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Abstract. In this paper, we extend the method used to compute entropy of 1-dimensional
subshift and the technique by Calkin and Wilf to 2-dimensional case. This allows us to compute
entropies easily for many unknown cases, some of which will be discussed in the last section.

1. Introduction. In symbolic dynamics, we study a collection of sequence of symbols
with a certain restriction. We let A be a finite set of symbols. Each element of A is
called a symbol, or an alphabet, usually denoted by a, b, c, . . . or 0, 1, 2, . . ..

Definition 1-1. The full A-shift, denoted by AZ, is the collection of all bi-infinite
sequences of alphabets from A. If the set of alphabet is understood, we could say the
full shift instead of the full A-shift.

Formally,
AZ =

{
x = (xi)i∈Z|xi ∈ A, ∀i ∈ Z

}
Each sequence x ∈ AZ is called a point. We write x = (xi)i∈Z , where each xi is an

element of A and is indexed through integers.
A block, or word is a finite string(i.e. finite consecutive symbols) of a sequnce in AZ .

A length of a block u is a number of symbols in u. We also call a block with length n
by n-block.

Next, we introduce a notion of a shift space, which is a main object of study in
symbolic dynamics.

Definition 1-2. Let F be a collection of blocks over A. A shift space or subshift X is
a subset of sequences in the full shift which do not contain any blocks in F . We call F
a forbidden blocks and denote a shift space with a forbidden block F by XF .

For a shift space X, we define allowed n-blocks to be a set of all n-blocks appearing
in X. We denote the set by B (n) and its number of elements by Bn. For a subshift
XF , we easily see that B (n) is a collection of all n-blocks which do not contain any
block in F .

We note that different sets of forbidden blocks could give the same subshift. For
example, if we let F1 = {000} and F2 = {0001, 0000}, then we have XF1 = XF2 as a shift
space of {0, 1}Z . We can construct infinitely many numbers of sets of forbidden blocks
by extending a certain forbidden block to blocks of fixed size containing it. However,
we mostly prefer the forbidden set with less elements.

The most important class of shift spaces is a shift of finite type or in short SFT , a
shift space which is determined by a finite numbers of forbidden blocks. Consequently,
we classify shifts of finite types by their element with greatest length.
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Definition 1-3. A shift of finite type is m-step if the longest block of its forbidden set
is of length m+1. From the above discussion, we see that if X is an m-step shift of finite
type, then it is all so k-step for k ≥ m. An m-step shift of finite type XF is completely
determined by m-blocks, that is we can check whether a point x is in XF by considering
if all (m+1)-blocks of x is allowed [1].

Example 1-4. The golden mean shift is a subshift XF in {0, 1}Z where F = {11}. In
other words, it is a collection of all bi-infinite strings of 0,1 containing no consecutive 1’s.
This shift is 1-step and the allowed 3-blocks are 000, 001, 010, 100, 101. In particular,
it is named the golden mean shift, because Bn turns out to be a Fibonacci sequnce and
involves the golden mean.

A 1-step shift has a property that it could be represented by a direct graph. Each
alphabet is represented by a vertice. For the vertices i and j representing alphabets i
and j respectively, there is an edge from i to j if and only if i can be followed by j (i.e.
ij is an allowed block). This makes sense because the only matter for constructing a
point for a 1-step shift is whether which alphabet can follow any particular alphabet.
In this way, a bi-infinite path of a graph represents a point in a shift while a finite path
represents a block. This type of representation is called a vertex shift.

Example 1-5. The golden mean shift can be represented by a graph with 2 vertices.
There will be edges form 0 to 1 and 1 to 0, and also a self loop at 0 as Fig. 1-1. There
is no self loop at 1 since the block 11 is prohibited.

0 1

Figure 1-1. Graph representation of the golden mean shift.

Note that a certain shift space can have several graph representation. There is also
an algorithm to encode a shift of finite type, need not be 1-step, into a graph. There is
also a graph with edges, instead of vertices, representing symbols.

Given a graph, we can find an associated adjacency matrix, which is a matrix indexed
by vertices of a graph. Each entry AI,J is a number of edges from I to J . An adjacency
matrix for the graph in Fig. 1-1 is

A =
(

1 1
1 0

)
An adjacency matrix of a graph representing a subshift leads to a way of calculating

a number of allowed n-block.

Proposition 1-6. Let A be an adjacency matrix of a graph of subshift X. The number
of all paths of length m is

∑
i,j Am. Consequently, as a sequence of vertices represents

an allowed block, Bm+1 =
∑

i,j Am

This connection plays an important role in the study of symbolic dynamics as many
results in matrix theory come to help.
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2. Entropy and Perron-Frobenius theorem. An entropy, or sometimes called com-
plexity, of a shift space is an important quantification showing a growth rate of allowed
blocks over their length. In general, the entropy can be defined for general dynamical
systems, but here we will present a special formulation for symbolic dynamics.

Definition 2-1. For a shift space X, we define the entropy, h (X) to be,

h (X) = lim
n→∞

log Bn

n

To prove the existence of this limit, we begin with a fundamental inequality for a
shift space

Lemma 2-2. Bm+n ≤ BmBn for any m,n ∈ Z+

Proof: Let X be a shift space with a forbidden block F . Consider an allowed (m+n)-
block, it does not contain any forbidden block, so any subblock of it contain none of
forbidden block either. Consequently, its first m symbols and its last n-symbols form
allowed m-block and allowed n-block respectively. Moreover, each allowed (m+n)-block
determines a unique pair of its initial m-subblock and last n-subblock. Therefore, the
inequality holds.

Lemma 2-3. For a sequence (an) of nonnegative real numbers satisfying am+n ≤ am +
an for all m,n ∈ N, then we have lim

n→∞
an

n exists and is equal to inf
n≥1

an

n

Considering a sequence (log Bn) and combining these two lemmas, we verify that
the definition of the entropy is well-defined.

Example 2-4. Let X be a full shift with an alphabet set A of size c. Then Bn = cn,
and h (X) is simply log c.

Example 2-5. Let X be a golden mean shift. Considering allowed words of length
n + 2, we partition these words to two groups; ones starting with 0 and the others
starting with 1. These groups have bijective correspondences with B (n + 1) and B (n)
respectively. Thus, we have a recurrence relation Bn+2 = Bn+1 +Bn, given B1 = 2 and
B2 = 3. This is actually a fibonacci sequence, so we have a formula

Bn =
1√
5

(
αn+2 − βn+2

)
where α = 1+

√
5

2 and β = 1−
√

5
2 . Then,

h (X) = lim
n→∞

log Bn

n
(2-1)

= lim
n→∞

1
n

[
(n + 2) log α + log

1√
5

+ log
(

1− βn+2

αn+2

)]
(2-2)

= log α = log
1 +

√
5

2
(2-3)

This is also a reason why the shift is called a golden mean shift.

Next, we present the Perron-Frobenius theorem which is a fundamental result in
matrix theory, but also playing an important role in computing entropy of a subshift.
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Definition 2-6. A nonnegative matrix A is irreducible if for each pair of indices i, j,
there is an integer n ≥ 0 such that (An)i,j > 0.

Remark. A graph G is irreducible if and only if its adjacency matrix is irreducible.

Theorem 2-7 (Perron-Frobenius Theorem). Let A be a nonnegative irreducible matrix.
Then A has a positive eigenvalue λA with a positive eigenvector vA along with following
properties:

(1) For any eigenvalue λ of A, then |λ| ≤ λA. That is, λA is the largest eigenvalue
of A.

(2) λA is both geometrically and algebraically simple.
(3) Only positive eigenvectors of A positive are scalar multiple of vA.

Corollary 2-8 (Eigenvalue estimate). There are positive constant c0 and d0 such that

c0λ
n
A ≤

∑
i,j

An ≤ d0λ
n
A

Note. This largest eigenvalue of the matrix is called Perron-Frobenius eigenvalue, or
λmax (A) , as well as Perron-Frobenius eigen vector for the associated eigenvector.

Combining with Proposition 1-6, we have a way to easily compute an entropy for a
shift of finite type.

Proposition 2-9. Let X be a shift of finite type with a graph and adjacency matrix A.
Then, h (X) = log λmax (A)

Proof: By the previous corollary, we get

c0 (λmax (A))n ≤
∑
i,j

An = Bn+1 ≤ d0 (λmax (A))n

c
1/n+1
0 (λmax (A))n/n+1 ≤ B

1/n+1
n+1 ≤ d

1/n+1
0 (λmax (A))n/n+1

By taking logarithm and letting n go to infinity, we obtain h (X) = log λmax (A).

We finish the section with an example of computing an entropy of the golden mean
shift by applying Perron-Frobenius theorem.

Example 2-10. In the previous section, we find eigenvalus of the adjacency matrix of
the golden mean shift by solving its characteristic polynomial.

P (x) = det
(

1− λ 1
1 −λ

)
= λ2 − λ− 1

We solve roots of the polynomial to be
{

1+
√

5
2 , 1−

√
5

2

}
, then the Perron-Frobenius eigen-

value is 1+
√

5
2 . Hence, the entropy is log 1+

√
5

2 , cosistent with the preceding example.
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3. 2-dimensional shift space. Instead of a string of symbols, we now consider an
infinite array of symbols. Several notions are defined similarly to those of 1-dimensional
shift space. However, many problems in 2-dimensional shift space are more difficult to
handle.

The full A-shift, denoted by AZ

=
{
x = (xn)n∈Z |xn ∈ A, ∀n ∈ Z

}
For each point x = (xn)n∈Z2 , here we have n indexed through Z2.
The notion of a block is now broader since there is more freedom to choose a subset

of an array. We can define a block, or pattern to be a subset of symbols of a point over
a finite subset of Z2. The examples of patterns are 1

1 1 1 1 and 1 1 0
0 1 1 .

Given a collection of patterns F , we define a shift space, or subshift XF to be a set

of points in AZ2
which does not contain any pattern in F . Similar to 1-dimensional

shift space, F is called a forbidden pattern and XF is a shift of finite type if F is finite.
We also define an allowed pattern to be a pattern which contains no pattern in F .

Example 3-1. Let XF be a subshift with alphabets {0, 1} and F = {, 1
1 }. This

shift is named 2-dimensional golden mean shift, as an analogue of 1-dimensional golden
mean shift in the sense that no two consecutive 1’s can occur. Despite simplicity, little
information of this subshift is known.

In 2-dimensional shift space, we define an (m×n)-block to be a pattern of symbols
on a rectangle consisting of n consecutive rows and m consecutive columns of symbols.

For instance, a block
1 0 1 0
1 1 1 1
0 0 0 0

is a (4×3)-block and a block
1 1
1 0
1 0
1 0

is an allowed (2×4)-block

in XF where F = { 1
1 1 }. We also call an (m×n)-block has width m and height n. In

addition, we may generalize a notion of width and height for any pattern by defining
to be width and height of the smallest rectangle which can cover that pattern (e.g.

1
1 1 1 1
1 1 1 1

has width 5 and height 3). For a given subshift, we denote B (m,n) to be a set
of allowed (m×n)-block and Bm,n to be its cardinality.

The entropy for a subshift is now a growth rate of a number of allowed patterns on
a rectangle, then the formula of the entropy shall be

h (X) = lim
m,n→∞

log Bm,n

mn

Many people also define an entropy to be a growth rate over a square, that is

h (X) = lim sup
n→∞

log Bn,n

n2

Though the latter formula guarantees the existence of the limit since Bn,n is bounded
above by |A|n

2

, these definitions agree in most cases. For convenince, we define a hard
entropy, η as an exponential of an entropy, that is

η (X) = lim
m,n→∞

B1/mn
m,n

In contrast to 1-dimensional shift, there is no method to compute an entropy of a
shift of finite type in general. Only entropies of a few special classes of subshifts are
known explicitly.
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4. Transfer matrix method. The transfer matrix method was first invented by Engel
to approximate the entropy of 2-dimensional golden mean shift, this constant is also
known as the hard square entropy as relating to the hard square model in physics.
Later on, it was improved by Calkin and Wilf for better numerical result. See [4] for
more historical remarks of the constant. We now generalize the method to more classes
of SFTs.

Definition 4-1. An (horizontal) n-strip of 2-dimensional subshift XF is a 1-dimensional
subshift with an alphabet set B (1, n), constrained by patterns in F with height no more
than n. This is clearly a shift of finite type since its forbidden set is a subset of F .
Pictorially, this is a 2-dimensional subshift restricted to an infinite strip of finite height,
n.

In this paper, it is concured that the n-strip is horizontal. Although, in general, we
can define the strip to be vertical as well.

Example 4-2. A 1-strip of the 2-dimensional golden mean shift is a 1-dimensional
golden mean shift.

Definition 4-3. A transfer matrix of an n-strip Tn, is a square matrix indexed by the
set B (1, n) defined as following

(Tn)I,J =

{
1 if I can be followed on the right by J,

0 otherwise.

In other words, (Tn)I,J = 1 when IJ is an allowed 2× n word.

Example 4-4. Let X be a golden mean shift. Consider elements of B (1, 3)), which
are

0
0
0
,

0
0
1
,

0
1
0
,

1
0
0
,

1
0
1
, then we get T3 with rows and columns indexed by this order

T3 =


1 1 1 1 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0
1 0 1 0 0


Again, we can freely choose the direction for transfer matrix(e.g. right-to-left, down-

to-top for n× 1-word. In this paper, we will keep the direction from left to right along
with a choice of horizontal n-strip. Moreover, if a set of forbidden patterns has a certain
symmetric property, then the transfer matrix will be the same for any chosen direction.
Next, we present the result by directly applying a technique by Calkin and Wilf.

Proposition 4-5. Let XF be a 2-dimensional SFT and Tn be its transfer matrix. Let
λn be the Perron-Frobenius eigenvalue of Tn and η be a hard entropy of XF . If these
conditions hold:

(1) The width of each forbidden pattern is not greater than 2
(2) Tn is symmetric for every n
(3) Bm,n = Bn,m for every m,n ∈ N
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, then we have (
λp+2q

λ2q

)1/p

≤ η for any p, q ∈ Z0

Moreover, λn is an entropy of the n-strip.

Definition 4-6. The circular transfer matrix Cn is the transfer matrix but indexed by
only a bolcks of which initial and terminal alphabets are the same.

Example 4-7. For the matrix C4 of the golden mean shift. It is indexed by
0
0
0
0

,
0
0
1
0

,
0
1
0
0

,
1
0
0
1

,
so

C4 =


1 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


We use this inequality to approximate entropies of some SFTs in the last sec-

tion.

5. Power transfer matrix. In this section, we introduce generalized notion of trans-
fer matrix for subshifts which are not 1-step.

Definition 5-1. We define the m-th transfer matrix of n-strip to be Tm,n with dimen-
sion B1,n ×B1,n indexed by each 1× n allowed pattern such that

(Tm,n)i,j = number of (m + 1)× n-words strating with i ending with j

Note that ∑
i,j

(Tm,n)i,j = Bm+1,n

and if an n-strip is 1-step, then Tm,n = Tm
1,n

Lemma 5-2. Tm,nTk,n ≥ Tm+k,n for any m,n, k positive integers.

Proof: Each entry of Tm+k,n is the number of ((m+k+1)×n)-words strating with i
ending with j which is constructed by merging (m+1)×n-words and (k+1)×n-words.
Thus this number is less than or equal to merging arbitrary (m+1)×n-words and
(k+1)×n-words.

Consequently, we have T k
m,n ≥ Tkm,n by repeatedly applying the lemma.

Next, we find a similar relation between largest eigenvalues of transfer matrices.
Denote λm,n = λmax (Tm,n)

Lemma 5-3. λ
1/m
m,n ≥ λ

1/km
km,n for any m,n, k positive integers.

Proof: We see that each transfer matrix is irreducible because we are considering a
subshift of finite type. Since T k

m,n ≥ Tkm,n, then we apply Theorem 4.4.7 from [5] and
that λmax

(
T k

m,n

)
= λmax (Tm,n)k. Thus λk

m,n ≥ λkm,n and the result follows by taking
km-th root.

Let ηn be the hard entropy of an n-strip
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Theorem 5-4. For each m,n positive integer,

λ
1/m
m,n

Am0n/m
≤ ηn ≤ λ1/m

m,n

moreover, λm,n→ηnas m →∞.

Proof: By Perron-Frobenius eigenvalue dominating principle, we have

cm,nλk
m,n ≤

∑
i,j

(
T k

m,n

)
i,j
≤ dm,nλk

m,n

for some positive constant cm,n and dm, n. Then, we get

Bkm+1,n =
∑
i,j

(Tkm,n)i,j ≤
∑
i,j

(
T k

m,n

)
i,j
≤ dm,nλk

m,n

B
1

km+1
km+1,n ≤ d

1
km+1
m,n λ

1
m+ 1

k
m,n

By letting k go to infinity, we have

ηn ≤ λ1/m
m,n

For the other direction, we observe that for each word counted by T k
m,n , the forbidden

word could appear only in the merging region. Since this is a subshift of finite type, we
can assume the merging region has a constant width, say m0.Then for each ((km+1)×n)-
word, we replace all Akm0×n blocks in the merging region. Hence

Akm0×nBkm+1,n = Akm0×n
∑
i,j

(Tkm,n)i,j ≥
∑
i,j

(
T k

m,n

)
i,j
≥ cm,nλk

m,n

A
nm0
m+ 1

k B
1

km+1
km+1,n ≥ c

1
km+1
m,n λ

1
m+ 1

k
m,n

The result follows in a similar way.
We now establish a connection between the entropy of n-strip and the entropy of the
subshift.

Theorem 5-5. Let η be the hard entropy of the subshift, then for any positive integer
n,

η
1/n
n

Am0/n
≤ η ≤ η1/n

n

Proof: By lemma 2-2, we have

Bm,nk ≤ Bk
m,n

B
1/m
m,nk ≤

(
B1/m

m,n

)k

By letting m go to infinity, we get
ηnk ≤ ηk

n
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η
1/nk
nk ≤ η1/n

n

By letting k go to infinity, we obtain

η ≤ η1/n
n

When we concatenate k blocks, the forbidden block could occur in the concatenating re-
gion. Then, for each good (m×nk)-block, we construct new (m×nk)-blocks by replacing
each symbol in the concatenating region by any alphabet. A number of (m×nk)-blocks
constructed by concatenating k good (m×n)-blocks must be less than a number of these
new blocks, that is

Bk
m,n ≤ Akm0×mBm,nk

(
B1/m

m,n

)k

≤ Akm0B
1/m
m,nk

η1/n
n ≤ Am0/nηnk1/nk

By letting k go to infinity, we obtain

η1/n
n ≤ Am0/nη

6. Applications of the Main Theorem: entropy of 2-dimensional SFT. In this
section, we provide an example of computing entropies of some shifts of finite type. Here
let the alphabet set A = {, }

Example 6-1. XF where F = { 1 1
1 1 }

We first observe that XF is 1-step. Moreover, by symmetry of the block 1 1
1 1 , we

have that Bm,n = Bn,m for all m,n ∈ Z+ and the transfer matrix Tn is symmetric for
all n ∈ Z+. Therefore we can apply the tecnique by Calkin and Wilf [2]. We find the
transfer matrices:

T2 =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0
1 1 1 0 1 1 0 0
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T4 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0
1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0
1 1 1 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0
1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0



And we also find the circular transfer matrix

C4 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0
1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0
1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0
1 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0



We find that λ2 = 7.27938, λ4 = 26.692 and ξ4 = 13.4759. Hence, the hard entropy is
approximately computed

1.91489 =
(

λ4

λ2

)1/2

≤ η ≤ ξ
1/4
4 = 1.91597

Example 6-2. XF where F = { 1 1
1 1 , 0 0

0 0 }

10



Similar to the first example, we find transfer matrices and circular transfer matrices

T2 =



0 0 1 1 0 1 1 1
0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0
0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0
1 1 1 0 1 1 0 0



T4 =



0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0
0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1
0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0
1 1 1 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1
0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0
1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0
0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0



C4 =



0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1
0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1
0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0
0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 0 1 1 1 1 1 1 0 0
1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0
0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1
0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0
0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0
1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0
1 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0


So we evaluate λ2 = 6.41883, λ4 = 20.8024, and ξ4 = 10.6299. Thus

1.800233 =
(

λ4

λ2

)1/2

≤ η ≤ ξ
1/4
4 = 1.805645
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Accordingly, this subshift has noticeably less entropy than the previous one as this
subshift forbids more patterns.
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