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Existence of outermost apparent horizons with
product of spheres topology

Fernando Schwartz

In this paper we construct the first examples of (n + m + 2)-
dimensional asymptotically flat Riemannian manifolds with
non-negative scalar curvature that have outermost minimal hyper-
surfaces with non-spherical topology for n, m ≥ 1.

The outermost minimal hypersurfaces are, topologically, Sn ×
Sm+1. In the context of general relativity these hypersurfaces cor-
respond to outermost apparent horizons of black holes.

1. Introduction and main result

It follows from the well-known works of Meeks, Simon and Yau [13, 14]
(cf. [11, §4]) that (a) the outermost minimal surface of an asymptotically flat
3-dimensional Riemannian manifold with non-negative scalar curvature is,
topologically, a 2-sphere and that (b) the complement of the region enclosed
by the outermost minimal surface is diffeomorphic to R3 minus a finite
number of balls. Galloway and Schoen generalized statement (a) to higher
dimensions in [7,8], where they proved that, in dimensions three and above,
the outermost minimal hypersurface of an AF manifold with non-negative
scalar curvature must be of positive Yamabe type, i.e., it admits a metric of
positive scalar curvature.

A natural question that arises in this context is to determine whether
there exist high-dimensional AF manifolds with non-negative scalar curva-
ture having non-spherical outermost minimal hypersurfaces.

In this paper we answer the above question in the affirmative by con-
structing the first examples of AF manifolds with non-negative scalar curva-
ture that have non-spherical outermost minimal hypersurfaces in dimensions
4 and above. In particular, a consequence of our work is that (b) does not
hold in high dimensions.
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Our result is inspired by, although unrelated to, the recent discovery of
a black ring1 in general relativity. In that context, the apparent horizon
of the black hole plays the role of the outermost minimal hypersurface of
an AF Riemannian manifold with non-negative scalar curvature. Our main
result is the following.

Theorem 1.1. For any n, m ≥ 1 there exists an asymptotically flat, scalar
flat (n + m + 2)-dimensional Riemannian manifold (M, g) with outermost
apparent horizon which is an outermost smooth minimal hypersurface with
topology Sn × Sm+1.

Remark 1.2. An off-shot of the construction (Corollary 5.13) is that inside
the manifolds we construct there are complete non-compact minimal hyper-
surfaces with a conical singularity at a point. These hypersurfaces can be
thought of as generalized minimal cones.

The proof of the theorem uses a fairly general procedure. We expect
to be able to construct many more non-spherical topologies via this process
in our forthcoming work. Our theorem also has some relevance in high-
dimensional relativity, since it gives suitable initial data with non-spherical
apparent horizon that evolves into a black hole. This behavior is particularly
interesting in high dimensions due to string theory (cf. [15]), and also because
there are the only two known examples of non-spherical black holes, both
5-dimensional: Emparan and Reall’s black ring [5] from above, and Elvang
and Figueras’ black saturn2 [4]. (In [6] approximate spacetime solutions
with black ring topology S1 × Sn, n ≥ 2 appear.)

Overview of the proof. We construct (M, g) by conformally blowing up
an n-sphere inside Rn+m+2. We show that the resulting manifold has a com-
pact outermost apparent horizon because its ends are positive. Then, using
the symmetry of the construction, ODE analysis and a standard geometric
measure theory argument, we prove that the horizon of M is a smooth mini-
mal hypersurface that possibly contains a conical singularity. To prove that
the horizon is actually smooth we use a maximum principle that gives that
the horizon is either (1) smooth everywhere and with topology Sn × Sm+1

or (2) ‘close’ to having (or having) a conical singularity. Case (2) is ruled out
by an ODE analysis of a certain minimal surface equation, where we show

1This is a 5-dimensional rotating black-hole spacetime with horizon topology
S1 × S2.

2A black ring rotating around a spherical black hole
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that being close to having a conical singularity would cause the horizon to
be unbounded, but this is impossible since we know it is compact.

This paper is organized as follows. In Section 2 we introduce notation
and give a general argument for the existence of apparent horizons when
barriers are present. In Section 3 we construct (M, g). We also write a
simple formula for the mean curvature of symmetric hypersurfaces in it. We
use the formula to show that (M, g) has barriers. In Section 4 we prove the
horizon is a smooth minimal hypersurface possibly with a conical singularity
at the origin. In Section 5 we show that the horizon is smooth everywhere
and has topology Sn × Sm+1.

2. Preliminaries

Let (Mn, g) denote an n-dimensional Riemannian manifold with an asymp-
totically flat end E and other ends {Ek}. In this paper we are interested
in studying the outermost horizon of M with respect to the AF end E. To
define it, we work with M̂ , which is M with the ends {Ek} compactified by
adding the points {∞k}.

A marginally trapped region of M̂ (sometimes called marginally outer
trapped) is an open pre-compact set R ⊂ M̂ with boundary Σ = ∂R, which
is a compact smooth hypersurface with non-positive mean curvature
hg(Σ) ≤ 0. (In our convention, negative mean curvature means that the
area of Σ decreases under a variation in the outward-pointing normal direc-
tion.) Any such boundary Σ of a marginally trapped region R is called a
marginally trapped hypersurface.

Let R denote the set of all marginally trapped regions in M̂ . Following
Wald [20] we define the apparent horizon of (M, g) with respect to the end E
as the boundary of the closure of the union of all marginally trapped regions
of M̂ .

Definition 2.1. The apparent horizon of (M, g) is Σ∗ = ∂(∪R).

The apparent horizon of M is clearly unique and outermost. On the
other hand, the apparent horizon is not necessarily smooth. Nevertheless,
in our construction we will prove that the horizon is a smooth minimal
hypersurface by virtue of symmetry and some other considerations.

A natural question that arises is to determine geometric conditions that
guarantee the presence of an apparent horizon. We say that (M, g) has
positive ends if it has two or more ends, and each end of M can be foliated



802 Fernando Schwartz

by smooth compact hypersurfaces with positive mean curvature. A standard
argument, for which we only sketch a proof, is the following.

Theorem 2.2. A manifold with positive ends has an apparent horizon.

Proof. Clearly the set R is non-empty since the region bounded by a union
of exactly one leaf from each end (except for the non-compactified one) is
marginally trapped. We claim that no marginally trapped hypersurface can
enter the positive region of the non-compact end, from which it follows that
∪R '= M . Indeed, suppose that a smooth compact hypersurface intersects
the positive foliation of the non-compact end. At the farthest point with
respect to the foliation, the hypersurface must be tangent to the foliation. By
the maximum principle, the mean curvature of the hypersurface is positive
at that point. Thus it is not marginally trapped. !

3. Existence

We begin this section by constructing the manifold (M, g). Our choice of
metric g is highly symmetric, as we see below. This makes the formula for
the mean curvature of symmetric hypersurfaces easy to compute. Near the
end of this section we use the mean curvature formula for symmetric hyper-
surfaces to show that M has positive ends. The existence of an apparent
horizon in (M, g) follows from Theorem 2.2.

Fix m, n ≥ 1.(M, g) is, basically, (n + m + 2)-dimensional Euclidean
space minus an n-sphere endowed with a conformally related metric that
blows up on the n-sphere.

The construction is as follows. Consider the sphere Sn = Sn × {0}m+1

sitting inside the first (n + 1)-dimensional factor of Rn+m+2. Let Gp denote
the Green’s function for the Laplacian around p ∈ Rn+m+2, i.e., the function
Gp(q) = |p − q|−(n+m), where |p − q| is the Euclidean norm.

For ε > 0 (which we later require to be small) our conformal factor U is
the smooth positive function defined on Rn+m+2 \ Sn by the formula

(3.1) U(p) = 1 + εGp ∗ χSn = 1 + ε

∫

Sn

|p − q|−(n+m) dµ(q).

Definition 3.1. We define (M, g) to be Rn+m+2 \ Sn endowed with the
conformally flat metric g = U4/(n+m)δij . (For simplicity, ε is removed from
the definition of g.)

Lemma 3.2. For (M, g) defined as above we have that
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(i) g is SO(n + 1) × SO(m + 1) invariant, so the group acts by isometries
on (M, g) and fixes both ends.

(ii) ∆0U = 0 outside Sn, so (M, g) is scalar flat.

(iii) Let r(p) = dist(p, Sn). For p near Sn we have U(p) = 1 + εr−m +
O(r1−m) whenever m > 1. For m = 1, U(p) = 1 + εr−1 + O(log r).

(iv) There exists α = α(n, m) > 0 so that as |p| →∞ , U(p) = 1 + εα
|p|−(n+m) + O(|p|1−(n+m)), so spatial infinity is asymptotically flat.

Proof. Statement (i) is direct from the definition of U . For (ii), Green’s
formula gives that U is harmonic. The transformation law for the scalar
curvature under conformal deformations is Rg = −U−(n+m+4)/(n+m)(4(n +
m + 1)/(n + m)∆0U − R0U) which implies Rg = 0. Statement (iii) follows
from the expansion U(p) = 1 + ε

∫
Sn(p2

1 + · · · + p2
m+1 +

∑n+1
i=1 (pi+m+1 −

ξi)2)−(n+m)/2 dµ(ξ), which is a particular case of the calculation in the
Appendix of [16]. The asymptotic formula in (iv) holds because of the
maximum principle together with u(p) → 1 as |p| →∞ , and u(p) → +∞ as
dist(p, Sn) → 0. Standard calculations as those in [1] show that the end is
asymptotically flat in this case. !

The manifold (M, g) is invariant under the action of action of SO(n +
1) × SO(m + 1). We are interested in finding a formula for the mean curva-
ture of SO(n + 1) × SO(m + 1)-invariant hypersurfaces of (M, g) since the
apparent should also be invariant. In order to do that, we first find a formula
for the mean curvature of SO(n + 1) × SO(m + 1)-invariant hypersurfaces of
Euclidean space, and then apply the transformation law for the mean cur-
vature under conformal deformations.

Let Σ ⊂ (Rn+m+2, δij) be an SO(n + 1) × SO(m + 1)-invariant hyper-
surface. If we write a vector in Rn+1 × Rm+1 as (x, y) respecting this decom-
position, then Σ has the form

(3.2) Σ(γ) = {(x, y) : (|x|, |y|) ∈ γ},

where γ is some curve in the quadrant R2
+ = {(a, b) ≥ (0, 0)}.

If γ = (x(s), y(s)) is oriented and parameterized by arc length, the prin-
cipal curvatures of Σ(γ) with respect to an outward pointing unit normal are
κ, −ẋ/y, . . . ,−ẋ/y, ẏ/x, . . . , ẏ/x, where κ is the curvature of γ with respect
to the flat metric. Therefore, the mean curvature of Σ inside Euclidean
space is given by

(3.3) h0 = κ + nẏ/x − mẋ/y.
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Example 3.3. The coordinate sphere in Rn+m+2 is SR(0) = Σ(γ), where
γ = (R cos s/R, R sin s/R), 0 ≤ s ≤ πR/2. Equation (3.3) gives h0 = (n +
m + 1)/R.

The transformation law for the mean curvature under conformal defor-
mations gives that the mean curvature of a hypersurface N ⊂ (M, g) is

(3.4) h = U2−c(h0 + c∂ν lnU),

where c = 2(n + m + 1)/(n + m) and ∂ν is the Euclidean outward-pointing
normal derivative.

If we consider an SO(n + 1) × SO(m + 1)-invariant hypersurface Σ(γ)
like before, and fix the orientation of γ so that the outward-pointing normal
derivative is given by ∂ν = ẏ∂x − ẋ∂y, then the quantity (3.4) from above is
easily computed using Equation (3.3). We write this in the following result.

Lemma 3.4. Let γ = (x(s), y(s)) be parameterized by arc length and ori-
ented as above. Then, the mean curvature of Σ(γ) ⊂ (M, g) is

(3.5) h = U2−c

(
κ + ẏ

(
n

x
+ c

Ux

U

)
− ẋ

(
m

y
+ c

Uy

U

))
,

where c = 2(n + m + 1)/(n + m). If γ is the graph of y(x), the mean cur-
vature is given by

(3.6) h = ± U2−c

√
1 + y′2

(
y′′

1 + y′2 + y′
(

n

x
+ c

Ux

U

)
−

(
m

y
+ c

Uy

U

))
.

A discussion on minimal hypersurfaces of the Euclidean metric that are
SO(n + 1) × SO(m + 1)-invariant appears in [12]. Radially symmetric min-
imal hypersurfaces of Euclidean space have been studied in [9, 10, 19]. Sin-
gular solutions of the minimal surface equation in flat space appear in [2],
where minimal cones in dimension 8 are constructed as examples of mini-
mizers that are singular on the origin. More recent references include [3]
and [18].

We now use Equation (3.5) to compute the mean curvature of barriers
that foliate the ends of M . The foliations consist of large coordinate spheres
on the asymptotically flat end, and small tubes around the missing Sn on
the other end. An essential fact is that the tubes around the missing Sn

have topology Sn × Sm+1 since they are of the form ∂(Sn × Bm+2).

Theorem 3.5. M has positive ends.
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Proof. We begin by foliating a neighborhood of the missing Sn by the
tubes Tr = Σ(γr), where γr = (1 + r cos(s/r), r sin(s/r)) for r > 0 small, s ∈
[0, πr]. Using the asymptotics of Lemma 3.2(iii) and plugging γr into (3.5)
gives

h(Tr) = − U2−c

(
1
r

[
(m + 1) − 2m(n + m + 1)

(n + m)(1 + rm/ε)

]
+

n cos(s/r)
1 + r cos(s/r)

)

+ lower-order terms,

which is a positive quantity for 0 < r < c′ε1/m and ε > 0 small enough, where
c′ > 0 only depends on n, m. (For this calculation we reverse the sign of
Equation (3.5) since the outward-pointing normal of the tubes Tr points
towards the missing sphere.)

On the other hand, the mean curvature of all large-enough coordi-
nate spheres SR(0) = Σ(γR), where γR = (R cos(s/R), R sin(s/R)) for t ∈
[0, πR/2] is positive since M is asymptotically flat. Indeed, it follows from
Example 3.3, Equation (3.5) and Lemma 3.2(iv) that h(SR) = O(1)((n +
m + 1)/R − ε · O(R−(n+m+2))). The right-hand side of this equation is pos-
itive for all R large enough, and continues to be so for all small values
of ε > 0. !
Corollary 3.6. M has an apparent horizon.

4. Regularity

In this section we prove that the horizon is a smooth minimal hypersurface
except possibly at the origin, where it may have a conical singularity. This
last option is ruled out in the next section.

Recall that given a curve γ ⊂ R2
+, the set Σ(γ) is defined as the subset

Σ(γ) = {(|*x|, |*y|) ∈ γ} ⊂ Rn+m+2. We will see that the apparent horizon
is given by Σ(γ∗), where γ∗ is a particular curve. As a matter of fact,
from what we have done so far we can already say a few things about γ∗,
assuming this decomposition holds. For example, the horizon is contained
in a compact set, therefore γ∗ should be contained in a bounded region.
The horizon encloses the missing sphere, therefore γ∗ should separate R2

+
in two regions, one containing all the tubular barriers of Theorem 3.5. This
motivates the following definition. Let Nε ⊂ R2

+ denote a fixed (depends
only on ε) semicircular marginally trapped region that is a neighborhood of
(1, 0). (This is possible by the proof of Theorem 3.5.)

Definition 4.1. Let γ : (−L1, L2) → R2
+, 0 ≤ L1, L2 ≤ ∞, be a curve para-

meterized by arc length. We say that γ is minimal if it is smooth,
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h(Σ(γ)) = 0, and int(R2
+) − γ has two components, one of them being

bounded and containing Nε from above.

Theorem 4.2 (Interior regularity). The apparent horizon is Σ∗ =Σ(γ∗),
where γ∗ (called the horizon curve) is a minimal curve.

Proof. Since (M, g) is SO(n + 1) × SO(m + 1)-invariant it follows that the
horizon also is. Therefore, there is a rectifiable curve γ∗ with Σ∗ = Σ(γ∗),
and it follows that γ∗ is bounded since the horizon is compact.

Claim. γ∗ is smooth in the interior of R2
+.

Indeed, the apparent horizon outer-minimizes area in the homology class
of a marginally trapped hypersurface. Since the mean curvature of the
marginally trapped hypersurface is non-positive, a standard argument shows
that the horizon is actually a minimizing current. A well-known result of
geometric measure theory (see, e.g. [17]) is that the singular set of minimiz-
ing currents has codimension 7 or greater. On the other hand, singularities
of γ∗ in the interior of R2

+ translate into codimension 2 singularities of the
horizon Σ∗ = Σ(γ∗), which proves the claim.

To finalize, recall that a minimizing current is stationary; so wherever
the horizon is smooth it must be a minimal hypersurface. !

Remark 4.3. Whenever m + n + 2 ≤ 7 the above theorem gives that the
horizon is a smooth minimal hypersurface everywhere. If m, n ≤ 6, the hori-
zon may only have a conical singularity at the origin. Indeed, since the
horizon is minimizing it has codimension 7 singularities. If n + m + 2 ≤ 7,
the singular set of the horizon can only be empty. For the other case, note
that by symmetry the singular set can only have dimension 1, n or m. This
way, if n, m ≤ 6, the singular set may only be 1-dimensional, so it must be
a conical singularity at the origin (see Theorem 4.6 below).

From Equation (3.5) it follows that the condition h(Σ(γ)) = 0 for mini-
mal curves translates into the following equation for the curve γ(s) = (x(s),
y(s)) :

(4.1) κ + ẏ

(
n

x
+ c

Ux

U

)
− ẋ

(
m

y
+ c

Uy

U

)
= 0 on int(R2

+).

Solutions to this equation are graphical almost everywhere with respect
to both axes.
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Lemma 4.4. Except at isolated vertical (respectively horizontal) points, a
curve that solves (4.1) is locally a graph over the x-axis (respectively y-axis).

Proof. Suppose ẋ(s) = 0 for all s ∈ (s0, s1). Writing Equation (4.1) for
s0 < s < s1 gives n/x0 + cUx/U = 0, where x0 = x((s1 + s2)/2). This is
impossible since Ux/U is never constant on vertical segments. A similar
argument works for the horizontal case. !

We will show that the apparent horizon is a minimal hypersurface smooth
everywhere except possibly at the origin, where it may have a conical singu-
larity. (We remove this last possibility in the next section.) In order to prove
this statement we need the following ODE result. Recall that Nε ⊂ R2

+ is
the marginally trapped neighborhood of (0, 1) from before.

Proposition 4.5. Smooth solutions of Equation (4.1) with an endpoint
on the axes minus Nε exist uniquely. This is, if γ is smooth and solves
Equation (4.1) with γ(0) ∈ (axes − Nε), then γ is unique. Furthermore, γ̇(0)
is perpendicular to the axis, unless γ(0) = (0, 0), in which case the angle is
tan−1

√
m/n. It follows that there exists a neighborhood Oε of the axes

inside R2
+ − Nε that is foliated by these unique solutions. (See, Figure 1.)

Proof. From Lemma 4.4, solutions of Equation (4.1) with an endpoint on the
y-axis are graphical over the x-axis for a short while. In that case, Equation
(4.1) becomes

(4.2) y′′/(1 + y′2) + y′(n/x + cUx/U) − (m/y + cUy/U) = 0.

An ODE analysis of this equation gives local existence of smooth solutions.
By inspecting the equation it follows that the condition y′(0) = 0 (or y′(0) =√

m/n when y(0) = (0, 0)) is required. The same can be done for solutions
that intersect the x-axis outside Nε. !

Figure 1: The neighborhood Oε ⊂ R2
+ − Nε is foliated by solutions of (4.1).
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Using the ODE proposition we prove the main result of this section.

Theorem 4.6 (Regularity). The apparent horizon of (M, g) is a minimal
hypersurface smooth everywhere except possibly at the origin, where it may
have a conical singularity.

Proof. The main idea of the proof is to show that if γ is a minimal curve
that does not match one of the smooth solution curves that foliate Oε (from
Proposition 4.5) as it approaches the boundary, then Σ(γ) cannot be an area
minimizer. We will show this for a curve that has an endpoint in the y-axis.
The analysis for endpoints on the x-axis (outside Nε) is analogous.

Let γ = (x, y) : (−L1, L2) → R2
+ be a minimal curve. Without loss of

generality we analyze the behavior at L2 only, where we have lim infs→L2

x(s) = 0.

Claim 1. If Σ(γ) outer-minimizes area in the homology class of a barrier,
then L2 < ∞, y(s), x(s) are eventually monotonic as s → L2 and extend
continuously to (−L1, L2].

Indeed, if ẏ(si) = 0 for infinitely many si → L2, then the curve must be
tangent to some leaf of the foliation of Oε. By uniqueness of second-order
ODEs it follows that γ becomes the leaf itself. This gives that y is eventually
monotonic and that lims→L2 y(s) exists and is finite. Now suppose x(s) has
infinitely many local minima as s → L2, which are arbitrarily close to the
y-axis. By cutting off the curve at one of these points (that is close enough
to the axis) and replacing that segment by a horizontal line up to the axis,
the length of the curve decreases. Furthermore, the cutoff curve continues
to enclose the barrier and the area of Σ(γ) decreases (since the area form
is xnymU2cds). Thus we have found a curve enclosing the barrier with less
area than the horizon, but this is impossible since Σ(γ) outer-minimizes.
We deduce that both x(s), y(s) are eventually monotonic. Since the curve is
bounded and parameterized by arc length, it follows that L2 must be finite.
This way, the curve extends continuously to (−L1, L2] since it is Lipschitz.

From the above argument it follows that L1, L2 < ∞ and γ is continuous
on [0, L], where L = L1 + L2. This proves the claim.

Claim 2. γ meets the axes perpendicularly.

From Lemma 4.4, γ is locally a graph. In particular, around its endpoint
on the y-axis, γ is the graph of y(x) over the interval [0, δ) for some δ > 0.
Assume initially that y(0) > 0. An analysis of Equation (4.2) gives that



Apparent horizons with product of spheres topology 809

y′(0) exists and is either zero or ± infinity. If y′(0) = ±∞ then γ cannot
minimize by a cut-off argument like the one above. This way, it follows that
Σ(γ) is smooth so long as γ does not go through the origin. Nevertheless,
in that case, we have that

Claim 3. If γ(0) = (0, 0) then γ meets the origin at an angle tan−1
√

m/n.

To prove this last part we make a blow-up argument around the origin.
Consider the rescaled curve γλ = (u(s), v(s)) = (λx(s/λ), λy(s/λ)). Multi-
plying Equation (4.1) by 1/λ and evaluating at s/λ, we get that, in the limit
λ → ∞, the rescaled curve solves κ + nv̇/u − mu̇/v = 0. Since this equation
is invariant under rescaling of the graph, its solution must be a line. This
way γ has a tangent line at the origin. A direct calculation shows that this
line has an angle tan−1

√
m/n.

It is evident that if γ(0) = (0, 0) the apparent horizon has a singularity at
the origin. By the rescaling argument from above we get that the tangent
cone of the horizon at the origin is the SO(n + 1) × SO(m + 1)-invariant
minimal cone in Rn+m+2. This ends the proof. !

5. Topology

Our goal here is to prove the following result.

Theorem 5.1. The apparent horizon is smooth everywhere and has topol-
ogy Sn × Sm+1.

Recall that, from before, the horizon is given by Σ(γ∗). Furthermore,
the horizon is everywhere smooth, unless γ∗ goes through the origin — in
that case Σ(γ∗) gets a conical singularity around the origin.

Idea of the proof of Theorem 5.1. The main idea is to prove that the curve
γ∗ is (roughly speaking) a small semicircle around the point (1, 0). This
way, γ∗ does not go through the origin, and the horizon does not have a
conical singularity. Furthermore, we get that the topology of the horizon is
automatically Sn × Sm+1.

In order to show that γ∗ is ‘semicircular’ we prove that there are three
regions in the plane that γ∗ (including its endpoints) must avoid altogether.
Please see Figure 2 for a depiction.
Region (1): the marginally trapped region Nε which is a small enough semi-
circle around (1, 0). This region is already forbidden since the end is positive.
It exists by the argument in the proof of Theorem 3.5.
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Figure 2: The horizon curve γ∗ and the forbidden regions.

Region (2): the region {y > c′ε1/(n+m)} ⊂ R2
+. This region is forbidden by

the maximum principle which we prove in Section 5.1 below. (Here c′ > 0
will be a constant independent of ε.)
Region (3): a small portion of the axes around the origin. We rule out
this region in Section 5.2 below. This portion is forbidden because there
is a conical attractor that makes ‘almost conical curves’ become complete
graphs, which are unbounded.

It follows that once regions (1)–(3) are forbidden, all that γ∗ can be is
a deformation of a semicircle around (1, 0). This is because γ∗ is simple,
bounded, and intersects the x-axis on each side of (1,0).

5.1. Maximum principle

We begin by finding an estimate for the derivatives of U which will be used
in the maximum principle.

Lemma 5.2. Let r2 = (x − 1)2 + y2 as before. Then

(5.1) |Ux| ≤ εc′r−(m+n+1) and 0 ≤ −Uy ≤ ε c′r−(n+m+1),

where c′ > 0 is a constant independent of ε.

Proof. From the expansion U(x, y) = 1 + ε
∫
Sn(y2 + (x − ξ1)2 + ξ2

2 + · · · +
ξ2
n+1)−(n+m)/2dµ(ξ), it follows that |Ux| ≤ εc′(x + 1)r−(m+n+2) and that 0 ≤

−Uy ≤ ε c′yr−(n+m+2), which gives the result. !

Theorem 5.3 (Maximum principle). γ∗ is contained in {y≤c′ε1/(n+m)},
where c′ > 0 is a constant independent of ε.

Proof. We will show that the maximum height of γ∗ is bounded by c′ε1/(n+m).
Indeed, let γ∗ = (x(s), y(s)). From the proof of Theorem 4.6 it follows that
y(s) has a global maximum at some s0 > 0 for which ẏ(s0) = 0. We first
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claim that this global maximum is not located on the y-axis. Indeed, this
follows from the estimates of Lemma 5.10 below, which show that the curve
is concave up around the y-axis. If the curve is oriented so that s = 0 at the
furthest endpoint on the x-axis, then at s0 we have k(s0) ≥ 0 and ẋ(s0) =
−1. Evaluating Equation (4.1) at s0 gives κ(s0) + m/y(s0) + cUy/U = 0.
Using the estimate of Lemma 5.2 together with U ≥ 1 and κ ≥ 0 we get
m/y(s0) ≤ εcc′r−(n+m+1). Since y ≤ r, it follows that y(s0)n+m ≤ cc′ε/m.
This ends the proof. !

5.2. The conical attractor

Here we set δ = ε1/(n+m+1) to make some expressions simpler. We are inter-
ested in proving the following result.

Theorem 5.4. For δ > 0 small enough, any curve that solves Equation
(4.1) and has an endpoint on {0} × [0, δ] or on [0, δ] × {0} is a complete
graph, hence unbounded.

We will give a proof of this theorem for curves that have one endpoint
on {0} × [0, δ]. The other case is analogous.

Remark 5.5. The depiction of Figure 2 is accurate. Indeed, ({0} × [0, δ]) ∪
([0, δ] × {0}) intersects {y > c′ε1/(n+m)} of the maximum principle since δ =
ε1/(n+m+1) and ε1/(n+m+1) > c′ε1/(n+m) for ε > 0 small enough.

In order to proceed with the proof, we introduce a change of coordinates
in Equation (4.2) to study its behavior. Similar coordinates were used by
Ilmanen in [12] to study wiggly companions of minimal cones, which satisfy
Equation (4.2) with U ≡ 1. In that case, the change of coordinates makes the
equation an autonomous 2-dimensional system, for which stability analysis
is simple. In our case, our equations are not autonomous, so the analysis is
more involved.

Consider the coordinates t = log x, W = y/x, Z =dy/dx. Using the chain
rule, Equation (4.2) becomes the first-order system

(5.2) Wt(t, W, Z) = Z − W, Zt(t, W, Z) = n
1 + Z2

W
(K1 − K2WZ),

where K1(t, W ) = m/n + cyUy/(nU) and K2(t, W ) = 1 + cyUx/U .
Let γ be a curve that solves Equation (4.1) and has an endpoint on

{0} × [0, δ]. Lemma 4.4 gives that γ is the graph of a function y(x) that
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solves Equation (4.2) near the axis. Therefore, we may use the (W, Z)
coordinates and Equation (5.2) to obtain the ‘phase’ of γ, i.e., the tuple
(W, Z) that represents γ inside of WZ-space (at least for a short time)
which is given by the above change of coordinates.

Idea of the proof of Theorem 5.4. Equation (5.2) is ‘almost’ autonomous,
which is the motivation for examining the phase plane in the (W, Z) coordi-
nates. (In the Euclidean case, the analogous equation becomes autonomous.
See Figure 3(a), and [12].) We show that there exists a trapping region Ω in
the plane, for which the evaluation of the vector field (Wt, Zt) on ∂Ω always
points towards its interior (See Figure 3(b)). Furthermore, we prove that Ω
is bounded in the Z(= dy/dx)-direction. This gives that any curve whose
phase enters Ω does not blow up in finite time; therefore it is a complete
graph and is unbounded. In the last part of the proof we find global esti-
mates that show that the phase of curves that solve Equation (4.1) and have
an endpoint on {0} × [0, δ] eventually lies in Ω. We can expect this behav-
ior since, in the Euclidean case, a minimal hypersurface that is close to a
minimal cone at the origin converges to the cone at infinity. In particular,
it remains graphical and is unbounded.

We now introduce the conical attractor, which actually is just an attract-
ing region. (In the Euclidean case, curves in phase space do spiral into the
attracting fixed point given by the minimal cone.)

Proposition 5.6. Let Ω′ = {(δ, 0) ≤ (W, Z) ≤ (+∞, n/(mδ) + 1)} and C
as below. Then Ω =Ω ′ − C is a trapping region, i.e., the quantity (Wt, Zt)
of Equation (5.2) evaluated on ∂Ω always points towards the inside of Ω.

Figure 3: (a) Direction field (Zt, Wt) for U = 1. (b) The trapping region Ω.
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The region C is a region bounded by two special curves and two lines.
Roughly speaking, C is a ‘worst-case scenario region’ for the vector field, as
we see below. See Figure 3(b) for a depiction of all of them.

We begin by bounding the terms K1, K2 from above. We will later use
these bounds to construct the worst-case scenario region C.

Lemma 5.7. Let K1, K2 be as in the system (5.2). On the region {(t, W ) :
W ≥ δ, t ∈ R} we have the uniform bounds

m

n
− c′εα ≤ K1(t, W ) ≤ m

n
and 1 − c′εα ≤ K2(t, W ) ≤ 1 + c′εα,

where α = 1 − (m + n)/(m + n + 1) > 0.

Proof. W ≥ δ is just y ≥ δx, so it must be r ≥ δ in that region. The rest
follows from applying the estimate (5.1). !

A consequence of these estimates are global bounds for the vector field
(Wt, Zt) in a particular region of the WZ-plane.

Corollary 5.8. Let R = [δ, 2δ] × [0, 2δ] and (Wt, Zt) from (5.2). Then

inf
R×R

Wt ≥ −2δ and inf
R×R

Zt ≥ m − nc′εα

2δ
− δ(1 + c′εα)(2n + 8δ2),

where α = 1 − (m + n)/(m + n + 1) > 0.

The set C is constructed as follows. Let σ denote an integral curve of
(Wt, Zt) in the WZ-plane that starts at the bottom right corner of R, i.e.,
at the point p = (2δ, 0). (Note: such a curve exists by general ODE results,
but it is not necessarily unique since the system (5.2) is not autonomous.)
Let R1(σ) ⊂ R denote the region inside R that is bounded on top by the
diagonal and bounded on the right by the curve σ. We define C1 to be
the intersection of all the possible R1(σ), where σ is an integral curve that
starts at p. (This is, C1 is a worst-case scenario region for integral curves
that start at p.) C1 is not empty. Indeed, a direct calculation using Corollary
5.8 shows that

Lemma 5.9. Let L be the line Z(W ) = −W (m/4δ2) + m/2δ2. Then C1
includes the region R1(L), and R1(L) ⊃ ({δ} × [0, δ] ∪ [δ, 2δ] × {0}).

Now let σ denote an integral curve that starts at q = (δ, δ), and let R2(σ)
denote the region inside C1 bounded on top by the curve σ. Note that any
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such σ is increasing (as a graph on the W -axis) since Wt is positive inside R.
We define C to be the intersection of all the possible R2(σ), where σ is an
integral curve that starts at q. (This is, add to C1 a worst-case scenario for
integral curves that start at q.) C is not empty since σ is increasing. Indeed,
we are, at worst, capping off the top of C1 by a horizontal line through q.
See Figure 3(b).

Proof of Proposition 5.6. The boundary of Ω consists of five parts as dep-
icted in Figure 3(b). The roof is given by a segment of the line {Z =
n/(mδ) + 1} that lies well inside the region Z = K1/(K2W ). This gives
that Zt points downward on the top. The bottom boundary is part of the
positive W -axis, and Zt is positive there. The left-side boundary consists of
three segments. One is the segment of the line {W = δ} that lies above the
diagonal, for which Wt is non-negative. What is left is the top and right of
the boundary of C. From the construction it follows that (Wt, Zt) points
inwards there as well. !

We now show that the phase of any curve that solves Equation (4.2) and
has an endpoint on {0} × [0, δ] eventually lies in Ω. In order to do that, we
compute a second-order approximation of these solutions. We check that
after a small time they are close to the conical solution. (See Figure 1 for a
snapshot of this phenomenon.)

Lemma 5.10. A smooth solution of Equation (4.2) with y(0) > 0 satisfies

y′′(0) =
m

(n + 1)
1

y(0)
+ c

Uy/U − Ux/U

n + 1
=

m

(n + 1)
1

y(0)
+ ε O(r−(m+n+1)).

Proof. We know from the proof of Theorem 4.6 that y′(0) = 0. Multiplying
(4.2) by y, taking limit x → 0 and using L’Hopital’s rule in the term y′/x
gives (n + 1)y′′(0)y(0) − m + y(0)c(Ux/U − Uy/U) = 0. Together with the
gradient estimate of Lemma 5.2 and the fact that U ≥ 1, this gives the result.

!

Corollary 5.11. Suppose y solves Equation (4.2) with y(0) = δ for δ > 0
small enough. Then for 0 ≤ x ≤ δ, we have that

y(x) = δ +
m

2(n + 1)δ
x2 + O(ε), and y′(x) =

mx

(n + 1)δ
+ O(ε).

Proof. Follows from Lemma 5.10 and Taylor’s theorem. !
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Proposition 5.12. For δ ≥ 0 small enough, the phase of any solution y of
Equation (4.2) with y(0) = δ eventually enters the region Ω.

Proof. We first prove this for a curve with y(0) = 0. Indeed, in that case
y(x) =

√
m/nx + O(ε) and y′(x) =

√
m/n + O(ε), from before. This way,

for small x > 0 we get W = y/x ≈
√

m/n and Z = y′ ≈
√

m/n, so (W, Z)
lies inside Ω.
Whenever y(0) = δ > 0 is small, using the expansions of Corollary 5.11 eval-
uated at x = δ gives W = y(δ)/δ ≈ 1 + m/2(n + 1) and Z = y′(δ) ≈ m/(n +
1), which also gives a point that lies within Ω. !

Proof of Theorem 5.4. Follows directly from the above proposition together
with Proposition 5.6. This ends the proof of Theorem 1.1 as well. !

Corollary 5.13. (M, g) contains a non-compact minimal hypersurface with
a conical singularity at the origin.

Proof. Follows directly from Proposition 4.5 together with Theorem 5.4. !
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