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Abstract We show that the Yamabe invariant of manifolds with boundary satisfies a
monotonicity property with respect to connected sums along the boundary, similar to the
one in the closed case. A consequence of our result is that handlebodies have maximal
invariant.
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1 Introduction, main results, and sketch of proof

The Yamabe invariant of a closed manifold is a smooth invariant. It is a minimax of the total
scalar curvature functional over the space of unit volume metrics on the manifold. More
precisely, one computes the infimum of the functional over a fixed conformal class, and then
the supremum of the infimums is computed over the set of all conformal classes.

The Yamabe invariant has been extensively studied. It is known that whenever the
minimax is achieved the manifold admits an Einstein metric, which is an important question
in geometry. When the invariant is positive it is very difficult to determine whether it is
achieved or not. Furthermore, very few invariants have been computed in the positive case.

The analysis of the Yamabe invariant can also be carried out in the realm of manifolds
with boundary. The corresponding quantity to study is a quotient of the energy, which in this
case is the total scalar curvature plus the total mean curvature of the boundary, divided by a
normalization term. Since one can choose to normalize with respect to the total volume of the
manifold or the total area of its boundary, two possible definitions for the invariant appear.
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Let (Mn, g) be a compact manifold with boundary. Proceeding in analogy with the closed
case, we define the (conformally invariant) Yamabe constant of (M, g) by

Yλ(M, [g]) = inf
g̃∈[g]

E(g̃)

Nλ(g̃)
, (1)

where E(g̃) is the energy of the metric g̃ and λ ∈ {0, 1} determines whether the normalization
Nλ is with respect to the volume of g̃ (λ = 1) or the area of the boundary of g̃ (λ = 0). It
is a well known fact that −∞ ≤ Yλ(Mn, [g]) ≤ Yλ(Sn

+, [g0]), where g0 denotes the round
metric on the hemisphere.

Existence of minimizers of the above quotient have been studied by Escobar in [5,6],
where he proved that solutions exist in most cases (See also [4,9,10]). A standard argument
shows that, when writing Eq. 1 in terms of conformal factors of conformally related metrics
(see Eqs. 5, 6), solutions of the Euler-Lagrange equations correspond to conformally related
metrics that solve the Yamabe problem on (M, g). This is, conformal metrics with constant
scalar curvature and minimal boundary (in the case λ = 1), and scalar flat metrics with
boundary having constant mean curvature (whenever λ = 0).

The Yamabe invariant of a smooth manifold with boundary is defined as

σλ(M) = sup
[g]∈C

Yλ(M, [g]), (2)

where C is the set of all smooth conformal classes of metrics on M . From the considerations
above it follows that −∞ < σλ(Mn) ≤ σλ(Sn

+).
In this paper we prove the following result.

Theorem 1.1 Let M1, M2 be smooth n-manifolds with boundary, n ≥ 3. Let M1#M2 denote
their connected sum along the boundary. Then, for λ ∈ {0, 1},

σλ(M1#M2) ≥ σλ(M1 & M2), (3)

where M1 & M2 denotes the disjoint union of M1, M2 and

σλ(M1 & M2) =
{

−(|σλ(M1)|
n
2 + |σλ(M2)|

n
2 )

2
n σλ(M1), σλ(M2) ≤ 0,

min{σλ(M1), σλ(M2)} otherwise.
(4)

Our result is an extension, to manifolds with boundary, of Kobayashi’s classical theorem
about monotonicity of the Yamabe invariant over connect sums of closed manifolds [8].
The proof of our result parallels his proof with the added boundary ingredients, plus some
approximation results that are adaptations of some found by Akutagawa and Botvinnik [1].

An interesting consequence of our result is the following corollary.

Corollary 1.2 Handlebodies have maximal invariant. This is, if Hn is the result of attaching
a finite number of handles to the n-ball, then

σλ(H) = σλ(Sn
+), λ ∈ {0, 1}.

Sketch of the Proof of Theorem 1.1 The proof of the theorem is divided into two cases:
(a) when the Yamabe invariant of both M1 and M2 is positive, and (b) when one of the
invariants is nonpositive. The idea behind the proof of (a) is to show that if both M1, M2 have
positive metrics, then after gluing a long enough handle over the boundary of M1 & M2 one
obtains a manifold whose Yamabe constant is larger than the Yamabe constant of M1 & M2
minus a small error. Therefore, the invariant of M1#M2 is no less than the invariant of
M1 & M2. To prove (b) we endow M1 and M2 with some particular negative metrics, which
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can be done by a classic result of Kazdan and Warner. Using some approximation lemmas
(found in the appendix) we prove that the Yamabe constant of the connect sum is bounded
below by the appropriate quantities in terms of the Yamabe constants of M1 and M2.

2 Preliminaries

Let (Mn, g) be a Riemannian manifold of dimension n ≥ 3. The energy of u ∈ C∞(M) with
respect to g is defined as

Eg(u) =
∫

M

(
|∇gu|2 + n − 2

4(n − 1)
Rgu2

)
dVg + n − 2

2

∫

∂ M
hgu2d Ag. (5)

Using the transformation laws for the scalar curvature and the mean curvature, it is standard to
note that the energy of u is the total scalar curvature plus the total mean curvature of the con-
formally related metric g̃ = u4/(n−2)g, i.e., Eg(u) = E(g̃) =

∫
M Rg̃dV + n−2

2

∫
∂ M hg̃d A.

For λ ∈ {0, 1}, the normalization factor is just

Ng,λ(u) = λ

∫

M
|u| 2n

n−2 dVg + (1 − λ)

(∫

∂ M
|u| 2(n−1)

n−2 d Ag

) n
n−1

, (6)

It follows that Ng,λ(u) = Nλ(g̃) = λV ol(M, g̃)+(1−λ)(Area(∂ M, g̃)n/(n−1)), as desired.
This way, we get that

Yλ(M, [g]) =





inf

{
Eg(u)

Ng,0(u) : u (≡ 0 on ∂ M
}

if λ = 0,

inf
{

Eg(u)

Ng,1(u) : u (≡ 0 on M
}

if λ = 1.

Outline of the Proof of Theorem 1.1 The simple argument below shows how Eq. 4 of
the theorem is satisfied. The proof of Eq. 3 is split into two cases. In Sect. 3 we deal with
the case when both σλ(M1) and σλ(M2) are positive, where we prove that Eq. 3 follows from
the (more general) Handle Monotonicity Theorem (Theorem 3.1). In Sect. 4 we study the
case when at least one of σλ(M1), σλ(M2) is nonpositive.

In Sects. 3 and 4 we use a series of approximation arguments. These are modifications of
the approximation lemmas that appear in Kobayashi’s original paper [8] and Akutagawa and
Botvinnik’s paper [1]. We include their proofs, for sake of completeness, in the Appendix.

Lemma 2.1 Let λ ∈ {0, 1} and (M1, g1), (M2, g2) be Riemannian manifolds with boundary.
The following holds:

Yλ(M1 & M2, g1 & g2)

=
{

−(|Yλ(M1, g1)|
n
2 + |Yλ(M2, g2)|

n
2 )

2
n Yλ(M1, g1), Yλ(M2, g2) ≤ 0,

min{Yλ(M1, g1), Yλ(M2, g2)} otherwise.
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Proof Write E1(u), V1(u) and E2(u), V2(u) for the expressions in Eqs. 5 and 6 integrated
over M1, ∂ M1 and M2, ∂ M2, respectively. We have that

Yλ(M1 & M2, g1 & g2)

= inf
{

E1(u) + E2(u) : u ∈ C1(M̄) with V1(u) + V2(u) = 1
}

= inf

{

V1(u)
n−2

n
E1(u)

V1(u)
n−2

n

+ V2(u)
n−2

n
E1(u)

V1(u)
n−2

n

: V1(u) + V2(u) = 1

}

= inf
{
α

n−2
n Yλ(M1, g1) + (1 − α)

n−2
n Yλ(M2, g2) : 0 ≤ α ≤ 1

}

=
{

−(|Yλ(M1, g1)|
n
2 + |Yλ(M2, g2)|

n
2 )

2
n Yλ(M1, g1), Yλ(M2, g2) ≤ 0,

min{Yλ(M1, g1), Yλ(M2, g2)} otherwise.

*&
As a direct consequence of the lemma is the proof of Eq. 4.

Corollary 2.2 Let Mn
1 , Mn

2 , n ≥ 3 be Riemannian manifolds with boundary. The following
holds:

σλ(M1 & M2) =
{

−(|σλ(M1)|
n
2 + |σλ(M2)|

n
2 )

2
n σλ(M1), σλ(M2) ≤ 0,

min{σλ(M1), σλ(M2)} otherwise.

3 Proof of the positive case

The proof of Theorem 1.1 is split in two cases: the positive case, which we present here, and
the nonpositive case (where at least one of σλ(M1), σλ(M2) is nonpositive), which we prove
in Sect. 4 below.

Throughout this section we assume that M1, M2 are n-dimensional, compact manifolds
with boundary (n ≥ 3) with positive Yamabe invariant. We actually prove here a more general
theorem, valid only for the positive case. We show that the Yamabe invariant is monotonic
when attaching a handle over the boundary. In particular, from this it follows that all handle-
bodies have maximal Yamabe invariant.

Theorem 3.1 (Handle monotonicity) Let M be a compact manifold with boundary and
positive Yamabe invariant (σλ(M) > 0). Denote by M̄ the manifold obtained by attaching a
handle to the boundary of M. Then

σλ(M̄) ≥ σλ(M).

The handle monotonicity theorem has two immediate consequences.

Proof of Theorem 1.1 in the Positive Case Assuming that σλ(M1), σλ(M2) > 0, apply
Theorem 3.1 to M1 & M2 when attaching a handle between a boundary component of M1
and a boundary component of M2. Together with Corollary 2.2 this gives

σλ(M1#M2) ≥ σλ(M1 & M2) = min{σλ(M1), σλ(M2)}.
*&

Proof of Corollary 1.2 Use the Handle monotonicity theorem on B̄n , taking into consider-
ation that σλ(B̄n) = σλ(Sn

+) is maximal. *&
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We now give the proof of the main theorem of this section.

Proof of Theorem 3.1 Fix ε > 0 small. Let g′ be a metric on M so that 0 < Yλ(M) − ε <

Yλ(M, g′).
Pick p1, p2 ∈ ∂ M . By Lemma A.8 there is a metric g close to g′ so that in a neighborhood

of p1 and p2, g is isometric to a fixed neighborhood Bλ(q, ε′) of q ∈ ∂Sn
λ , for some ε′ > 0.

The Lemma also gives that Rg ≥ 0 on M .
There exists a function λ ∈ C∞(M − {p1, p2}) which is 1 outside Bλ(q, ε′/2) and such

that the metric g̃ = eλg is isometric to the half infinite cylinder [0,∞) × Sn−1
+ around the

removed points. For convenience we write

(M − {p1, p2}, g̃) = [0,∞) × Sn−1
+ ∪ (M̃, g̃) ∪ [0,∞) × Sn−1

+ ,

where M̃ is the complement of the two cylinders.
We glue (M̃, g̃) with [0, l] × Sn−1

+ to get a smooth Riemannian manifold (M̄, gl). This
is, M̄ is the result of attaching a handle on M̃ connecting neighborhoods of p1 and p2. We
have the follwing decomposition:

(M̄, gl) = (M̃, g̃) ∪ [0, l] × Sn−1
+ . (7)

Since

Yλ(M̄, gl) = inf
u

∫
M̄ (|∇u|2 + n−2

4(n−1) Rgl u
2)dVgl + n−2

2

∫
∂ M̄ hgl u

2d Agl

(
λ

∫
M̄ |u| 2n

n−2 dVgl + (1 − λ)
(∫

∂ M̄ |u| 2(n−1)
n−2 d Agl

) n
n−1

) n−2
n

we can take a positive function ul ∈ C∞(M̄) such that

∫

M̄
(|∇ul |2 + Rgl u

2
l )dvgl + n − 2

2

∫

∂ M̄
hgl u

2
l dσl < Yλ(M̄, gl) + 1

1 + l
(8)

and

λ

∫

M̄
|ul |

2n
n−2 dVgl + (1 − λ)

(∫

∂ M̄
|ul |

2(n−1)
n−2 d Agl

) n
n−1

= 1. (9)

Lemma 3.2 There exists a section, say {tl} × Sn−1
+ in the cylindrical part of M̄ (see Eq.7)

such that
∫

{tl }×Sn−1
+

(|∇ul |2 + u2
l )dVl +

∫

{tl }×Sn−2
u2

l d Al <
A
l

,

where A is a constant independent of l.

Proof Let

A′ = − min{0, min
x∈∂ M̄

hg(x)}Area(∂ M̃, g̃)
1

n−1 − min{0, min
x∈M̄

Rg(x)}V ol(M̃, g̃)
2
n .
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Using Hölder’s inequality on (8) and the fact that Rgl ≥ 0 outside the cylindrical part of M̄
we get

∫

[0,l]×Sn−1
+

(
|∇ul |2 + n − 1

4(n − 2)
(n − 1)(n − 2)u2

l

)
dV

+(n − 2)(n − 3)

∫

[0,l]×Sn−2
u2

l d A

< Yλ(M̄, gl) + 1
1 + l

+ A′.

This way, there is a tl ∈ [0, l] such that
∫

{tl }×Sn−1
+

(
|∇ul |2 + n − 1

4(n − 2)
(n − 1)(n − 2)u2

l

)
dV + (n − 2)(n − 3)

∫

{tl }×Sn−2
u2

l d A

<

(
Yλ(M̄, gl) + 1

1 + l
+ A′

) /
l.

This proves Lemma 3.2. *&
We continue with the proof of Theorem 3.1 as follows: cut off M̄ on the section {tl}×Sn−1

+
and attach two half-infinite cylinders to it, so (M −{p1, p2}, g̃) reappears. This time we write
it as

(M − {p1, p2}, g̃) = [0,∞) × Sn−1
+ ∪ (M̄ − {tl} × Sn−1

+ , gl) ∪ [0,∞) × Sn−1
+ .

We think of ul as defined on M̄ − {tl} × Sn−1
+ and extend it to the whole space M − {p1, p2}

as follows:
Let Ul be a Lipschitz function on M − {p1, p2} such that

Ul = ul on M̄ − {tl} × Sn−1
+

and

Ul(t, x) =
{

(1 − t)ũl(x) for (t, x) ∈ [0, 1] × Sn−1
+

0 for (t, x) ∈ [1,∞) × Sn−1
+

where ũl = ul |{tl }×Sn−1
+

∈ C∞(Sn−1
+ ). Now it is easy to see from (8) and Lemma 3.2 that

∫

M−{p1,p2}
(|∇Ul |2 + n − 1

4(n − 2)
Rg̃U 2

l )dVg̃ + n − 2
2

∫

∂ M
hg̃U 2

l d Ag̃ < Yλ(M̄, gl) + B
l

,

where B is a constant independent of l. From Eq. 9 it follows that

λ

∫

M̄
|Ul |

2n
n−2 dVgl + (1 − λ)

(∫

∂ M̄
|Ul |

2(n−1)
n−2 d Agl

) n
n−1

> 1.

Therefore, we have

inf
U






∫
M−{p1,p2}(|∇U |2 + n−1

4(n−2) Rg̃U 2)dVg̃ + n−2
2

∫
∂ M hg̃U 2d Ag̃

(
λ

∫
M−{p1,p2} |U | 2n

n−2 dVg̃ + (1 − λ)(
∫
∂ M |U | 2(n−1)

n−2 d Ag̃)
n

n−1

) (n−2)
n





(10)

≤ σλ(M̄),
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where the infimum is taken over all non-negative Lipschitz functions U with compact sup-
port. It follows from the choice of the metric g̃ that the left side of Eq. 10 is equal to
Yλ(M, g). Since ε was arbitrary we conclude σλ(M) ≤ σλ(M̄), which completes the proof of
Theorem 3.1. *&

4 Proof of the nonpositive case

In this section we give a proof of Theorem 1.1 whenever one of σλ(M1), σλ(M2) is
nonpositive. We first prove some lemmas.

Lemma 4.1 Let (Mn, g′), n ≥ 3 be a compact manifold with boundary. Suppose that −∞ <

Yλ(M, g′) ≤ 0. Then the following holds:

(λ = 1) The scalar curvature Rg of a metric g ∈ [g′] with hg ≥ 0 satisfies

n − 2
4(n − 1)

(min Rg)V ol(M, g)2/n ≤ Y1(M, g),

and equality above implies that Rg is a constant.
(λ = 0) The mean curvature hg of a metric g ∈ [g′] with Rg ≥ 0 satisfies

n − 2
2

(min hg)Area(∂ M, g)1/(n−1) ≤ Y0(M, g′),

where equality above implies that hg is a constant.

Proof We first prove the case λ = 1. Let g ∈ [g′] with hg ≥ 0. A standard argument
(c.f. [3]) shows that, since hg ≥ 0 we must have min Rg ≤ 0, or else Y (M, [g′]) > 0. This
way,

Y1(M, [g′]) = inf
u (≡0 in M

∫
M (|∇u|2 + n−2

4(n−1) Rgu2)dvg + n−2
2

∫
∂ M hgu2dσ

(
∫

M u2n/(n−2)dσ )(n−2)/n

≥ n − 2
4(n − 1)

inf
u (≡0 in M

(min Rg)
∫

M u2dvg

(
∫

M u2n/(n−2)dσ )(n−2)/n

≥ n − 2
4(n − 1)

(min Rg)V ol(M, g)2/n .

The last line holds by Hölder’s inequality. If this inequality were an equality, take a sequence
{un} so that (Eg(un)/Ng,1(un)) → Y1(M, [g′]). Then {un} also converges to the infimum of∫

M
n−2

4(n−1) Rgu2dvg

(
∫

M u2n/(n−2)dσ )(n−2)/n , and so ||∇un ||2 → 0. We deduce that min Rg = (
∫

M Rg)/V ol(M, g),

which in turn implies that Rg is constant.
Proof of the case λ = 0. Let g ∈ [g′] with Rg ≥ 0. A similar argument as the one above

gives that min hg ≤ 0. This way,

Y0(M, [g]) = inf
u (≡0 on ∂ M

∫
M (|∇u|2 + n−2

4(n−1) Rgu2)dvg + n−2
2

∫
∂ M hgu2dσ

(
∫
∂ M u2(n−1)/(n−2)dσ )(n−2)/(n−1)

≥ n − 2
2

inf
u (≡0 on ∂ M

(min hg)
∫
∂ M u2dσ

(
∫
∂ M u2(n−1)/(n−2)dσ )(n−2)/(n−1)

≥ n − 2
2

(min hg)Area(∂ M, g)1/(n−1).
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The last line is obtained by Hölder’s inequality. The case of equality is similar to the cases
of equality when λ = 1. *&

The following is a well-known result of Escobar [5,6] which parallels that of Aubin [2]
for the closed case.

Theorem 4.2 Let (Mn, g), n ≥ 3 be a compact manifold with boundary. If −∞ <

Yλ(M, [g]) < Yλ(Bn, [g0]), then the infimum is achieved at a Yamabe metric. This is,

(λ = 1) There exists a function u ∈ C∞(M) with Eg(u)/Ng,1(u) = Y1(M, [g]), and the
metric g̃ = u4/(n−2)g has zero mean curvature hg̃ ≡ 0 and constant scalar curva-
ture Rg̃ = Y1(M, [g])V ol(M, g̃)−2/n .

(λ = 0) There exists a function u ∈ C∞(M) with Eg(u)/Ng,0(u) = Y0(M, [g]), so that
the metric g̃ = u4/(n−2)g has zero scalar curvature Rg̃ ≡ 0 and constant mean
curvature hg̃ = Y0(M, [g])Area(∂ M, g̃)−1/(n−1).

A direct consequence of the above theorem together with Lemma 4.1 is the following
result.

Corollary 4.3 Consider (M, g′) with −∞ < Yλ(M, [g′]) ≤ 0. Then

(λ = 1)

max
{g∈[g′] : hg≥0}

(min Rg)V ol(M, g)2/n = Y1(M, [g′]).

In particular, if σ1(M) ≤ 0, we get that

sup
{g : g∈[g′], hg≥0, [g′]∈C}

(min Rg)V ol(M, g)2/n = Y1(M).

(λ = 0)

max
{g∈[g′] : Rg≥0}

(min hg)Area(∂ M, g)1/(n−1) = Y0(M, [g′]).

In particular, if σ0(M) ≤ 0, we get that

sup
{g : g∈[g′], Rg≥0, [g′]∈C}

(min hg)Area(∂ M, g)1/(n−1) = Y0(M).

Proof of Theorem 1.1 in the Nonpositive Case We first prove the case λ = 1. For a real
number a ∈ R, let a− denote the negative part of a. This is a− = max{−a, 0}.

By Kazdan and Warner’s Theorem [7] there are metrics g1, g2 on M1, M2, respectively,
such that






min Rg1 = min Rg2 = −((Y1(M1)−)n/2 + (Y1(M2)−)n/2 + 2ε)2/n,

Rg1(p1) = Rg2(p2) = n(n − 1) at some points pi ∈ ∂ Mi ,

hgi ≥ 0 on ∂ Mi ,

V ol(Mi , gi ) = (Y1(Mi )−)n/2+ε

(Y1(M1)−)n/2+(Y1(M2)−)n/2+2ε
for i = 1, 2

where ε > 0 is an arbitrary number. By Lemma A.10 there exists a metric g of M1#M2 such
that

hg ≥ 0, min Rg = −((Y1(M1)−)n/2 + (Y (M2)−)n/2 + 2ε)2/n,
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and

V ol(M1#M2, g) < 1 + ε.

Hence, from Corollary 4.3 we get

Y1(M1#M2) ≥ −((Y1(M1)−)n/2 + (Y1(M2)−)n/2)2/n,

which ends the proof of the first case.
Proof of the case λ = 0. Let gi be metrics on Mi , i = 1, 2 such that






min hg1 = min hg2 = −((Y (M1)−)n−1 + (Y (M2)−)n−1 + 2ε)1/(n−1),

Rgi ≥ 0 in Mi ,

hgi (pi ) ≥ 0, Rgi (pi ) = n(n − 1), at some points pi ∈ ∂ Mi , i = 1, 2

Area(∂ Mi , gi ) = (Y (Mi )−)n−1+ε

(Y (M1)−)n−1+(Y (M2)−)n−1+2ε
for i = 1, 2

where ε is an arbitrary positive number. By Lemma A.10 there exists a metric g on M1#M2
such that

Rg ≥ 0, min hg = −((Y0(M1)−)n−1 + (Y0(M2)−)n−1 + 2ε)1/(n−1)

and

Area(M1#M2, g) < 1 + ε.

Hence, from Corollary 4.3 we get

Y0(M1#M2) ≥ −((Y0(M1)−)n−1 + (Y0(M2)−)n−1)1/(n−1).

This ends the proof of the nonpositive case of Theorem 1.1. *&

Acknowledgements This work was partially supported by NSF grant # DMS-0223098.

Appendix A: Approximation lemmas

This section consists of several approximation lemmas. The results are, essentially, adapta-
tions of those found in Kobayashi [8] and Akutagawa and Botvinnik [1] to fit our scenario.
We include the more relevant proofs here.

Lemma 4.4 For any δ > 0 there exists a smooth non-negative function 0 ≤ wδ ≤ 1 and a
positive constant ε(δ), 0 < ε(δ) < δ, such that

(i) wδ(t)|[0,ε(δ)] ≡ 1, wδ(t)|[δ,∞) ≡ 0,
(ii) |tẇδ(t)| < δ for t ≥ 0,

(iii) |t2ẅδ(t)| < δ for t ≥ 0.

Proof Elementary. *&
Lemma 4.5 Let ḡ, g̃ be two Riemannian metrics on M and h = g̃ − ḡ. Then Rg̃ − Rḡ =
Pḡ(h) + Qḡ(h), where

Pḡ(h) = −'ḡ(T rḡh) + ∇̄ i ∇̄ j hi j − 〈h, Ricḡ〉ḡ,

|Qḡ(h)| ≤ c(|∇̄h|2q3 + |h||∇̄h|2q2 + (|h||∇̄h|2 + |Ricḡ||h|2)q).

Here, c = c(n) > 0 is a constant that depends only on the dimension n of M, and q is a
non-negative smooth function that satisfies q · g̃ ≥ ḡ.
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Proof A straightforward calculation of writing out the scalar curvature in terms of the metric
and its derivatives that can be found in [8]. *&

Lemma 4.6 (Fermi coordinates) Let (Mn, g), n ≥ 3 be a compact Riemannian manifold
with boundary and o ∈ ∂ M. There exists Fermi coordinates around o. This is, coordinates
(r, x) around o so that γx (r) = (r, x) is a geodesic and the set {(0, x) : x} corresponds to
∂ M near o. We have

(i) g00 = g(∂r , ∂r ) = 1, g′
00 = ∂r g00 = 0,

(ii) g0i = 0, g′
0i = ∂r g0i = 0 for i > 0,

(iii) gi j = (g|∂ M )i j , g′
i j = −2Ai j , i, j > 0.

Proposition A.4 Let o ∈ ∂ M and ḡ, g̃ be metrics on M such that Rḡ(o)= Rg̃(o)

and j1
o ḡ = j1

o g̃ (i.e., ḡ and g̃ coincide up to first order derivatives on o). Consider Fermi
coordinates around o as in Lemma 4.6. Then the family of metrics

g̃δ = ḡ + wδ(r)(g̃ − ḡ)

has the following properties:

(i) g̃δ = ḡ outside Bδ(o),
(ii) g̃δ = g̃ on Bε(δ)(o),

(iii) hg̃δ
= hg̃ on Bε(δ)(o),

(iv) g̃δ → g in C1(M) as δ → 0,
(v) Rg̃δ

→ Rḡ in C0(M) as δ → 0,
(vi) hg̃δ

→ hg̃ in C0(∂ M) as δ → 0.

Proof The proof of this proposition is similar to Kobayashi’s Theorem (Lemma 3.2 of [8]).
We proceed as follows: (i) and (i i) are direct and (i i i) follows from (i i). To prove (iv)

consider the function wδ from Lemma 4.4. Note that wδ is supported inside [0, δ]. This way

g̃δ − ḡ = wδ(r)(g̃ − ḡ) = O(r2),

and so g̃δ → ḡ in C0(M). To get the C1(M) convergence we see that

∂(g̃δ − ḡ) = ẇδ(r)(g̃ − ḡ) + wδ(r)∂(g̃ − ḡ).

Since g̃−ḡ = O(r2) and ∂(g̃−ḡ) = O(r), Lemma 4.4 implies |∂ g̃δ−∂ ḡ| ≤ |ẇδ(r)r | O(r2)
r +

wδ(r)O(r) ≤ δO(δ) + O(δ), which shows ∂ g̃δ → ∂ ḡ in C0(M), as desired.
For (v) we use Lemma 4.5 twice to get

Rg̃δ
− Rḡ = Pḡ(wδ(r)(g̃ − ḡ)) + Qḡ(wδ(r)(g̃ − ḡ)),

0 = −Rg̃ + Rḡ + Pḡ(g̃ − ḡ) + Qḡ(g̃ − ḡ).

Multiplying the second line above by −wδ(r) and adding it to the first one we get

|Rg̃δ
− Rḡ| ≤ |Pḡ(wδ(r)(g̃ − ḡ)) − wδ(r)Pḡ(g̃ − ḡ)| + |Qḡ(wδ(r)(g̃ − ḡ))|

+ |wδ(r)Qḡ(g̃ − ḡ)| + |wδ(r)(Rḡ − Rg̃)|.
For convenience put

T1 = |Pḡ(wδ(r)(g̃ − ḡ)) − wδ(r)Pḡ(g̃ − ḡ)|, T2 = |Qḡ(wδ(r)(g̃ − ḡ))|,
T3 = |wδ(r)Qḡ(g̃ − ḡ)|, T4 = |wδ(r)(Rḡ − Rg̃)|.
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Using Lemmas 4.4 and 4.5 and the fact that j1
o g̃ = j1

o ḡ we get:

T1 = |Pḡ(wδ(r)(g̃ − ḡ)) − wδ(r)Pḡ(g̃ − ḡ)|
= | − 'ḡ(T rḡ(wδ(r)(g̃ − ḡ))) + wδ(r)'ḡ(T rḡ(g̃ − ḡ))

+ ∇̄ i ∇̄ j (wδ(r)(g̃i j − ḡi j )) − wδ(r)∇̄ i ∇̄ j (g̃i j − ḡi j )

−〈wδ(r)(g̃ − ḡ), Ricḡ〉ḡ + wδ(r)〈g̃ − ḡ, Ricḡ〉ḡ|
≤ c1(|ẅδ(r)||g̃ − ḡ| + |ẇδ(r)||∂(g̃ − ḡ)|)

= |ẅδ(r)r2| O(r2)

r2 + |ẇδ(r)r | O(r)

r
= O(δ),

where c1 > 0 above is a constant independent of δ. For the second term we get

T2 = |Qḡ(wδ(r)(g̃ − ḡ))|
≤ c(n)(|∇̄(wδ(r)(g̃ − ḡ))|2q3 + |(wδ(r)(g̃ − ḡ))||∇̄(wδ(r)(g̃ − ḡ))|2q2

+ (|(wδ(r)(g̃ − ḡ))||∇̄(wδ(r)(g̃ − ḡ))|2 + |Ricḡ||(wδ(r)(g̃ − ḡ))|2)q).

Notice that there are only first order derivatives in the above estimate. It is easy to see that
T2 = O(δ2). For T3 we get

T3 = |wδ(r)Qḡ(g̃ − ḡ)|
≤ c(n)|wδ(r)|(|∇̄(g̃ − ḡ)|2q3 + |g̃ − ḡ||∇̄(g̃ − ḡ)|2q2

+(|g̃ − ḡ||∇̄(g̃ − ḡ)|2 + |Ricḡ||g̃ − ḡ|2)q)

= O(δ2).

To estimate T4 we see that

T4 = |wδ(r)(Rḡ − Rg̃)| = O(δ)

since Rḡ(o) = Rg̃(o). This way T1 + T2 + T3 + T4 = O(δ) and (iv) is proved.
For (vi) we use Lemma 4.6 (iii). We have that ∂r (g̃δ)i j = −2 Ãδ

i j , so

hg̃δ
= −(1/2)T rg̃δ

( Ãδ) = −(1/2)T rg̃δ
(∂r (g̃δ)i j ).

Since g̃δ → ḡ in C1(M), ∂r (g̃δ) → ∂r ḡ in C0(M). Hence, hg̃δ
→ hḡ in C0(∂ M), as desired.

This ends the proof. *&
Theorem A.5 Let M be a compact manifold with boundary, ε0 > 0, o ∈ ∂ M and ḡ a metric
on M. Put g ≡ ḡ|∂ M and let Aḡ be the second fundamental form of ḡ on ∂ M. Then there
exists a family of metrics g̃δ on M such that

(i) g̃δ = ḡ in M\Bδ(o),
(ii) hg̃δ

= hḡ on Bε0(o, ḡ),
(iii) g̃δ is conformally equivalent to the metric (g − 2r Aḡ) + dr2 on Bε(δ)(o, ḡ).
(iv) g̃δ → ḡ in C1(M) as δ → 0,
(v) Rg̃δ

→ Rḡ in C0(M) δ → 0,
(vi) hg̃δ

→ hḡ in C0(∂ M) as δ → 0,

Proof Consider Fermi coordinates (x, r) near o. By Lemma 4.6 we get the following
expansion of the metric ḡ near o:

ḡ(x, r) = (gi j (x) − 2r Ai j (x) + O(r2))dxi dx j +
∑

i

O(r2)drdxi + dr2,
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where ḡ|∂ M = g and Ai j denotes the second fundamental form of ∂ M with respect to ḡ.
Consider the metric

ĝ(x, r) = (gi j (x) − 2r Ai j (x))dxi dx j + dr2

which has j1
∂ M ĝ = j1

∂ M ḡ. Now put

g̃(x, r) = u(x, r)4/(n−2)ĝ, (11)

where

u(x, t) = 1 + 1
2

r2φ2(x), φ(x) = − n − 2
4(n − 1)

(Rḡ − Rĝ). (12)

Then u|∂ M = u(x, 0) = 0, ∂r u(x, 0) = 0 and so on ∂ M, ∂i u = 0, ∂i∂ j u = 0 and ∂r u = 0.
This way

j1
o g̃ = j1

o ḡ.

The well-known transformation law for the scalar curvature under conformal deformations
of the metric gives that 'ĝu = − n−2

4(n−1) (Rg̃u(n+2)/(n−2) − Rĝu). In our case u(x, 0) ≡ 1 so

'ĝu = − n − 2
4(n − 1)

(Rg̃ − Rĝ) on ∂ M. (13)

On the other hand, also on ∂ M we have

'ĝu = ∇α∂αu

= ĝαβ(∂α∂βu − +̂
γ
αβ∂γ u)

= ∂2
r u + gi j∂i∂ j u − +̂0

00∂r u − +̂i
00∂i u − gi j (+̂0

i j∂r u + +̂k
i j∂ku)

= ∂2
r u.

From this last line and Eq. 13 we get that, on ∂ M ,

− n − 2
4(n − 1)

(Rg̃ − Rĝ) = 'ĝu = ∂2
r u = φ(x) = − n−2

4(n−1) (Rḡ − Rĝ).

This way Rg̃ = Rḡ on ∂ M . Now apply Proposition A.4 to ḡ, g̃ to get a family g̃δ that satisfies
(i)–(vi). *&

Theorem A.6 Let M be a compact manifold with boundary, o ∈ ∂ M and ε0 > 0. Let ḡ
be a metric on M with hḡ = 0 on Bε0(o). Write g ≡ ḡ|∂ M , and put Aḡ to be the second
fundamental form of ∂ M. Then there exists a family of metrics g̃δ such that for δ small enough
(compared to ε0) the following holds:

(i) g̃δ ≡ ḡ on M\Bδ(o),
(ii) g̃δ is conformally equivalent to the metric g + dr2 on Bε(δ)(o, ḡ),

(iii) g̃δ → ḡ in C0(M) as δ → 0,
(iv) Rg̃δ

→ Rḡ in C0(M) δ → 0,
(v) hg̃δ

→ hḡ in C0(∂ M) as δ → 0.

Proof The proof of this theorem is similar to Akutagawa and Botvinnik’s Approximation
Trick (Theorem 4.6 of [1]).
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From Eqs. 11 and 12 from the previous proof we may assume that

ḡ =
(

1 + 1
2

r2φ(x)

) 4
n−2 (

(g(x) − 2r Aḡ(x)) + dr2)

in Fermi coordinates near the point o. Let

Gδ(x, r) = (g(x) − 2r(1 − wδ(r))Aḡ(x)) + dr2,

and put

g̃δ(x, r) =
(

1 + 1
2

r2φδ(x, r)

) 4
n−2

Gδ(x, r),

φδ(x, r) = φ(x) − 3(n − 2)

4(n − 1)
(2 − wδ(r))wδ(r)|Aḡ|2g.

We see that (i) and (ii) come from the construction. For (iii) notice that φδ → φ in C0(M)

and Gδ → ḡ in C0(M), and so g̃δ → ḡ.
For (iv) a computation shows that near o we have

RGδ = Rg + 3(1 − wδ(r))2|Aḡ|2g − (1 − wδ(r))2h2
ḡ

−(4ẇδ(r) + 2rẅδ(r))hḡ + O(δ).

Since hḡ = 0 on Bε0(o) we get

RGδ = Rg + 3(1 − wδ(r))2|Aḡ|2g + O(δ)

near o. This way

Rg̃δ
=

(
1 + 1

2
r2φδ(x, r)

)− n+2
n−2

(
−4(n − 2)

n − 1
'Gδ

(
1 + 1

2
r2φδ(x, r)

)

+RGδ (1 + 1
2

r2φδ(x, r))

)

= (1 + O(δ2))

(
−4(n − 2)

n − 1
φ + 3(2 − wδ(r))wδ(r)|Aḡ|2g + RGδ + O(δ)

)

= Rg + 3(1 − wδ(r))2|Aḡ|2g + Rḡ − Rg − 3|Aḡ|2g + 3(2 − wδ(r))wδ(r)|Aḡ|2g
+O(δ)

= Rḡ + O(δ),

so (iv) follows.
To prove (v) note that near o

(
1 + 1

2
r2φδ

)
(x, 0) = 1, ∂r

(
1 + 1

2
r2φδ

)
(x, 0) = 0.

The usual transformation law for the mean curvature under conformal deformations gives
that ∂r u = n−2

2 (hg̃δ
un/(n−2) − hGδ u). This way, hg̃δ

= hGδ near o. Since hGδ = hḡ = 0
near o the result follows. *&

Lemma A.7 Let (M, ḡ) be a manifold with boundary and o ∈ ∂ M such that, in Fermi coor-
dinates (r, x), ḡ = g(x) + dr2 near o, and so that Rḡ(o) = n(n − 1). Let e ∈ Sn

+ be an
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equatorial point in the boundary of (Sn
+, gn), so that in polar normal coordinates around e,

the round metric gn = dt2 + sin2(t)gn−1. Here, gn−1 denotes the round metric on Sn−1.
Define g̃ = dt2 + sin2(t)gn−1(y) around o ∈ M, where (t, y) are polar normal coordi-

nates centered at o. Then:

(i) Rḡ(o) = Rg̃(o),
(ii) j1

o (ḡ) = j1
o (g̃).

Proof Part (i) is direct since Rg̃(o) = Rgn (e) = n(n − 1). For (ii) we note that all first order
partial derivatives of ḡ vanish at o since the boundary ∂ M has zero second fundamental form
near o (see Lemma 4.6 about Fermi coordinates). The same thing holds at e, since the equator
in Sn is totally geodesic. *&

Lemma A.8 Let (M, ḡ) be a manifold with Yλ(M, ḡ) > 0, p1, p2 ∈ ∂ M and δ > 0. Then
there exist a metric g̃ on M and 0 < ε < δ such that

(i) |Y (M, [ḡ]) − Y (M, [g̃])| < δ,
(ii) g̃|Bε (pi ) around pi is isometric to a neighborhood of e ∈ ∂Sn

+ inside Sn
+, for i = 1, 2.

(iii) Rg̃ ≥ 0 on M,
(iv) hg̃ = 0 outside a small neighborhood of pi .

Proof We start by finding g̃. Since the Yamabe constant of (M, ḡ) is positive we may assume
that ḡ has positive scalar curvature and minimal boundary. Using Theorem A.6 we can approx-
imate ḡ by a metric ĝ that is conformal to a product near each pi . Lemma A.7 together with
Proposition A.4 imply that there exists a metric ǧ on M that is close to ĝ and satisfies (i i).
Apply Proposition A.4 to ḡ and ǧ to produce a metric g̃ that coincides with ǧ near pi and with
equals ḡ elsewhere. Now g̃ is close to the original ḡ so (i) follows. (ii) holds by construction.
Since Rg̃ is close to Rḡ > 0, it is non-negative, so (iii) holds. (iv) holds since all constructions
took place in a small neighborhood of pi and ḡ had minimal boundary. *&

Let (Sn
+, gn), n ≥ 3 be the Euclidean unit hemisphere and r the intrinsic distance relative

to gn from a point e on the boundary, so that gn = dr2 + sin2 rgn−1, where gn−1 is the
standard metric on the unit n − 1 hemisphere. For an interval I ⊆ [0,π] denoted by A(I )
the region A(I ) = {x ∈ Sn

+ : r(x) ∈ I }.

Lemma A.9 For any ε1 > 0, 0 < ε2 < π there exists a positive function f = f (r) on Sn
+

such that:

(i) |Rg′ − n(n − 1)| < ε1, where g′ = f −2gn,
(ii) hg′ = 0,

(iii) |V ol(Sn
+, g′) − 2V ol(Sn

+, gn)| < ε1,
(iv) |Area(∂Sn

+, g′) − 2Area(∂Sn
+, gn−1)| < ε1,

(v) f (r) = 1 for r > ε2 and (A([0, ε′
2)), g′) is isometric to (A((ε2,π]), g′) = (A((ε2,π]),

gn) for some ε′
2 < ε2,

(vi) 0 < f (r) ≤ 1 and | ḟ (r)| ≤ 2/ sin(r) for all r , where ˙ means d/dr.

Proof This is similar to Lemma 3.1 of [8]. For (i i) note that hgn = 0, g′ = ( f (1−n)/2)4/(n−1)

g0, so the transformation law for the mean curvature gives

hg′ = 2
n − 2

f n(n−1)/2(n−2) ∂

∂η
f (1−n)/2.
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Since f is a function that depends only on r , the normal derivative ∂
∂η f (1−n)/2 = 0 by Gauss’

Lemma. This way hg′ = 0 as desired.
The scalar curvature of g′ is given by

1
n(n − 1)

Rg′ = 2
n

f ( f̈ + (n − 1) f cot r) − ḟ 2 + f 2.

We make the following change of variables:

cos r = tanh t, 0 < r < π, ∞ > t > −∞. (14)

Put

u(t) = f (r(t)) cosh t. (15)

Then g′ = u−2(dt2 + gn) and

1
n(n − 1)

Rg′ = 2
n

uu′′ − (u′)2 + n − 2
n

u2, (16)

where ′ = d/dt = −(sin r)d/dr . We put

B(t) = u−n((u′)2 − u2 + 1), (17)

so that from (16) we get

B ′(t) = (u−n)′(1 − Rg′

n(n − 1)
). (18)

We fix t0 > max{0, log cot(ε2/2)}, and set

u(t) = cosh t for t ∈ (−∞, t0], (19)

hence, B(t) ≡ 0 for t < t0. We want to consider the solution u of (17) with a suitable B(t).
First note that

u(t) ≤ cosh t for t ≥ t0, if B(t) ≤ 0 for t ≥ t0, (20)

which follows from a comparison argument. Let





B(t) = 0 for t ≤ t0
B(t) ≤ 0,−2δ ≤ B ′(t) ≤ 0 for t0 ≤ t ≤ t0 + 1
B(t) = −δ for t0 + 1 ≤ t ≤ t1.

If δ is sufficiently small, then (17) together with (19) is solvable for u in the interval (−∞, t1)
with arbitrary t1 ≥ t0 + 1, and u′(t) > 0, u′′(t) > 0 for t0 ≤ t ≤ t0 + 1. Therefore, taking
δ > 0 smaller we have from (18)

|Rg′ − n(n − 1)| ≤ 2(n − 1)
coshn+1(t0 + 1)

sinh t0
δ < ε1, for t ≤ t0 + 1.

We choose t1 so that u′(t1) = 0 and u′(t) > 0 for t0 + 1 < t < t1. This way Rg′ = n(n − 1)

for t0 + 1 ≤ t ≤ t1. For t ≥ t1 we put B(t) = B(2t1 − t). Then

u(t) = u(2t1 − t) for t ≥ t1. (21)

Thus |Rg′ − n(n − 1)| < ε1 for all t , and (v) follows from (19) and (21) via (14) and (15).
As for the volume we have

V ol(Sn
+, g′) = V ol(Sn

+, gn) +
∫ u(t1)

1

du
unu′
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and we can see by a long and elementary calculation that the second term of the right hand side
converges to V ol(Sn

+, gn) as δ → 0. Therefore, (iii) holds for δ small enough, and (iv) fol-
lows from an analogous computation. From (20), u(t) ≤ cosh t and hence |u′(t)| ≤ | sinh t |
from (17), because B(t) ≤ 0, which proves (vi). *&
Lemma A.10 Let (Mn

1 , g1), (Mn
2 , g2), n ≥ 3 be two compact Riemannian manifolds with

boundary and ε > 0.

(λ = 1) If hgi ≥ 0, Rgi (pi ) = n(n −1), i = 1, 2 at some points pi ∈ ∂ Mi , then there exists
a metric g on M1#M2 so that:

(1.a) hg ≥ 0 and
∣∣∣V ol(M1#M2, g) − ∑2

i=1 V ol(Mi , gi )
∣∣∣ < ε.

(1.b) There are isometric embeddings φi : (Mi − Bi , gi ) → (M1#M2, g), i = 1, 2,
where Bi are small balls around pi ∈ ∂ Mi , and |Rg(x) − n(n − 1)| < ε for
x ∈ M1#M2 − (I m(φ1) ∪ I m(φ2)).

(λ = 1) If Rgi ≥ 0, Rgi (pi ) = n(n − 1), hgi > 0 at some points pi ∈ ∂ Mi , i = 1, 2 then
there exists a metric g on M1#M2 so that:

(0.a) Rg ≥ 0 and
∣∣∣Area(∂(M1#M2), g) − ∑2

i=1 Area(∂ Mi , gi )
∣∣∣ < ε.

(0.b) There are isometric embeddings φi : (Mi − Bi , gi ) → (M1#M2, g), i =
1, 2, where Bi are small balls around pi ∈ ∂ Mi , and |hg(x)| < ε for x ∈
∂(M1#M2) − ∂(I m(φ1) ∪ I m(φ2))).

Proof Proof of λ = 1. By Lemmas A.4, A.7, and A.9 we can take a metric ḡi of Mi that coin-
cides with gi outside a small (half) ball Bi containing pi and such that |Rgi (x)−n(n−1)| < ε

for x ∈ Bi , |V ol(Mi , ḡi ) − V ol(Mi , gi )| ≤ ε/4 and Bi contains a smaller ball B ′
i such that

(B ′
i , ḡi ) is isometric to a geodesic δ-(half) ball in the unit hemisphere and V ol(B ′

i , ḡi ) < ε/4.
From Lemma A.9 with ε1, ε2 smaller than ε and δ, respectively, we have a small piece

(A[δ′, δ], g′) for some δ′ < δ such that |Rg′ − n(n − 1)| < ε, V ol(A[δ′, δ], g′) < ε/4 and
a neighborhood of each of the boundary components is isometric to a neighborhood of the
boundary of the δ-ball inside the hemisphere. This way, the manifold (M1#M2, g) is obtained
by putting together (M − B ′

i , ḡ1), (M2 − B ′
2, ḡ2) and (A([δ′, δ]), g′).

The proof of λ = 0 is similar: take ḡi as above with |Rgi (x) − n(n − 1)| < ε for x ∈ Bi ,
|Area(∂ Mi , ḡi )− Area(∂ Mi , gi )| ≤ ε/4 and Bi contains a smaller ball B ′

i such that (B ′
i , ḡi )

is isometric to a geodesic δ-(half) ball in the unit hemisphere and Area((∂Mi )∩B ′
i , ḡi ) ≤ ε/4.

From Lemma A.9 with ε1, ε2 smaller than ε and δ, respectively, we have a small piece
(A[δ′, δ], g′) for some δ′ < δ such that |Rg′ − n(n − 1)| < ε, Area(∂ A[δ′, δ], g′) < ε/4
and a neighborhood of each of the boundary components is isometric to a neighborhood of
the boundary of the δ-ball inside the hemisphere. The manifold (M1#M2, g) is obtained by
putting together (M − B ′

i , ḡ1), (M2 − B ′
2, ḡ2) and (A([δ′, δ]), g′). *&
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