then a = (1 + a), which can never happen
since 0 6= 1]. Moreover,

a ∗
(
−a

1 + a

)
= a +

(
−a

1 + a

)
+

−a2

1 + a
=

a + a2 − a− a2

1 + a
= 0.

[Note that 0 is the identity of S.] Since S is commutative, we also have (−a/(1+a))∗a =
0. Thus, −a/(1 + a) is the inverse of a in S.

Thus, S is a group.
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