Math 108 Syllabus - Spring 2007

Course Description. First and second order ordinary differential equations with applications, Laplace transforms, series solutions and qualitative behavior, Fourier series, partial differential equations, boundary value problems, Sturm-Liouville theory. Intended primarily for engineering and science students. Prerequisite: Mathematics 107. Not open to students who have had either Mathematics 111 or 131.

Text. Elementary Differential Equations and Boundary Value Problems by Boyce and DiPrima, 8th edition. Publisher: John Wiley \& Sons, Inc. (ISBN 0-471-43338-1)

Daily Coverage and Homework Assignments

Lesson 1 Section 2.1. Introduction. Linear equations; Method of Integration Factors.
§2.1: $1(\mathrm{abc}), 4(\mathrm{abc}), 14,20,28,33$. Use Maple for $\# 1(\mathrm{ab})$ and $4(\mathrm{ab})$.
Lesson 2 Section 2.2, begin Section 2.3. Modeling with First Order Equations; Differences Between Linear and Nonlinear Equations.
§2.2: 1,3,7,13(ac),16(ac),21,31(a,b),34(a,b),36(a,b).
Lesson 3 End Section 2.3, Section 2.4. Theorems of Existence and Uniqueness of Solution. §2.3: 2,8,9,10. §2.4: 7,9,14.

Lesson 4 Section 2.6. Exact Equations and Integrating Factors.
§2.6: 1,5,7,11,12,18,21,25.
Lesson 5 Section 3.5, Section 3.7. Reduction of Order, Variation of Parameters.
§3.5: $23,28,33,38,39$. §3.7: $3,5,8,15,18$.
Lesson 6 EXAM 1: Tuesday 1/30.
Lesson 7 Review Power Series. Section 5.1, begin Section 5.2. Series Solutions Near an Ordinary Point, Part 1.
§5.2: 1,5,8,12,13,14,18,19,21,25.
Lesson 8 Section 5.2, Section 5.3. Series Solutions Near an Ordinary Point, Part 2.
§5.2:2,10,15,23. §5.3: 3,8,11,15,22.
Lesson 9 Section 5.4. Regular Singular Points.
§5.4: 5,6,12,19,20.
Lesson 10 Section 5.5. Euler Equations.
§5.5: 1,6,18,19,23,24.
Lesson 11 Section 6.1, Section 6.2. Laplace Transform, Initial Value Problems. §6.1: $2,3,5,6,9,26,27$. §6.2: $1,2,3,8,9,13,14,16$.

Lesson 12 Section 6.3, Section 6.4. Step Functions, Differential Equations with Discontinuous Forcing Functions.
§6.3: 1,4,6,8,10,11,15,16,19,20,27,29,31. §6.4: 3,5,9,12.

Lesson 13 Section 6.5, begin Section 6.6. Impulse Functions, The Convolution Integral. §6.5: 1,4,9,12,13,17.

Lesson 14 End Section 6.6, Review. §6.6: 1,6,9,11,13,14.

Lesson 15 EXAM 2: Thursday 3/1.
Lesson 16 Section 10.1. Two-Point Boundary Value Problems. §10.1: 2,3,7,14,17,20.

Lesson 17 Review of 107. Begin Section 10.2. Review: Math 107 sections 9.1 - 9.3, including inner products, orthonormal bases, self-adjoint (Hermitian) matrices, etc.

SPRING BREAK: 3/10-18.

Lesson 18 Section 10.2, Section 10.3. Fourier Series, The Fourier Convergence Thm. §10.2: 4,6,8,9,16,18,29. §10.3: 2,4,13,14,15,17.

Lesson 19 Section 10.4. Even and Odd Functions.
§10.4: 3,5,6,7,12,16,17,35,36.
Lesson 20 Appendix A (p.649), begin Section 10.5. Derivation of the Heat Conduction Equation, Separation of Variables.
§10.5: 3,4,5,7,11,12,22.
Lesson 21 Section 10.6. Other Heat Conduction Problems.
§10.6: 2,8,11(a),12(a,b),15.
Lesson 22 Section 10.7. The Wave Equation: Vibrations of an Elastic string (including Derivation of the Wave Equation - Appendix B on p.653).
§10.7: 4,9,10.
Lesson 23 Section 10.8 and Review. Laplace's Equation.
§10.8: $2,7,8,10$.

Lesson 24 EXAM 3: Tuesday 4/10.

Lesson 25 Section 11.1. The Occurrence of Two-Point Boundary Value Problems.
§11.1: 2,3,4,5,8,10,19.
Lesson 26 Section 11.2. Sturm-Liouville Boundary Value Problems, Nonhomogeneous Boundary Value Problems.
§11.2: 1,4,7,8,11,13,14,15,27.
Lesson 27 Section 11.3. Nonhomogeneous Boundary Value Problems.
§11.3: 2,4,7,10,22
Lesson 28 Review for final exam.
FINAL BLOCK EXAM: Friday 5/4, 9am-noon.

Warm-up Exercises

The following problems are not to be collected, but similar problems could be intermediate steps in the solutions of your homework problems, test problems or final exam problems.
-------- (1) Complete the square of $2 x^{2}+x+2$.
-------- (2) Find all the values of the x in terms of union of intervals so that $|3 x+1| \geq 4$.
\qquad (3) If $|f(x)| \leq 1,|g(x)| \leq 2$ for $x \in \mathbb{R}$, is $|3 f(x)-4 g(x)| \leq 11$ on \mathbb{R} ? Why?
-------- (4) If $|f(x)| \leq 1,|g(x)| \leq 2$ and $|h(x)| \leq 3$ for $x \in \mathbb{R}$, is $|4 f(x)+5 g(x)-6 h(x)| \leq 32$ on \mathbb{R} ? Why?
\qquad (5) Solve for y from the equation $-\frac{1}{2} \ln \left|\frac{y}{x}+1\right|+\frac{1}{2} \ln \left|\frac{y}{x}-1\right|=\ln |x|+C$ where C is constant.
\qquad (6) Let $f(x)=3 x$ and $g(x)=\sin 2 x$, compute $\int_{0}^{t} f(t-x) g(x) d x$ where $t \in \mathbb{R}$.
\qquad (7) Let $f(x)=|3 x+1|$ and $g(x)=\sin 2 x$, compute $\int_{0}^{t} f(t-x) g(x) d x$ where $t \in \mathbb{R}$.
\qquad (8) Compute $\int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)(x+1)} d x$.
\qquad (9) Find the antiderivatives $\int \frac{2 x+3}{4-5 x} d x$
-------- (10) Compute $\int_{0}^{2}\left(2 x^{3}-x+1\right) \sin \frac{(2 n-1) \pi x}{4} d x$ where $n=0,1,2, \cdots$ and simplify your result as much as possible.
-------- (11) Find A and θ so that $2 \sin (3 x)-5 \cos (3 x)=A \cos (3 x-\theta)$.
\qquad (12) Find the amplitude, angular frequency, phase angle and period of $y=2 \sin (3 x)-5 \cos (3 x)$.
-------- (13) Differentiate $e^{x \sin x}$.
\qquad (14) Let $x=r \cos \theta$ and $y=r \sin \theta$. Rewrite $u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0$ in terms of $u_{x x}$ and $u_{y y}$.
\qquad (15) Simplify $\sum_{n=0}^{\infty} e^{-n x}$ and determine the natural domain of the function represented by the given series.
(16) Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{3^{n}}(x+2)^{n}$.
(17) Find the first five nonzero terms of the power series represented by $\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}\right)\left(\sum_{n=1}^{\infty}(-2)^{n-1} x^{n}\right)$.

