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Abstract

This paper will explore the di↵erent scenarios concerning the expansion of the universe
within a Robertson-Walker metric. The goal will be to establish under what conditions the
Big Bang occurred as well as the situations in which a singularity does not occur. This
is done by first establishing some initial assumptions; then the Einstein field equations
will be reduced to three simplified equations called the Friedmann equations. Using these
equations, di↵erent scenarios are examined in order to establish in what conditions the
expansion of the universe compresses to a point and which of these are plausible under
current knowledge.
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Chapter 1

Introduction

The event known as the Big Bang started getting serious consideration when people realized
that the universe is not stagnant as once thought. Since then, there has been a great deal
of work done in cosmology to show the situations in which this event occurs. This paper
is an attempt to summarize the methods and results used in the model of a homogeneous
and isotropic universe. Two books will be used to aid in this endeavor: General Relativity
by Robert M. Wald and The Large Scale Structure Of Space-Time by S. W. Hawking and
G. F. R. Ellis.

In Wald’s book, he works out an almost identical set-up to the situation that will be used
in this paper; as a result, many of his methods will be used. As a complement, The Large
Scale Structure Of Space-Time by Hawking and Ellis does address the wanted results, but
being highly technical, many of the steps still need to be worked out. So in addition to the
original purpose of the paper, a natural secondary goal will be to unite Wald’s work with
Hawking and Ellis’ findings.

Like every work that relays insights into a well established topic, the information that
will be discussed is based upon the knowledge of the current time. With this understand-
ing, the paper will be sectioned in three progressive parts: the Einstein field equations, the
resulting metric, and finally, the possible scenarios dealing with the past and future size of
the universe.

1.1 Einstein Field Equations

The Einstein field equations will be discussed first for one simple reason: of the information
that will be used, the field equations can be stated with the most confidence. They create
an equality between the curvature of timespace and the stress energy tensor, which, in sim-
plified terms, is the way in which mass e↵ects space. More importantly, these equations are
used for a basis of our understanding for current cosmology.

The Einstein field equation, with the gravitational constant ⇤, will be represented by
the following (using geometrized units):

R

µ⌫

� 1

2
Rg

µ⌫

+ ⇤g
µ⌫

= 8⇡T
µ⌫

(1.1)
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(Einstein, 1915)

The metric tensor (g
µ⌫

), which will be the focus of chapter 2, is used to describe the layout
of the universe. It is used to describe notions of distance, present time, and the concept of
straight. In addition, many of the other terms are dependent on this metric. These include
the Ricci tensor (R

µ⌫

) and the scalar curvature (R).

The Ricci tensor is best described as a measurement of the curvature of space. It com-
pares the metric being used to a Euclidean (non-curved) space. The scalar curvature, by
definition, is the trace of the Ricci curvature. Since both of these depend on the established
metric, discussion of these terms will be postponed until chapter 2.

The stress-energy tensor (T
µ⌫

), on the other hand, is completely independent of the need
for a metric, which leads to the next section.

1.2 Stress-energy Tensor

In order to obtain a managable formula, the same reasoning as Wald will be used. “On the
cosmic scales with which we are dealing, each of the galaxies can be idealized as a ‘grain
of dust’ ”(Wald, 1984). Under the assumption that the grand scale of the universe is not
greatly di↵erent than the part we can observe, it eventually follows that the best evaluation
of the stress-energy tensor is the form of a perfect fluid. This leads to the equation

T

µ⌫

= ⇢u

µ

u

⌫

+ P (g
µ⌫

+ u

µ

u

⌫

) (1.2)

(Wald, 1984)
where ⇢ is the average mass density, P is the pressure, and u

i

is a unit vector oriented along
the time axis (t).
The average mass density is just what the name implies: it is a an average of how much
mass (or energy) is contained within a unit of space over the entire universe. Pressure is a
measurement of the small scale movement of mass in space. Since the amount of pressure
is dependent directly upon how much mass there is, there is a relationship between P and
⇢. This relationship will be presented in one of two ways: the case of dust and the case of
radiation (Wald, 1984).

It should also be mentioned that mass density of the universe is a function of time since
the size of the universe has a potential to change over time. Instead of notating the terms
P (t) and ⇢(t), the t will be dropped for simplification and, eventually, conformity.

1.3 ⇤: The Cosmological Constant

Einstein originally proposed the field equations without a cosmological constant. Near the
end of his life he included the term ⇤g

µ⌫

in the equation in order to explain new cosmolog-
ical data. Since then “⇤ has been reintroduced on numerous occasions when discrepancies
have arisen between theory and observations, only to be abandoned again when these dis-
crepancies have been resolved” (Wald, 1984). Due to recent observations the cosmological

2



constant has once again been reintroduced (Riess et al., 1998; Perlmutter et al., 1999), so
the methods used by Wald will be reworked with the cosmological constant included.
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Chapter 2

Robertson-Walker metric

As stated in the last chapter, both R and R

µ⌫

are dependent on the established metric. So,
in order to obtain further values, assumptions must be addressed.

In this chapter we will assume that the universe is homogeneous and isotropic. The first
assumption means that there are no distinguished points in space. The second means that
there are no preferred directions either.

The geometric consequence of these hypotheses is that the spacetime is forced to have
a particular metric. This is the Robertson-Walker metric. In spherical coordinates ( ,⇥,
and �) and Cartesian coordinates (x,y,z), we can describe the Robertson-Walker metric
with the following equations:

ds

2 = �dt

2 + a

2(t)

8
><

>:

d 2 + sin

2 (d⇥2 + sin

2⇥d�2) spherical

dx

2 + dy

2 + dz

2
flat

d 2 + sinh

2 (d⇥2 + sin

2⇥d�2) hyperbolic

(Wald, 1984)
where t is a variable notating time, and a(t) is a function of t whose behavior portrays the
expansion/contraction of the universe. This function, a(t), will be the main focus of this
chapter and the next since it dictates whether or not the universe has been, or ever will
achieve, a singularity (a(t) = 0). To do this, there is a need to find the simplest equations
that depend on a(t). So, the rest of the terms used in the Einstein field equations must be
evaluated.

2.1 g
µ⌫

: The Metric Tensor

The first of the terms needing to be evaluated from the last chapter is the metric tensor,
g

µ⌫

, which comes directly form the equations above. Noting that ds

2 = g = ⌃g
µ⌫

dx

µ

dx

⌫ ,
then

g

µ⌫

=

(
0 µ 6= ⌫

⇠

x

µ = ⌫ = x

(2.1)
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where ds2 = ⌃⇠
x

dx

2. (For example, in the hyperbolic geometry g  = a(t)2sinh2( )sin2(⇥)).

These values are essential to evaluating the rest of the needed terms, but before going
on, there is a need to establish the Christo↵el Symbols (�a

bc

) (see appendix). These will be
needed to obtain the Ricci curvature tensor.

2.2 R
µ⌫

: The Ricci Curvature Tensor

Using Christo↵el Symbols, the Ricci curvature tensor can be evaluated with the following:

R

µ⌫

= ⌃
c

R

c

µc⌫

= ⌃
c


@

@c

�c
µ⌫

� @

@µ

�c
c⌫

+ ⌃
�

(��
µ⌫

�c
�c

� ��
c⌫

�c
�µ

)

�

For the sake of e�ciency, a few points will be made (which can all be verified by the equation
above):

• for all geometries, if µ 6= ⌫ then R

µ⌫

= 0

• if µ 6= t then g

µµ

R

µµ

= g

xx

R

xx

= a

�2(t)R
xx

Since the Christo↵el symbols are not the same in every geometry, three subsections will
be needed to verify the general equations found at the end of the section.

2.2.1 Flat Geometry

Referring to Appendix A, the non-vanishing Christo↵el symbols of the flat geometry are
only the following:

�x
tx

= �x
xt

= �y
ty

= �y
yt

= �z
tz

= �z
zt

= 1
a(t)

da(t)
dt

�t
xx

= �t
yy

= �t
zz

= a(t)da(t)
dt

This leads to:

R

tt

= ⌃
⇥
@

@c

�c
tt

� @

@t

�c
ct

+ ⌃(��
tt

�c
�c

� ��
ct

�c
�t

)
⇤
= @

@c

0� 3 @

@t

�x
xt

+ 0�c
�c

� 3�x
xt

�x
xt

= �3 @

@t

1
a(t)

da(t)
dt

� 3( 1
a(t)

da(t)
dt

)2 = 3( 1
a

2(t)(
da(t)
dt

)2 � 1
a(t)

d

2
a(t)
dt

2 � 3( 1
a(t)(

da(t)
dt

))2

= �3 1
a(t)

d

2
a(t)
dt

2

R

xx

= ⌃
⇥
@

@c

�c
xx

� @

@x

�c
cx

+ ⌃(��
xx

�c
�c

� ��
cx

�c
�x

)
⇤
= @

@t

�t
xx

� @

@x

0 + 3�t
xx

�x
tx

� 2�t
xx

�x
tx

= @

@t

a(t)da(t)
dt

+ 1
a(t)

da(t)
dt

a(t)da(t)
dt

= (da(t)
dt

)2 + a(t)d
2
a(t)
dt

2 + (da(t)
dt

)2

= 2(da(t)
dt

)2 + a(t)d
2
a(t)
dt

2
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2.2.2 Spherical Geometry

To keep consistent with Appendix A, from this point on, the variables x, y, z will be used
instead of the variables  ,⇥,� (respectively).

Referring to Appendix A, the non-vanishing Christo↵el symbols of the spherical metric
are only the following:

�x
tx

= �x
xt

= �y
ty

= �y
yt

= �z
tz

= �z
zt

= 1
a(t)

da(t)
dt

�y
yx

= �y
xy

= �z
zx

= �z
xz

= cos(x)
sin(x) ,�

z

zy

= �z
yz

= cos(y)
sin(y)

�t
xx

= a(t)da(t)
dt

, �t
yy

= a(t)sin2(x)da(t)
dt

, �t
zz

= a(t)sin(
x)sin2(y)da(t)

dt

�x
yy

= �sin(x)cos(x), �x
zz

= �sin(x)cos(x)sin2(y), �y
zz

= �sin(y)cos(y)

This leads to:

R

tt

= ⌃
⇥
@

@c

�c
tt

� @

@t

�c
ct

+ ⌃(��
tt

�c
�c

� ��
ct

�c
�t

)
⇤
= @

@c

0� 3 @

@t

�x
xt

+ 0�c
�c

� 3�x
xt

�x
xt

= �3 @

@t

1
a(t)

da(t)
dt

� 3( 1
a(t)

da(t)
dt

)2 = 3( 1
a

2(t)(
da(t)
dt

)2 � 1
a(t)

d

2
a(t)
dt

2 )� 3( 1
a(t)

da(t)
dt

)2

= �3 1
a(t)

d

2
a(t)
dt

2

R

xx

= ⌃
⇥
@

@c

�c
xx

� @

@x

�c
cx

+ ⌃(��
xx

�c
�c

� ��
cx

�c
�x

)
⇤

= @

@t

�t
xx

� 2 @

@x

�y
yx

+ 3�t
xx

�x
tx

� 2�x
tx

�t
xx

� 2�y
yx

�y
yx

= @

@t

a(t)da(t)
dt

� 2 @

@x

cos(x)
sin(x) + (da(t)

dt

)2 � 2( cos(x)
sin(x))

2 =

= 2(da(t)
dt

)2 + a(t)d
2
a(t)
dt

2 + 2 1
sin

2(x) � 2( cos(x)
sin(x))

2

= 2(da(t)
dt

)2 + a(t)d
2
a(t)
dt

2 + 2

2.2.3 Hyperbolic Geometry

Referring to Appendix A, the non-vanishing Christo↵el symbols of the hyperbolic metric
are only the following:

�x
tx

= �x
xt

= �y
ty

= �y
yt

= �z
tz

= �z
zt

= 1
a(t)

da(t)
dt

�y
yx

= �y
xy

= �z
zx

= �z
xz

= cosh(x)
sinh(x) ,�

z

zy

= �z
yz

= cos(y)
sin(y)

�t
xx

= a(t)da(t)
dt

, �t
yy

= a(t)sinh2(x)da(t)
dt

, �t
zz

= a(t)sinh2(x)sin2(y)da(t)
dt

�x
yy

= �sinh(x)cosh(x), �x
zz

= �sinh(x)cosh(x)sin2(y), �y
zz

= �sin(y)cos(y)

This leads to:

R

tt

= ⌃
⇥
@

@c

�c
tt

� @

@t

�c
ct

+ ⌃(��
tt

�c
�c

� ��
ct

�c
�t

)
⇤
= @

@c

0� 3 @

@t

�x
xt

+ 0�c
�c

� 3�x
xt

�x
xt

= �3 @

@t

1
a(t)

da(t)
dt

� 3( 1
a(t)

da(t)
dt

)2 = 3( 1
a

2(t)(
da(t)
dt

)2 � 1
a(t)

d

2
a(t)
dt

2 )� 3( 1
a(t)(

da(t)
dt

))2

= �3 1
a(t)(

d

2
a(t)
dt

2 )
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R

xx

= ⌃
⇥
@

@c

�c
xx

� @

@x

�c
cx

+ ⌃(��
xx

�c
�c

� ��
cx

�c
�x

)
⇤

= @

@t

�t
xx

� 2 @

@x

�y
yx

+ 3�t
xx

�x
tx

� 2�x
tx

�t
xx

� 2�y
yx

�y
yx

= @

@t

a(t)da(t)
dt

� 2 @

@x

cosh(x)
sinh(x) + (da(t)

dt

)2 � 2( cosh(x)
sinh(x))

2 =

= 2(da(t)
dt

)2 + a(t)d
2
a(t)
dt

2 � 2( sinh
2(x)

sinh

2(x))

= 2(da(t)
dt

)2 + a(t)d
2
a(t)
dt

2 � 2

2.2.4 General Formulas

As seen from all of the previous work, the solutions for R
µ⌫

can be reduced to two equations.

For the sake of clarity, the following variables will be used: a = a(t), ȧ = da(t)
dt

, ä = d

2
a(t)
dt

2 .

R

tt

= �3

a

ä (2.2)

a

�2
R

xx

= 2(
ȧ

a

)2 +
ä

a

+
2k

a

2
(2.3)

where k = 1, 0,�1 for spherical, flat, and hyperbolic geometries respectively.

2.3 R and Simplification of the Field Equations

As stated previously, the scalar curvature of the metric is defined to be the trace of the
Ricci curvature. So it is easy to see that R = trace(Ricci) = ⌃giiR

ii

= g

tt

R

tt

+ 3gxxR
xx

,
and using the evaluations from the last section

R = g

tt

R

tt

+ 3gxxR
xx

= �1[� 3
a

ä] + 3 1
a

2 [2ȧ2 + aä+ 2k] = 3 ä

a

+ 6( ȧ
a

)2 + 3 ä

a

+ 6 k

a

2

= 6( ä
a

+ ( ȧ
a

)2 + k

a

2 )

Noting that u
t

is a unit vector that is time oriented, it follows that u
t

u

t

= 1. Alternatively,
u

x

is a vector tangent to a spacelike slice (which means it has no time component) projected
onto a time oriented vector; so u

x

u

x

= 0. Using equations (1.1), (1.2), (2.1), (2.2), (2.3),
and the previous ‘R’, the field equations can be simplified to the following:

3(( ȧ
a

)2 + k

a

2 )� ⇤ = [� 3
a

ä]� 1
2 [6(

ä

a

+ ( ȧ
a

)2 + k

a

2 )][�1] + ⇤[�1] = 8⇡[⇢u
t

u

t

+ P (�1 + u

t

u

t

)]
= 8⇡[⇢(1) + P (�1 + 1) = 8⇡⇢

�( ȧ
a

)2 � 2 ä

a

� k

a

2 + ⇤ = [2( ȧ
a

)2 + ä

a

+ 2k
a

2 ]� 1
2 [6(

ä

a

+ ( ȧ
a

)2 + k

a

2 )][1] + ⇤[1]
= 8⇡[⇢u

x

u

x

+ P (a�2
g

xx

+ u

x

u

x

)] = 8⇡[⇢(0) + P (1 + 0)] = 8⇡P
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2.4 Friedmann Equations

Finally, in order to make future work a little easier, we will derive what are known as the
Friedmann equations named after Alexander Friedmann. Using his equations, Friedmann
was actually the first to derive the Robertson-Walker metric; the full name of which is the
Friedmann-Lematre-Robertson-Walker metric. Unfortunately, not many took notice of his
work until it was reproduced independently after his death in 1925.

These three equations are the most condensed solution of the function a when consider-
ing unknown geometries, cosmological constants, and relationships between pressure and
mass density within the Robertson-Walker metric. With the equations that have already
been derived above, the simplifications occur by solving for a form of ȧ then, through sub-
stitution, solving for a form of ä.

3([⇤� k

a

2 � 8⇡P � 2 ä

a

] + k

a

2 )� ⇤ = 8⇡⇢ ) 3 ä

a

= ⇤� 4⇡(⇢+ 3P )

�( ȧ
a

)2 � 2[13(⇤� 4⇡(⇢+ 3P ))]� k

a

2 + ⇤ = 8⇡P ) 3( ȧ
a

)2 = ⇤+ 8⇡⇢� 3k
a

2

It then follows, by di↵erentiating and substitution, that:

� ȧ

a

24⇡(⇢+ P ) + 6ȧk
a

3 = 2( ȧ
a

([⇤� 4⇡(⇢+ 3P )]� [⇤+ 8⇡⇢� 3k
a

2 ]) = (3(2 ȧ

a

aä�ȧ

2

a

2 )

= d

dt

(3( ȧ
a

)2) = d

dt

(⇤+ 8⇡⇢� 3k
a

2 ) = 8⇡⇢̇+ 6ȧk
a

3

So, in summary, the Friedmann Equations are:

3
ä

a

= ⇤� 4⇡(⇢+ 3P ) (2.4)

3(
ȧ

a

)2 = ⇤+ 8⇡⇢� 3k

a

2
(2.5)

⇢̇ = �3
ȧ

a

(⇢+ P ) (2.6)

and will be used as a starting point while solving for a in the next chapter.
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Chapter 3

Values of ⇤

Notice that within the Friedmann equations from the end of last chapter, there are 4
variables:

• ⇢ (average mass density)

• P (pressure)

• k (type of geometry)

• ⇤ (cosmological constant)

It is clear that if these are not restricted, it would be absurd to try to find a solution for a.

Fortunately, P depends on ⇢ in one of two ways: dust or radiation (Wald, 1984). When un-
derstanding these, it should be noted that mass is vary rare in the cosmos, so the situation
in which mass collides is very unusual and may be dismissed for large scale analysis. Dust
is the situation in which mass is stable and interacts gravitationally, or P = 0. Radiation,
on the other hand, is the situation in which mass has random movement; this causes there
to be an outward force (pressure) which combines with the influence of gravity. This can
be explained with the notation P = 1

3⇢. Since these are the only two cases that will be
considered, it is reasonable to use them to separate the chapter. Additionally, when intro-
ducing each of these sections, it will be explained more throughly how mass (and therefore
pressure) can be further refined to a constant c0.

k was introduced in section 2.2.4 where it was defined to reference the three di↵erent
geometries: spherical, flat, and hyperbolic. These are represented as k = 1, 0, or �1 respec-
tively. Thus, the paper will need to be divided further using these values to grant a finer
restriction on a.

As for the cosmological constant, ⇤, this (like the soon to be introduced c

0) is not a discrete
variable, and therefore, does not have a finite amount of values to choose from. This issue
can be avoided by analyzing what is needed from the Friedmann Equations: the sign. Re-
membering that the main goal of the text is to find when a = 0, we can use basic calculus to
find the needed information by looking at the sign of ȧ and ä. With this understanding, the
constant ⇤ (and for the most part c0) has three di↵erent scenarios: positive, 0, and negative.

9



Finally, it should be noted that it is safe to claim that a > 0. The reasoning comes from
the understanding that a is continuous, and at the current time, t0, a(t0) 6= 0. Supposing at
some point a = 0, then this is a singularity of space and thus is no longer being considered
‘the universe’. With this in mind, a will be restricted to the domain t 2 (t

m

, t

M

) where
t

m

= max{x : x < t0 and a(x) = 0,�1} and t

M

= min{x : x > t0 and a(x) = 0,1}. So
for all t 2 (t

m

, t

M

), a(t)a(t0) > 0 ) a(t) = |a(t)|.

3.1 Dust P = 0

Using equation (2.6) and integration, if P = 0 then

⇢̇

⇢

= �3
ȧ

a

) ⇢ =
c

0

a

3

where c

0 is a constant that is introduced during integration. Since a > 0 then sign(c0) =
sign(⇢).

With this, we can revise the Friedmann Equations to the following:

3
ä

a

= ⇤� 4⇡
c

0

a

3
(3.1)

3(
ȧ

a

)2 = ⇤+ 8⇡
c

0

a

3
� 3k

a

2
(3.2)

3.1.1 ⇤ < 0

Claim: In the dust case, if ⇤ < 0, then as long as the universe is not hyperbolic or the
universe has a nonnegative mass density, there was a Big Bang that began the universe,
where a(t

m

) = 0 and there will eventually be a time in the future in which the universe will
collapse, a(t

M

) = 0.

Proof:
Case 1: (spherical and flat geometries [or k = 1, 0])

Note from equation (3.2), ⇤ + 8⇡ c

0

a

3 � 3k
a

2 � 0 which implies 0 < � a

3

8⇡ (⇤ � 3k
a

2 )  c

0.

Now, by using this inequality in equation (3.1), it is clear that 3 ä

a

 ⇤ < 0, and (using the
knowledge that a is positive) it follows that a is concave down and ȧ is decreasing.

Suppose that ȧ 6= 0. So, |ȧ| is bounded below by a real value a1 > 0 and ȧ is de-
creasing. Using the definition of bounded, as t ! 1 (or �1), |ȧ| ! a1, which means
that ä ! 0. Using the inequality 3 ä

a

< ⇤ < 0, it follows that ä <

a⇤
3 < 0, and using the

squeeze theorem, a ! 0. This causes a contradiction for the following reason: if a ! 0 then
ȧ

2 = a

2⇤+ 8⇡c0

a

� 3k ! 1 6= a

2
1. So there is some time, t⇤, so that ȧ(t⇤) = 0.

So, a is concave down and has a max value of a(t), which means that a(t
m

) = a(t
M

) = 0.

10



Case 2: (hyperbolic geometry [or k = �1] and non-negative mass density c

0 � 0)

This is similar to case 1 in the sense that c

0 � 0 gives 3 ä

a

 ⇤ < 0 which implies a

is concave down and ȧ is decreasing. It then follows by the same reasoning that there exists
a t⇤ so that ȧ(t⇤) = 0. Therefore, a is decreasing and obtains a max value, which results in
a(t

m

) = a(t
M

) = 0.

Q.E.D.

Otherwise: (hyperbolic geometry [or k = �1] and negative mass density c

0
< 0)

The di↵erence from this case to the rest is: the only positive term in the equation for
3( ȧ

a

)2 is 3
a

2 . This and the fact that 3( ȧ
a

)2 � 0 results in the following:

3 � �a

2⇤� 8⇡
c

0

a

> �8⇡
c

0

a

So, a > �8⇡ c

0

3 > 0, and by similar reasoning, a2 < � 3
⇤ . This mean that the expansion of

the universe is bounded above and below by some k > 0, so there will never be any point
at which a = 0.

In addition, it is meaningful to note that in the case of ⇤ is too big or c

0 is too small,
then the universe couldn’t exist. So there are some restrictions if certain unlikely events
were to come up.

3.1.2 ⇤ = 0

It should be noted that Wald actually came up with a distinct solution to each one of the
situations within the ⇤ = 0 case. For the sake of consistency, the cases are still going to
be checked to verify that there are no conditions that vary from his findings. Only after
verification will these equations be stated.

Case 1: Spherical (or k = 1)

Referring to (3.2), ⇤ + 8⇡ c

0

a

3 � 3k
a

2 = 8⇡ c

0

a

3 � 3
a

2 � 0, which means 8⇡ c

0

3 � a, so c

0
> 0.

Consequently, using (3.1), 3äa2 = �4⇡c0 < 0.

Suppose that ȧ 6= 0. It follows that there exists a real number a1 so that as t ! 1 (or
�1), ȧ ! a1. That leads to ä ! 0, and consequently, a ! 1 (by similar reasoning to
3.1.1 case 1). This contradicts the previous result of 8⇡ c

0

3 � a, which means the supposition
is wrong, and there must exist a t⇤ so that ȧ(t⇤) = 0. By the same reasoning from last
section, the universe began and will end in a singularity.

This is consistent with the form that was stated by Wald:

11



a =
4⇡c0

3
(1� cos(⌘))

t =
4⇡c0

3
(⌘ � sin(⌘))

(Wald, 1984)

Case 2: Flat (or k = 0) and c

0 6= 0

Since 0  3( ȧ
a

)2 = 8⇡ c

0

a

3 then c

0
> 0. Supposing that there exists a t⇤ so that ȧ(t⇤) = 0,

then by (3.2) c0 = 0 or a(t⇤) = 1. Now since a is continuous and c

0 6= 0, then there is no
alternative to t⇤ 2 {�1,1}. So a is constantly increasing or constantly decreasing–faster
as a ! 0–which implies that either:

• the universe began in a singularity and will continue to grow forever, or

• the universe had no start but at all times it was previously bigger and will eventually
collapse to a singularity.

Referring again to Wald, when c

0 6= 0, the form that a will take in this case is similar to:

(6⇡c0)
1
3
t

2
3

(Wald, 1984)

Case 3: flat (or k = 0) and c

0 = 0

In the case of c

0 = 0, simply by observing equation (3.2), it follows that a is constant.
Thus it has no expansion and will always be the stagnant universe that Einstein originally
believed it to be.

Case 4: hyperbolic (or k = �1)

By (3.2), 0  8⇡
3

c

0

a

+ 1, which means a � �8⇡c0

3 . Now supposing that c

0 � 0, then

ȧ

2 = 8⇡3 c

0

a

+ 1 � 1, so ȧ

2 is bounded below by some positive value a⇤. This means
that a has a slope that never gets too close to zero, and therefore, a takes the same form
as case 2. As long as c0 6= 0, this case follows the equations obtained in Wald’s book:

a =
4⇡c0

3
(cosh⌘ � 1)

t =
4⇡c0

3
(sinh⌘ � ⌘)

(Wald, 1984)

Alternatively, if c0 < 0, then a � �8⇡c0

3 , so a is bounded below by some positive value

a⇤. Noting that �4⇡c0

3a2⇤
> 0, then as a ! a⇤, ä does not approach 0, so a cannot level o↵
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at any constant value. By this reasoning, the size of the universe–in both the past and the
future–will approach infinity and never achieve a singularity.

3.1.3 ⇤ > 0

With ⇤ > 0, the implications are not as easy to come by. Since 3( ȧ
a

)2 � ⇤ can potentially
be negative, the other constants are not as easy to restrict. So, the cases will be divided up
a little di↵erently.

Case 1: (c0 < 0)

In this case, it is easy to see (using 3.1) that ä > ⇤ > 0. Since lim

a!0ȧ
2 = �1 < 0 <

1 = lim

a!1ȧ

2, then it is impossible for a to be too close to 0, and there must exist some
a⇤ 2 (0,1) such that a3⇤⇤ + 8⇡c0 + a⇤3k = 0. So a⇤ is a lower bound of a since all a < a⇤
will cause 3ȧ2 = a

2⇤+ 8⇡c0

a

+ 3k < 0, which is obviously false. Noting that a is concave up
and obtains a min at a⇤, then it follows that the size of the universe–in both the past and
the future–will approach infinity and never achieve a singularity.

Case 2: Vacuum (or c0 = 0)

First, note that in this case, ⇤ > 0 implies ä > 0 with ä ! 0 if and only if a ! 0.

If the geometry of the universe is hyperbolic (k = �1), then it is clear that 3ȧ2 = a

2⇤+3 > 3.

So, the universe will never have a slope (with absolute value) less than 3
1
2 . Therefore, the

universe takes one of the following two forms:

• the universe began in a singularity and will continue to grow forever, or

• the universe had no start but at all times it was previously bigger and will eventually
collapse to a singularity.

Note that if the geometry is flat, then the same argument cannot be made since 3k = 0.
Nevertheless, since a > 0 leads to ȧ

2 = a

2⇤ > 0, then for all positive values E, there is
some t so that a(t) < E. So, for practical reasons the universe will eventually get within a
threshold of a singularity, and it follows the same form.

Alternatively, if the universe has a spherical geometry (k = 1), then (using (3.2))

0  ⇤� 3
a

2 , and consequently, a2 � 3
⇤ > 0. So, a would reach a min value at a = ( 3⇤)

1
2
> 0,

and since ä = a⇤ � (3⇤)
1
2
> 0, it follows that the size of the universe–in both the past and

the future–will approach infinity and never achieve a singularity.

Case 3: (c0 > 0 in a hyperbolic or flat geometry)

13



Note that d

da

3ȧ2 = 2a⇤� 8⇡c0

a

2 . So, when d

da

ȧ = ä = 0, it follows that

3ȧ2 � 3⇤
1
3 (4⇡c0)

2
3 � 3k. Now, under the assumption that k 2 {0,�1}, then a is always

increasing or always decreasing by a rate of at least (3⇤
1
3 (4⇡c0)

2
3 )

1
2 . So a will once again

fall into one of two cases:

• the universe began in a singularity and will continue to grow forever, or

• the universe had no start but at all times it was previously bigger and will eventually
collapse to a singularity.

Case 4: (c0 > 0 in a spherical geometry)

In this case, there is both the possibility to change concavity and the possibility of
changing slope. Therefore, it must be determined where these occur. So noting that ä = 0
when a = a⇤ = (4⇡c

0

⇤ )
1
3 , then ȧ

2 cannot change slope unless ȧ2 = ⇤
1
3 (4⇡c0)

2
3 � 1.

Using this reasoning, if c0 > 1

⇤
1
2 4⇡

, then ȧ

2 changes slope at a⇤ since a2⇤⇤+
8⇡c0

a⇤
�3 > 0 so

ȧ

2 has a positive lower bound, which means a is either constantly increasing or decreasing
by some set amount. So if c0 > 1

⇤
1
2 4⇡

, then this yields the same results as case 3.

On the other hand, if c

0
<

1

⇤
1
2 4⇡

, then a 6= a⇤ since ȧ

2 � 0 > (⇤)
1
3 (4⇡c0)

2
3 � 1. So

there exists some lower bound of ä, a0, so that ä � a0 > 0. This results in a always being
concave up, and as before, since ä is bounded below by a positive value a0, then it follows
that the size of the universe–in both the past and the future–will approach infinity and
never achieve a singularity.
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3.2 Radiation (⇢ = 1
3P )

Much of this section will be the same as the previous section, but there are some signifi-
cant di↵erences. All of the changes will result directly from the change in the Friedmann
equations. Since P 6= 0, the following results occur:

⇢̇

⇢

= �4
ȧ

a

) ⇢ =
c

0

a

4

As in the previous section, this leads to:

3
ä

a

= ⇤� 8⇡
c

0

a

4
(3.3)

3(
ȧ

a

)2 = ⇤+ 8⇡
c

0

a

4
� 3k

a

2
(3.4)

3.2.1 ⇤ < 0

Claim: In the dust case, if ⇤ < 0, then as long as the universe is not hyperbolic or the
universe has a nonnegative mass density, there was a Big Bang that began the universe,
where a(t

m

) = 0 and there will eventually be a time in the future in which the universe will
collapse, a(t

M

) = 0.

Proof:
Case 1: (spherical and flat geometries [or k = 1, 0])

Note from equation (3.4), ⇤ + 8⇡ c

0

a

4 � 3k
a

2 � 0 which implies 0  � a

4

8⇡ (⇤ � 3k
a

2 )  c

0.

Now, by using this inequality in equation (3.3), it is clear that 3 ä

a

< ⇤ < 0, and (using the
knowledge that a is positive) it follows that a is concave down and ȧ is decreasing.

Suppose that ȧ 6= 0. So, |ȧ| is bounded below by a real value a1 > 0 and ȧ is de-
creasing. Using the definition of bounded, as t ! 1 (or �1), |ȧ| ! a1, which means
that ä ! 0. Using the inequality 3 ä

a

2 < ⇤ < 0, it follows that ä <

a⇤
3 < 0, and using the

squeeze theorem, a ! 0. This causes a contradiction for the following reason: if a ! 0 then
ȧ

2 = a

2⇤+ 8⇡c0

a

2 � 3k ! 1 6= a

2
1. So there is some time, t⇤, so that ȧ(t⇤) = 0.

So, a is concave down and has a max value of a(t), which means that a(t
m

) = a(t
M

) = 0.

Case 2: (hyperbolic geometry [or k = �1] and non-negative mass density c

0 � 0)

This is similar to case 1 in the sense that c

0 � 0 gives 3 ä

a

 ⇤ < 0 which implies a

is concave down and ȧ is decreasing. It then follows by the same reasoning that there exists
a t⇤ so that ȧ(t⇤) = 0. Therefore, a is decreasing and obtains a max value, which results in
a(t

m

) = a(t
M

) = 0.

Q.E.D.

Otherwise: (hyperbolic geometry [or k = �1] and negative mass density c

0
< 0)

15



The di↵erence from this case to the rest is: the only positive term in the equation for
3( ȧ

a

)2 is 3
a

2 . This and the fact that 3( ȧ
a

)2 � 0 results in the following:

3 � �a

2⇤� 8⇡
c

0

a

2
> �8⇡

c

0

a

2

So, a2 > �8⇡ c

0

3 > 0, and by similar reasoning, a2 < � 3
⇤ . This mean that the expansion of

the universe is bounded above and below by some k > 0, so there will never be any point
at which a = 0.

In addition, it is meaningful to note that in the case of ⇤ is too big or c

0 is too small,
then the universe couldn’t exist. So there are some restrictions if certain unlikely events
were to come up.

3.2.2 ⇤ = 0

Similar to the dust case, Wald actually came up with a distinct solution to each of the
situations within ⇤ = 0, although these will not be used without verification.

Case 1: Spherical (or k = 1)

Referring to (3.4), ⇤ + 8⇡ c

0

a

4 � 3k
a

2 = 8⇡ c

0

a

4 � 3
a

2 � 0, which means 8⇡ c

0

3 � a

2, so c

0
> 0.

Consequently, using (3.3), 3äa3 = �8⇡c0 < 0.

Suppose that ȧ 6= 0. It follows that there exists a real number a1 so that as t ! 1 (or
�1), ȧ ! a1. That leads to ä ! 0, and consequently, a ! 1 (by similar reasoning to
3.2.1 case 1). This contradicts the previous result of 8⇡ c

0

3 � a

2, which means the supposi-
tion is wrong, and there must exist a t⇤ so that ȧ(t⇤) = 0. By the same reasoning from last
section, the universe began and will end in a singularity.

This is consistent with the form that was stated by Wald:

p
c

0[1� (1� tp
c

0
)2]

1
2

(Wald, 1984)

Case 2: Flat (or k = 0) and c

0 6= 0

Since 0  3( ȧ
a

)2 = 8⇡ c

0

a

4 then c

0
> 0. Supposing that there exists a t⇤ so that ȧ(t⇤) = 0,

then by (3.4) c0 = 0 or a(t⇤) = 1. Now since a is continuous and c

0 6= 0, then there is no
alternative to t⇤ 2 {�1,1}. So a is constantly increasing or constantly decreasing–faster
as a ! 0–which implies that either:
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• the universe began in a singularity and will continue to grow forever, or

• the universe had no start but at all times it was previously bigger and will eventually
collapse to a singularity.

Referring again to Wald, when c

0 6= 0, the form that a will take in this case is similar to:

(4⇡c0)
1
4
t

1
2

(Wald, 1984)

Case 3: flat (or k = 0) and c

0 = 0

In the case of c

0 = 0, simply by observing equation (3.4), it follows that a is constant.
Thus it has no expansion and will always be the stagnant universe that Einstein originally
believed it to be.

Case 4: hyperbolic (or k = �1)

By (3.4), 0  8⇡
3

c

0

a

2 + 1, which means a

2 � �8⇡c0

3 . Now supposing that c

0 � 0, then

ȧ

2 = 8⇡3 c

0

a

2 + 1 � 1, so ȧ

2 is bounded below by some positive value a⇤. This means that a
has a slope that never gets too close to zero, and therefore, a takes the same form as case
2. As long as c0 6= 0, this case follows the equations obtained in Wald’s book:

p
c

0[(1 +
tp
c

0
)2 � 1]

1
2

(Wald, 1984)

Alternatively, if c0 < 0, then a

2 � �8⇡c0

3 , so a is bounded below by some positive value

a⇤. Noting that �8⇡c0

3a3⇤
> 0, then as a ! a⇤, ä does not approach 0, so a cannot level o↵

at any constant value. By this reasoning, the size of the universe–in both the past and the
future–will approach infinity and never achieve a singularity.

3.2.3 ⇤ > 0

With ⇤ > 0, the implications are not as easy to come by. Since 3( ȧ
a

)2 � ⇤ can potentially
be negative, the other constants are not as easy to restrict. So, the cases will be divided up
a little di↵erently.

Case 1: (c0 < 0)

In this case, it is easy to see (using 3.3) that ä > ⇤ > 0. Since lim

a!0ȧ
2 = �1 < 0 <

1 = lim

a!1ȧ

2, then it is impossible for a to be too close to 0, and there must exist some
a⇤ 2 (0,1) such that a4⇤⇤ + 8⇡c0 + a

2
⇤3k = 0. So a⇤ is a lower bound of a since all a < a⇤

will cause 3ȧ2 = a

2⇤+ 8⇡c0

a

2 + 3k < 0, which is obviously false. Noting that a is concave up
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and obtains a min at a⇤, then it follows that the size of the universe–in both the past and
the future–will approach infinity and never achieve a singularity.

Case 2: Vacuum (or c0 = 0)

First, note that in this case, ⇤ > 0 implies ä > 0 with ä ! 0 if and only if a ! 0.

If the geometry of the universe is hyperbolic (k = �1), then it is clear that 3ȧ2 = a

2⇤+3 > 3.

So, the universe will never have a slope (with absolute value) less than 3
1
2 . Therefore, the

universe takes one of the following two forms:

• the universe began in a singularity and will continue to grow forever, or

• the universe had no start but at all times it was previously bigger and will eventually
collapse to a singularity.

Note that if the geometry is flat, then the same argument cannot be made since 3k = 0.
Nevertheless, since a > 0 leads to ȧ

2 = a

2⇤ > 0, then for all positive values E, there is
some t so that a(t) < E. So, for practical reasons the universe will eventually get within a
threshold of a singularity, and it follows the same form.

Alternatively, if the universe has a spherical geometry (k = 1), then (using (3.4))

0  ⇤� 3
a

2 , and consequently, a2 � 3
⇤ > 0. So, a would reach a min value at a = ( 3⇤)

1
2
> 0,

and since ä = a⇤ � (3⇤)
1
2
> 0, it follows that the size of the universe–in both the past and

the future–will approach infinity and never achieve a singularity.

Case 3: (c0 > 0 in a hyperbolic or flat geometry)

Note that d

da

3ȧ2 = 2a⇤� 16⇡c0

a

2 . So, when d

da

ȧ = ä = 0, it follows that

3ȧ2 � 2(⇤8⇡c0)
1
2 � 3k. Now, under the assumption that k 2 {0,�1}, then a is always

increasing or always decreasing by a rate of at least (2(⇤8⇡c0)
1
2 )

1
2 . So a will once again fall

into one of two cases:

• the universe began in a singularity and will continue to grow forever, or

• the universe had no start but at all times it was previously bigger and will eventually
collapse to a singularity.

Case 4: (c0 > 0 in a spherical geometry)

In this case, there is both the possibility to change concavity and the possibility of
changing slope. Therefore, it must be determined where these occur. So noting that ä = 0
when a = a⇤ = (8⇡c

0

⇤ )
1
4 , then ȧ

2 cannot change slope unless 3ȧ2 = 2(⇤8⇡c0)
1
2 � 3.
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Using this reasoning, if c0 > 9
32⇤⇡ , then ȧ

2 changes slope at a⇤ since a2⇤⇤+
8⇡c0

a

2
⇤
�3 > 0 so

ȧ

2 has a positive lower bound, which means a is either constantly increasing or decreasing
by some set amount. So if c0 > 9

32⇤⇡ , then this yields the same results as case 3.

On the other hand, if c0 < 9
32⇤⇡ , then a 6= a⇤ since 3ȧ2 � 0 > 2(⇤8⇡c0)

1
2 � 3. So there exists

some lower bound of ä, a0, so that ä � a0 > 0. This results in a always being concave up,
and as before, since ä is bounded below by a positive value a0, then it follows that the size
of the universe–in both the past and the future–will approach infinity and never achieve a
singularity.
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Chapter 4

Recent Knowledge and Summary

Now that all the previous cases have been determined, it is clear what restrictions mathe-
matics has imposed on the expansion of the universe under our assumptions of isotropy and
homogeneity. The graphs above give a general form of each case with the exception that
in the cases of a singularity, the reflection is also a mathematical possibility. What has not
been considered yet is recent knowledge that has surfaced based on the observations of the
universe. It should be pointed out that if we consider Hubble’s constant ( ȧ

a

) (Hawking and
Ellis, 1973), which is known to be positive at the current time, then our results match up
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directly with the results found in the book by Hawking and Ellis. Namely, when c

0
> 0 and

⇤ is negative, zero, or not too large of a value, then a reaches a singularity (Hawking and
Ellis, 1973).

Furthermore, there has been a recent observation of redshifts showing that the universe
is expanding at an increasing rate and ⇤ is currently evaluated as being greater than 0
(Riess et al., 1998; Perlmutter et al., 1999). When these new restrictions are taken into
account, the universe can be any case in which ⇤ > 0.

From this, it can be concluded that the only conditions that would cause the Big Bang
not to exist is the following:

• the universe has a hyperbolic geometry (k = 1), and

• c

0
> critical value (discussed in 3.1.3 case 4 and 3.2.3 case 4).

The reason that these bits of information were not introduced earlier was for the sake of
future progress; new information is always being found and the purpose of this paper was
to fill in gaps for knowledge that, as of today, is taken for granted or misunderstood. This
is not to say that this paper contains all possibilities, but, if new information is found,
hopefully this paper will aid in creating a smoother transition from the knowledge that we
have now.
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Appendix A

Solutions to Christo↵el Symbols

It has been shown that �i
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) (Wald, 1984). Now we will evaluate
each Christo↵el Symbol depending on the metric in question.
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Fori,j2 {x, y, z}
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A.2 Spherical

This metric gives us the following matrix
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A.3 Hyperbolic

This metric gives us the following matrix
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For i 2 {y, z}where  (y), (t, y) is the appropriate function depending on i
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