Math 107 Syllabus - Summer II 2006.

Course description:

Systems of linear equations, matrix operations, vector spaces, linear transformations, orthogonality, determinants, eigenvalues and eigenvectors, diagonalization, linear differential equations and systems with constant coefficients and applications, computer simulations. Intended primarily for engineering and science students.

Textbook:

Linear algebra and differential equations, by Gary L. Peterson and James Sochacki. Published by Addison Wesley, ISBN 0-201-66212-4.

Daily coverage and homework assignments:

Lesson Topic(s)
1 systems of linear equations

2 matrices and matrix operations
3 inverses of matrices
4 special matrices; determinants
proofs and applications
proofs and applications
linear independence in \mathbb{R}^{n}
vector spaces; subspaces
linear independence; dimension
Wronskians
Test I - Monday July 17, in class
12 intro differential eqns

13 homogeneous CCLDE (i)
14 CCLDE (ii); undeterm coeff
15 applications (i)
16 applications (ii)

Section(s) Page / Homework

$1.1 \quad 15 / 2,8,15,18,19,22,23,26,28$
$16 / 30$ (intro to Matlab)
Additional Problem 1
$1.226 / 5,9,11,12,14,18,20,21,23,28-30,37$
$1.336 / 1,6,7,10,11(\mathrm{~b}), 13,14,16,26$
$1.4 \& 1.5 \quad 41 / 4,12,17,20,22(\mathrm{c}), 24(\mathrm{~d}), 26,32,33$
$50 / 5,8,12,15,16$
$1.6 \quad 57 / 4,6,10,11,13,15(\mathrm{c}), 16,17$
$1.7 \quad 64 / 5-7$
$2.3 \quad 93 / 1-3,6$
$2.1 \& 2.2 \quad 73 / 2,3,9$
$81 / 1(\mathrm{c}, \mathrm{d}), 2(\mathrm{~b}, \mathrm{~d}), 3(\mathrm{c}), 5,11-13,21,22$
$2.3 \& 2.493 / 7,10,14,17,21,24,25,27,28,32$
104 / 2,3(a,b),4(c, d), 7,10,14,18,21,26
$2.5 \quad 110 / 5-8,12,14,16$
$4.1 \quad 188 / 2,3,6,10,11,15,17,24$
119 / 1,4,7
$4.2 \quad 201 / 2,5,23$
Additional Problems 3 and 4
$4.2 \& 4.3201 / 7,10-13,20,22,24,29,30,37,40-42$
211 / 1,4,9,11,18,36
$4.5 \quad 228 / 5-8,11,13$
$4.5 \quad 228 / 1,3,15,16,18$

17	linear transformations	5.1	$243 / 3,4,7,12,13,18,20,33,35,36$
18	algebra of LT	5.2	$252 / 6,11,14,18,20,23$
19	matrices; eigenvalues	$5.3 \& 5.4$	$267 / 1,5,7,9,17$
			$277 / 5,8,9,16,17,20,26,32$
20	similar matrices, Jordan	5.5	$277 / 32$ (is A diagonalizable?) 21
	Test II - Monday July 31, in class		$286 / 5,8,9,16,17,21,24,30,31,36,40$
22	systems of LDE	6.1	$301 / 1,4,5,9,17,27,28$
23	constant coeffs diag; nondiag	$6.2 \& 6.3$	$311 / 3,5,11,15,22,25,28,30$
			$314 / 3,17$
24	nonhomogeneous systems	6.4	$318 / 1,5,11,13,15$
25	converting eqns	$6.5 \& 6.6$	$322 / 4,5,13$
			$331 / 2,4,11,15$
26	inner product spaces	9.1	$419 / 6-8,12,16,18,20-22$
27	orthonormal bases	9.2	$429 / 2,6,9,13$
28	Review		

Final Exam - Friday Aug 11, 9-12pm

Additional Problems

1. Assume that the given system is consistent. For each system determine all possibilities for the numbers r and $n-r$ where r is the number of nonzero rows of the (reduced) row echelon form of the augmented matrix and n is the number of the unknowns of the given system.
(a) $A x=b$ where $A=\left[a_{i j}\right]_{3 \times 2}$.
(b) $A x=b$ where $A=\left[a_{i j}\right]_{3 \times 4}$.
2. In each of the following write the given expression in the form $a+i b$:
(a) $\frac{3+i}{4-5 i}$,
(b) $\exp (2-3 i)$, (c) $e^{i \pi}$,
(d) $e^{2-i \pi / 2}$,
(e) 2^{1-i}, (f) $\pi^{1+2 i}$.
3. Solve each of the following equations:
(a) $x^{4}+2 x^{2}+1=0$, (b) $x^{5}+1=0$.

Help Room:

The help room is located in Physics 299. Math 107's preferred tutor is Mike Jenista. Tutors available daily from Monday July 3 until Friday August 11 according to the following schedule:

	M	T	W	Th	F
12-1pm	Gonzales	Cesa	Gonzales	Jenista	Jenista
1-2pm	Lam	Cesa	Gonzales	Cesa	Jenista
2-3pm	Lam	Lam	Gonzales	Cesa	Jenista
3-4pm	Lam	Lam	Gonzales	Cesa	Jenista

Grades:

Tests are worth up to 100 points each.
Final Exam is worth up to 150 points.
Homework is worth up to 60 points.

