The Zero Scalar Curvature Yamabe Problem on Noncompact Manifolds with Boundary

FERNANDO SCHWARTZ

Dedicated to the memory of Professor José F. Escobar

ABSTRACT. Let (M^n, g) , $n \ge 3$ be a noncompact complete Riemannian manifold with compact boundary and f a smooth function on ∂M . In this paper we show that for a large class of such manifolds, there exists a metric within the conformal class of g that is complete, has zero scalar curvature on M, and has mean curvature f on the boundary.

The problem is equivalent to finding a positive solution to an elliptic equation with a non-linear boundary condition with critical Sobolev exponent.

1. Introduction

The celebrated Riemann Mapping Theorem states that any simply connected region in the plane is conformally diVeomorphic to a disk. This theorem is less successful in higher dimensions since very few domains are conformally diVeomorphic to the ball. Nevertheless, we can still ask whether a manifold with boundary is conformally diVeomorphic to a manifold that resembles the ball, namely to one that has zero scalar curvature and constant mean curvature on its boundary. Escobar studied this problem in [2]. He showed that most compact manifolds with boundary admit such conformally related metrics.

A generalization of this problem is the so-called *prescribed mean curvature* problem. Let (M^n, g) , $n \ge 3$ be a manifold with boundary and $f \in C^{\infty}(\partial M)$.

Problem 1.1. Does there exist a metric conformally equivalent to g that is complete, scalar flat, and has mean curvature f on ∂M ?

Escobar and Garcia [1] studied this problem on (B^3, δ_{ij}) . They proved that a Morse function is the mean curvature of a scalar-flat metric $g \in [\delta_{ij}]$ if it satisfies some Morse inequalities. They paralleled Schoen and Zhang's [8] blow-up

analysis for the prescribed scalar curvature problem on S^3 . In both cases, a general solution is unexpected because of the Kazdan-Warner obstruction [3]. (See [4] for the prescribed Gaussian curvature problem on open 2-manifolds.)

In this paper we address Problem 1.1 on a large class of *noncompact* manifolds with boundary (M^n, g) , $n \ge 3$. As a corollary of Theorem 2.5 about PDEs we get the following result.

Theorem 1.2. Any smooth function f on ∂M can be realized as the mean curvature of a complete scalar flat metric conformal to g.

In contrast with the compact case, no topological obstructions on f arise. This is a surprising phenomenon.

2. Preliminaries

Let (M^n, g) , $n \ge 3$ be a complete, n-dimensional Riemannian manifold with boundary $\partial M \ne \emptyset$. Denote by $\tilde{g} = u^{4/(n-2)}g$ a metric conformally related to g, where u > 0 is a smooth function.

It is a standard fact that the relation between the scalar curvature R(g) of the metric g and the scalar curvature $R(\tilde{g})$ of the metric \tilde{g} is given by

(2.1)
$$R(\tilde{g}) = -\frac{4(n-1)}{n-2} \frac{L_g u}{u^{(n+2)/(n-2)}},$$

where $L_g = \Delta_g - (n-2)R(g)/(4(n-1))$, and Δ_g is the Laplacian calculated with respect to the metric g.

The relation between the mean curvature of the boundary h(g) of the metric g, and the mean curvature of the boundary $h(\tilde{g})$ of the metric \tilde{g} is given by

(2.2)
$$h(\tilde{g}) = \frac{2}{n-2} \frac{B_g u}{u^{n/(n-2)}},$$

where $B_g = \partial/\partial \eta + (n-2)h(g)/2$ and $\partial/\partial \eta$ is the outward-pointing normal derivative on ∂M calculated with respect to the metric g.

Remark 2.1. The exponent n/(n-2) of equation (2.2) is called a *critical exponent* since the Sobolev trace embedding $H^1(M) \hookrightarrow L^q(\partial M)$ ceases to be compact for $q \geq 2(n-1)/(n-2)$. This condition rules out the direct method of minimization to prove existence of solutions.

It follows directly from the above discussion that finding a conformally related metric $\tilde{g} = u^{4/(n-2)}g$ on M that is scalar flat (i.e., has zero scalar curvature) and has prescribed mean curvature f on the boundary is equivalent to finding smooth u > 0 on M that satisfies equation (2.1) with $R(\tilde{g}) \equiv 0$ and equation (2.2) with $h(\tilde{g}) \equiv f$.

In this paper we find such u for a more general problem, the so-called *super-critical* equation, in which the critical exponent n/(n-2) of (2.2) is replaced by an arbitrary number $\beta > 1$.

Definition 2.2. Let (M^n, g) be a complete, noncompact Riemannian manifold. On each end E of M, consider the volume of the set obtained by intersecting E with the geodesic ball of radius t centered at some fixed $p \in M$, and denote it by $V_E(t)$. We say that the end E is *large* if

$$\int_1^\infty \frac{t}{V_E(t)} dt < \infty.$$

Suppose that the Ricci curvature of *M* satisfies

$$Ric_M(x) \ge -(n-1)K(1+r(x))^{-2}$$
,

where $K \ge 0$ is some constant and r(x) is the distance from x to some fixed point p. By Li and Tam's [6] paper, on any large end E of M there exists a harmonic, non-negative function v_E (a *barrier*), which is asymptotic to 1 on E and it is exactly zero on the boundary of a large ball intersected with the end.

Throughout this paper *M* will be a manifold that satisfies the above bound on the Ricci tensor.

Definition 2.3. We say that (M, g) is *positive* if it is complete, scalar flat, and has positive mean curvature on the boundary.

Remark 2.4. If (M,g) is positive, it has a positive first eigenvalue for the following problem:

$$\begin{cases} L_g u = 0 & \text{in } M, \\ B_g u = \lambda u & \text{on } \partial M. \end{cases}$$

Conversely, if the first eigenvalue of the above problem is positive, then (M,g) admits a conformally-related scalar flat metric g' that has positive mean curvature on the boundary, but this metric *may not be complete*. Theorem 2.5 still applies for (M,g') provided it has large ends, since completeness is not used in the proof. Nevertheless, the new metric $\tilde{g} = u^{4/(n-2)}g'$, which is scalar flat and has prescribed mean curvature f on the boundary, may also be incomplete.

Theorem 2.5. Let (M,g) be a noncompact positive Riemannian manifold with compact boundary and finitely many ends, all of them large. Let f be a smooth function on ∂M and $\beta > 1$. There exists ε , $\delta > 0$ and a smooth function $\varepsilon \leq u \leq \varepsilon + \delta$ on M with

(2.3)
$$\begin{cases} L_g u = 0 & \text{in } M, \\ B_g u = \frac{n-2}{2} f u^{\beta} & \text{on } \partial M. \end{cases}$$

When β is the critical exponent n/(n-2), $\tilde{g}=u^{4/(n-2)}g$ is a complete, scalar flat metric on M, with mean curvature $h(\tilde{g}) \equiv f$.

Remark 2.6. For the $\beta = n/(n-2)$ case, the bound $\varepsilon \le u \le \varepsilon + \delta$ guarantees a complete metric $\tilde{g} = u^{4/(n-2)}g$.

Remark 2.7. Since (M, g) is positive, we have that $L_g \equiv \Delta_g$.

A very important class of examples of positive *noncompact* manifolds with boundary is obtained by removing submanifolds of large codimension out of positive *compact* manifolds with boundary. We refer the reader to the Appendix for more details on the construction.

The proof of Theorem 2.5 is divided in two parts. In Section 3 we prove that an iterative process using sub- and super-solutions converges to a solution of (2.3). In Section 4 we construct the appropriate sub- and super-solutions. Theorem 1.2 follows by choosing $\beta = n/(n-2)$ in Theorem 2.5.

3. METHOD OF SUB- AND SUPER-SOLUTIONS

In this section we adapt a method of sub- and super-solutions to our setting. (See [5] for general properties of sub- and super-solution methods on semilinear elliptic problems.) We begin by proving a form of maximum principle on a compact piece of M that contains ∂M .

Let $u \in C^2(M) \cap C^1(\bar{M})$, and define the operators

$$L_{\lambda}u := \Delta_g u - \lambda u$$
 in M , $B_{\gamma}u := \frac{\partial u}{\partial n} + \left(\frac{n-2}{2}h_g + \gamma\right)u$ on ∂M ,

for λ , $\gamma > 0$ fixed large numbers.

Proposition 3.1 (Maximum Principle). Let $M_1 \subseteq M$ be a compact piece of M containing ∂M , with smooth boundary $\partial M_1 = \partial M \cup N$. Suppose that $u \in C^2(M_1) \cap C^1(\bar{M}_1)$ satisfies:

$$\begin{cases} L_{\lambda} u \ge 0 & \text{in } M_1, \\ B_{\gamma} u \le 0 & \text{on } \partial M, \\ u \le 0 & \text{on } N. \end{cases}$$

Then $u \leq 0$ on M_1 .

Proof. Put $w(x) = \max\{0, u(x)\}$, so that w = 0 on N. Recall that $\min_{\partial M} h_g > 0$. We get:

$$0 \leq \int_{M_1} (L_{\lambda} u) w - \int_{\partial M} (B_{\gamma} u) w$$

$$= -\int_{M_1} \nabla u \cdot \nabla w - \lambda \int_{M_1} u w - \gamma \int_{\partial M} u w$$

$$= -\int_{M_1} |\nabla w|^2 - \lambda \int_{M_1} w^2 - \gamma \int_{\partial M} w^2.$$

Hence w = 0 in M_1 , and so $u \le 0$ in M_1 .

Definition 3.2. A sub-solution (resp. super-solution) of equation (2.3) is a function u_- (resp. u^+) in $C^2(M) \cap C^1(\bar{M})$ with

$$\begin{cases} \Delta_g u_- \geq 0 & \text{in } M, \\ B_g u_- - \frac{n-2}{2} f u_-^\beta \leq 0 & \text{on } \partial M, \end{cases}$$

respectively

$$\begin{cases} \Delta_g u^+ \le 0 & \text{in } M, \\ B_g u^+ - \frac{n-2}{2} f(u^+)^\beta \ge 0 & \text{on } \partial M. \end{cases}$$

Theorem 3.3. If there exist sub- and super-solutions u_- , $u^+ \in C^{\infty}(M)$ with $0 \le u_- \le u^+ \le c_0$, then there exists a smooth solution u of equation (2.3) with $u_- \le u \le u^+$.

Proof. We will show that the statement holds for all compact pieces $M_1 \subseteq M$ as above. Then we take pieces converging to M and construct a global solution.

Let M_1 be a compact neighborhood of ∂M in M with smooth boundary $\partial M_1 = \partial M \cup N$. Let λ , $\gamma > 0$ be large enough so that (3.1) admits a solution. Let $u_0 = u^+|_{M_1}$, and define inductively $u_i \in C^2(M_1) \cap C^1(\bar{M}_1)$, $i = 1, 2, \ldots$, to be the unique solution to

(3.1)
$$\begin{cases} L_{\lambda}u_{i} = -\lambda u_{i-1} & \text{in } M_{1}, \\ B_{\gamma}u_{i} = \frac{n-2}{2}fu_{i-1}^{\beta} + \gamma u_{i-1} & \text{on } \partial M, \\ u_{i} = u_{i-1} & \text{on } N. \end{cases}$$

Claim. We have $u_{-} \leq \cdots \leq u_{i} \leq u_{i-1} \leq \cdots \leq u^{+}$.

To prove the claim, we will use induction twice: first, to show that the sequence $\{u_i\}$ is non-increasing and bounded by u^+ ; then, to prove that it is bounded below by u_- .

To check the first induction step, we see that $L_{\lambda}(u_1 - u_0) = (\Delta u_1 - \lambda u_1) - (\Delta u_0 - \lambda u_0) = -\lambda u_0 - \Delta u_0 + \lambda u_0 = -\Delta u_0 \ge 0$, because $u_0 = u^+$ is a supersolution.

On the other hand, one has

$$\begin{split} B_{\gamma}(u_1 - u_0) &= \frac{\partial u_1}{\partial \eta} + \left(\frac{n-2}{2}h_g + \gamma\right)u_1 - \frac{\partial u_0}{\partial \eta} - \left(\frac{n-2}{2}h_g + \gamma\right)u_0 \\ &= \frac{n-2}{2}fu_0^{\beta} + \gamma u_0 - \frac{\partial u_0}{\partial \eta} - \left(\frac{n-2}{2}h_g + \gamma\right)u_0 \\ &= \frac{n-2}{2}fu_0^{\beta} - \frac{\partial u_0}{\partial \eta} - \frac{n-2}{2}h_gu_0 \\ &\leq 0 \end{split}$$

since $u_0 = u^+$ is a super-solution. By construction $u_1 - u_0 = 0$ on N.

The maximum principle implies $u_1 \le u_0$ and the first step of the induction follows.

Assume, by induction, that $u_i \leq u_{i-1}$.

Then, $L_{\lambda}(u_{i+1} - u_i) = \Delta u_{i+1} - \lambda u_{i+1} - \Delta u_i + \lambda u_i = -\lambda u_i + \lambda u_{i-1} = \lambda(u_{i-1} - u_i) \ge 0.$

On ∂M we have:

$$\begin{split} B_{\gamma}(u_{i+1}-u_i) &= \frac{n-2}{2} f u_i^{\beta} + \gamma u_i - \frac{n-2}{2} f u_{i-1}^{\beta} - \gamma u_{i-1} \\ &= \frac{n-2}{2} f (u_i^{\beta} - u_{i-1}^{\beta}) + \gamma (u_i - u_{i-1}). \end{split}$$

If f is nonnegative, then the above quantity is nonpositive by induction hypothesis.

On the other hand, if there exists $x \in \partial M$ with $f(x) \le 0$, then by choosing $\gamma > (n-2)\beta \|f\| \|u^+\|_{\partial M}/2$ we get

$$\frac{n-2}{2}f(u_i^{\beta}-u_{i-1}^{\beta})+\gamma(u_i-u_{i-1})\leq 0,$$

so the inequality $B_{\gamma}(u_{i+1} - u_i) \le 0$ follows from the fact that

$$u_{i-1}^{\beta}-u_{i}^{\beta}\leq \beta(u^{+})^{\beta-1}(u_{i-1}-u_{i}).$$

Together with the fact that $u_{i+1} - u_i = 0$ on N, it follows by the maximum principle that u_i is non-increasing.

We now show that $u_- \leq u_i$.

By hypothesis, $u_- \le u^+ = u_0$. Assume, by induction, that $u_- \le u_{i-1}$. Then $L_{\lambda}(u_- - u_i) = \Delta u_- - \lambda u_- - \Delta u_i + \lambda u_i = \Delta u_- + \lambda (u_{i-1} - u_-) \ge 0$, by induction hypothesis and the fact that $\Delta u_- \ge 0$.

On ∂M we have

$$\begin{split} B_{\lambda}(u_{-} - u_{i}) &= \frac{\partial u_{-}}{\partial \eta} + \left(\frac{n-2}{2}h_{g} + \gamma\right)u_{-} - \left(\frac{n-2}{2}fu_{i-1}^{\beta} + \gamma u_{i-1}\right) \\ &= B(u_{-}) + \frac{n-2}{2}f(u_{-}^{\beta} - u_{i-1}^{\beta}) + \gamma(u_{-} - u_{i-1}) \\ &\leq \frac{n-2}{2}f(u_{-}^{\beta} - u_{i-1}^{\beta}) + \gamma(u_{-} - u_{i-1}). \end{split}$$

Should f be positive, this last term would be non-positive by induction hypothesis. Otherwise, $\gamma > \beta(n-2)\|u^+\|_{\partial B}\|f\|/2$ guarantees $B_{\lambda}(u_--u_i) \le 0$ since $u_k^{\beta} - u_-^{\beta} \le \beta(u^+)^{\beta-1}(u_k-u_-)$ for $k=1,\ldots,i-1$. The fact that $u_i=u^+$ on N and $u_- \le u^+$ implies $u_--u_i \le 0$ on N. The claim follows from the maximum principle.

The inequality $u_- \le u_i \le u^+$ in M_1 implies that the sequence u_i is uniformly bounded. From the first equation in (3.1) we conclude that $|\Delta u_i|$ is uniformly bounded as well. Standard elliptic estimates imply that $||u_i||_{2,p}$ is uniformly bounded for any p > 1, and hence the Sobolev embedding implies that there is a uniform bound for the sequence u_i in the $C^{1,\nu}(\bar{M}_1)$ -norm. DiVerentiating the first equation in (3.1) we find that $|\nabla\Delta u_i|$ is uniformly bounded, and L^p elliptic estimates imply that $||u_i||_{3,p}$ is uniformly bounded for any p > n. The compactness of the embedding $H^{3,p}(M_1) \hookrightarrow C^{2,\nu}(\bar{M}_1)$, $0 < \nu < 1 - n/p$, p > n, guarantees the existence of a subsequence of functions u_{ik} converging to a function $u_{|M_1} \in C^{2,\nu}(\bar{M}_1)$. Because the sequence of functions u_i is monotone we conclude that the whole sequence converges to $u_{|M_1}$. That $u_{|M_1}$ is in $C^{\infty}(M_1)$ is a standard argument since it solves (2.3) on M_1 .

A diagonal procedure on an exhaustion of M by compact pieces like M_1 gives a way to construct a globally defined smooth function $u \in C^{\infty}(M)$. Clearly $u_{-} \leq u \leq u^{+}$. Also, u is a uniform limit of (a subsequence of) $u|M_1$'s over compact subsets, so it is straightforward to check that it is a solution to equation (2.3).

4. Existence of Sub- and Super-solutions

We construct an appropriate harmonic function that we will use as a base for our sub- and super-solutions.

Lemma 4.1. There exists $\mu > 0$, and a positive smooth function $\mu \le v \le 1 + \mu$ on M, with

$$\begin{cases} \Delta_{\mathcal{G}} v = 0 & \text{in } M, \\ B_{\mathcal{G}} v < 0 & \text{on } \partial M, \\ v \sim 1 + \mu & \text{near infinity.} \end{cases}$$

Proof. Let R > 0 be large. There always exists a positive solution v_R of the homogeneous problem

$$\begin{cases} \Delta v_R = 0 & \text{in } \{x \mid d(x, \partial M) < R\}, \\ v_R = 0 & \text{on } \partial M, \\ v_R = 1 & \text{on } \{x \mid d(x, \partial M) = R\}. \end{cases}$$

A standard argument shows that as $R_i \to \infty$, the sequence v_{R_i} converges uniformly on compact sets to a harmonic function $0 \le v_\infty \le 1$.

Claim. $v_{\infty} \sim 1$ on each end's infinity.

Let E be an end and $0 \le v_E \le 1$ be a harmonic barrier function that vanishes on the boundary of a large ball intersected with E and is asymptotic to 1 (See [6]). By the maximum principle, v_E is smaller or equal than v_∞ . This way, v_∞ is non-zero and asymptotic to 1 on all ends.

We get that $Bv_{\infty} = \partial/\partial \eta(v_{\infty})$, but $\partial/\partial \eta(v_{\infty}) < 0$ by Hopf's principle, since v_{∞} attains its minimum along the boundary (recall that η is the outward-pointing normal of the boundary).

Pick $\mu > 0$ so that $v := v_{\infty} + \mu$ still satisfies Bv < 0. This way, $v \ge \mu > 0$ and v is asymptotic to $1 + \mu$, as desired.

Proposition 4.2. For appropriately small constants ε , $\delta > 0$, $u_- := \varepsilon v$ is a sub-solution, and $u^+ := \varepsilon v + \delta$ is a super-solution.

Proof. Let v be as before. Note that, since v is positive on the boundary, it makes sense to write $\varepsilon v = O(\varepsilon)$ on ∂M . This way, for ε , $\delta > 0$, $\beta > 1$, one has

$$(\varepsilon v + \delta)^{\beta} = O(\varepsilon^{\beta}) + O(\delta^{\beta})$$
 on ∂M .

By definition, $u_- \le u^+$, and both are harmonic. In order for them to be sub- and super-solutions, we just have to check their behavior on the boundary.

Claim.
$$Bu_- - (n-2)f(u_-)^{\beta}/2 \le 0$$
.

Recall that by construction, Bv < 0 on the boundary. Hence

$$Bu_{-} - \frac{n-2}{2}f(u_{-})^{\beta} = \varepsilon Bv - \frac{n-2}{2}f(\varepsilon v)^{\beta}$$

$$\leq -\varepsilon \min_{\partial M} |Bv| + \frac{n-2}{2} \max_{\partial M} |f|(\varepsilon v)^{\beta}$$

$$= -O(\varepsilon) + O(\varepsilon^{\beta}) \leq 0$$

by taking $\varepsilon > 0$ small enough.

Claim.
$$Bu^+ - (n-2)f(u^+)^{\beta}/2 \ge 0$$
.

We see that

$$Bu^{+} - \frac{n-2}{2}f(u^{+})^{\beta} = \varepsilon Bv - \frac{n-2}{2}f(\varepsilon v + \delta)^{\beta}$$

$$\geq -\varepsilon \max_{\partial M} |Bv| + \delta\left(\frac{n-2}{2}h_{g}\right) - \frac{n-2}{2} \max_{\partial M} |f|(\varepsilon v + \delta)^{\beta}$$

$$= -O(\varepsilon) + O(\delta) - O(\varepsilon^{\beta}) - O(\delta^{\beta}).$$

The line above can be made nonnegative by choosing ε smaller than δ , and δ small (notice the plus sign next to $O(\delta)$).

This way, $0 < \mu \varepsilon \le u_- \le u^+ \le \varepsilon + \mu \varepsilon + \delta$ are sub- and super-solutions respectively.

Proof of Theorem 2.5. The existence of u satisfying (2.3) is granted by applying the above Proposition 4.2 and Theorem 3.3. For the critical case, i.e., $\beta = n/(n-2)$. The completeness of the metric $\tilde{g} = u^{4/(n-2)}g$ follows from the lower bound $u \ge u_- \ge \mu \varepsilon > 0$.

APPENDIX A. CONSTRUCTION OF POSITIVE MANIFOLDS

We show how to construct a large class of noncompact complete positive manifolds with boundary. Basically, these examples come from removing "small" submanifolds from positive *compact* manifolds with boundary.

Remark A.1. Positivity of compact manifolds is equivalent to positivity of the first eigenvalue of problem (2.3), since completeness is not an issue. A compact manifold with boundary is positive if and only if its *Yamabe constant* is positive (see [2]).

Let (N^n, \bar{g}) , $n \geq 3$, be a positive compact manifold with boundary. Consider a collection of submanifolds $\Sigma = \bigcup_{i=1}^k \Sigma_i^{n_i}$, where each Σ_i is a submanifold in the interior of N of dimension $0 \leq n_i \leq (n-2)/2$; put $\Sigma_i = \{p_i\}$ whenever $n_i = 0$.

We will construct a metric $g = u^{4/(n-2)}\bar{g}$ on $M = N \setminus \Sigma$, that is complete, scalar flat, and has positive mean curvature on the boundary. Also, (M, g) will have large ends and will remain positive.

For $p \in \text{int}(N)$ let $G_p > 0$ denote the Green's function for the conformal Laplacian on (N, \bar{g}) , which always exists and satisfies $L_{\bar{g}}G_p = \delta_p$ and $B_{\bar{g}}G_p = 0$. This way, for c > 0, $G_p + c$ satisfies

$$L_{\bar{g}}(G_p + c) = \delta_p,$$

$$B_{\bar{g}}(G_p + c) = c \frac{n-2}{2} h_{\bar{g}} > 0$$

since (N, \bar{g}) is positive.

By a construction on the Appendix of Schoen and Yau's paper [7] which involves the Green's function, one can find, for each Σ_i of positive dimension, positive functions G_i that are singular on Σ_i and satisfy $L_{\bar{\theta}}G_i = 0$ on $N \setminus \Sigma_i$.

A simple argument like that of Proposition 4.2 shows that for appropriate coe Y cients $a_i > 0$, c > 0 the function

$$u = \sum_{\{i|n_i>0\}} a_i G_i + \sum_{\{i|n_i=0\}} a_i G_{p_i} + c$$

is singular on Σ and satisfies $L_{\bar{g}}u=0$ and $B_{\bar{g}}u>0$. Therefore $g=u^{4/(n-2)}\bar{g}$ remains positive.

The large codimension of the Σ_i guarantees, via the standard argument in [7], that the singularities of u are strong enough to make $g = u^{4/(n-2)}\bar{g}$ complete with large ends.

Acknowledgement The author would like to thank Prof. Richard Schoen for his thorough support and great comments. This work was supported in part by NSF grant # DMS-0223098

REFERENCES

- [1] JOSÉ F. ESCOBAR and GONZALO GARCIA, Conformal metrics on the ball with zero scalar curvature and prescribed mean curvature on the boundary, J. Funct. Anal. 211 (2004), 71–152, http://dx.doi.org/10.1016/S0022-1236(03)00175-7.
- [2] JOSÉ F. ESCOBAR, Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary, Ann. of Math. (2) **136** (1992), 1–50, http://dx.doi.org/10.2307/2946545.
- [3] Jerry L. KAZDAN and F. W. WARNER, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Ann. of Math. (2) 101 (1975), 317–331, http://dx.doi.org/10.2307/1970993.
- [4] JERRY L. KAZDAN and F. W. WARNER, Curvature functions for open 2-manifolds, Ann. of Math.
 (2) 99 (1974), 203–219, http://dx.doi.org/10.2307/1970898.
- [5] ______, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567–597.
- [6] PETER LI and LUEN-FAI TAM, *Green's functions, harmonic functions, and volume comparison*, J. DiVerential Geom. **41** (1995), 277–318.
- [7] RICHARD SCHOEN and S.-T. YAU, On the structure of manifolds with positive scalar curvature, Manuscripta Math. **28** (1979), 159–183, http://dx.doi.org/10.1007/BF01647970.
- [8] RICHARD SCHOEN and DONG ZHANG, Prescribed scalar curvature on the n-sphere, Calc. Var. Partial DiVerential Equations 4 (1996), 1–25, http://dx.doi.org/10.1007/BF01322307.

Cornell University Ithaca, NY, U.S.A. and Stanford University

Stanford, CA, U.S.A. Current address: Duke University, Durham, NC, U.S.A.

E-MAIL: fernando@math.duke.edu

KEY WORDS AND PHRASES: Yamabe problem; scalar curvature; mean curvature. 2000 MATHEMATICS SUBJECT CLASSIFICATION: 53C21 (35J60, 53A30, 58E15). *Received: January 11th, 2005; revised: May 19th, 2005.*