Math 108 Syllabus - Summer II 2006.

Text. Elementary Differential Equations and Boundary Value Problems by Boyce and DiPrima, 8th edition.
Publisher: John Wiley \& Sons, Inc. (ISBN 0-471-43338-1)

Daily Coverage and Homework Assignments.

Lesson 1 Intro.
Section 2.1. \#'s $1(\mathrm{abc}), 4(\mathrm{abc}), 14,20,28,33$. Use Maple for $\# 1(\mathrm{ab})$ and $4(\mathrm{ab})$.
Lesson 2 Section 2.2 \#'s 1,3,7,13(ac),16(ac),21,31(a,b),34(a,b),36(a,b).
Begin Section 2.3.
Lesson 3 Finish 2.3. \#'s 2,8,9,10.
Section 2.4. \#'s 7,9,14.
Lesson 4 Section 2.6. \#'s 1,5,7,11, 12,18,21,25.
Lesson 5 Section 3.5. \#s 23,28,33,38,39.
Section 3.7. \#'s 3,5,8,15,18.
Lesson 6 Test I-Monday July 10, in class
Lesson 7 Section 6.1. \#'s 2,3,5,6,9,26,27.
Section 6.2. \#'s $1,2,3,8,9,13,14,16$.
Lesson 8 Section 6.3. \#'s 1,4,6,8,10,11,15,16,19,20,27,29,31.
Section 6.4. \#'s 3,5,9,12.
Lesson 9 Section 6.5. \#'s 1,4,9,12,13,17.
Begin Section 6.6.
Lesson 10 End Section 6.6. \#'s 1,6,9,11,13,14
Review.
Lesson 11 Test II -Monday July 17, in class
Lesson 12 Section 10.1. \#'s 2,3,7,14,17,20.
Lesson 13 Review of 107.
Begin Section 10.2.
Lesson 14 Section 10.2. \#'s 4,6,8,9,16,18,29.
Section 10.3. \#'s 2,4,13,14,15,17.
Lesson 15 Section 10.4. \#'s 3,5,6,7,12,16,17,35,36.

Lesson 16 Derivation of Heat Equation.
Begin Section 10.5.
Lesson 17 Finish 10.5. \#'s 3,4,5,7,11,12,22,
Section 10.6. \#'s 2,8,11(a),12(a,b),15.
Lesson 18 Section 10.7. \#'s 4,9,10.
Lesson 19 Section 10.8. \#'s 2,7,8,10.
Lesson 20 Section 11.1. \#'s 2,3,4,5,8,10,19.
Lesson 21 Test III -Monday July 31, in class
Lesson 22 Section 11.2. \#'s 1,4,7,8,11,13,14,15,27.
Begin Section 11.3.
Lesson 23 Section 11.3. \#'s 2,4,7,10,22
Review Power Series.
Lesson 24 Section 5.1. \#'s 1,5,8,12,13,14, 18, 19, 21,25.
Begin Section 5.2.
Lesson 25 Section 5.2. \#'s 2,10,15,23.
Section 5.3. \#'s 3,8,11,15,22.

Lesson 26 Section 5.4. \#'s 5,6,12,19,20.
Lesson 27 Section 5.5. \#'s 1,6,18,19,23,24.

Lesson 28 Test IV -Wednesday August 9, in class

Help Room:

The help room is located in Physics 299. Math 108's preferred tutor is George Lam. Tutors available daily from Monday July 3 until Friday August 11 according to the following schedule:

	M	T	W	Th	F
12-1pm	Gonzales	Cesa	Gonzales	Jenista	Jenista
1-2pm	Lam	Cesa	Gonzales	Cesa	Jenista
2-3pm	Lam	Lam	Gonzales	Cesa	Jenista
3-4pm	Lam	Lam	Gonzales	Cesa	Jenista

Grades:

Tests are worth up to 100 points each.
Homework is worth up to 60 points.

Warm-up Exercises

The following problems are not to be collected, but similar problems could be intermediate steps in the solutions of your homework problems, test problems or final exam problems.
\qquad (1) Complete the square of $2 x^{2}+x+2$.
\qquad (2) Find all the values of the x in terms of union of intervals so that $|3 x+1| \geq 4$.
\qquad (3) If $|f(x)| \leq 1,|g(x)| \leq 2$ for $x \in \mathbb{R}$, is $|3 f(x)-4 g(x)| \leq 11$ on \mathbb{R} ? Why?
-------- (4) If $|f(x)| \leq 1,|g(x)| \leq 2$ and $|h(x)| \leq 3$ for $x \in \mathbb{R}$, is $|4 f(x)+5 g(x)-6 h(x)| \leq 32$ on \mathbb{R} ? Why?
\qquad (5) Solve for y from the equation $-\frac{1}{2} \ln \left|\frac{y}{x}+1\right|+\frac{1}{2} \ln \left|\frac{y}{x}-1\right|=\ln |x|+C$ where C is constant.
\qquad (6) Let $f(x)=3 x$ and $g(x)=\sin 2 x$, compute $\int_{0}^{t} f(t-x) g(x) d x$ where $t \in \mathbb{R}$.
\qquad (7) Let $f(x)=|3 x+1|$ and $g(x)=\sin 2 x$, compute $\int_{0}^{t} f(t-x) g(x) d x$ where $t \in \mathbb{R}$.
\qquad (8) Compute $\int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)(x+1)} d x$.
\qquad (9) Find the antiderivatives $\int \frac{2 x+3}{4-5 x} d x$
\qquad (10) Compute $\int_{0}^{2}\left(2 x^{3}-x+1\right) \sin \frac{(2 n-1) \pi x}{4} d x$ where $n=0,1,2, \cdots$ and simplify your result as much as possible.
\qquad (11) Find A and θ so that $2 \sin (3 x)-5 \cos (3 x)=A \cos (3 x-\theta)$.
\qquad (12) Find the amplitude, angular frequency, phase angle and period of $y=2 \sin (3 x)-5 \cos (3 x)$.
\qquad (13) Differentiate $e^{x \sin x}$.
\qquad (14) Let $x=r \cos \theta$ and $y=r \sin \theta$. Rewrite $u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0$ in terms of $u_{x x}$ and $u_{y y}$.
\qquad (15) Simplify $\sum_{n=0}^{\infty} e^{-n x}$ and determine the natural domain of the function represented by the given series.
(16) Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{3^{n}}(x+2)^{n}$.
(17) Find the first five nonzero terms of the power series represented by $\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}\right)\left(\sum_{n=1}^{\infty}(-2)^{n-1} x^{n}\right)$.

