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Preface

FAN B . EaY B . :
v : ; ’ 291 Yo e ' (st
i . faw !

This book is intended as a text for a one- or two-semester introduction to topology, at
the senior or first-year graduate level.

The subject of topology is of interest in its own right, and it also serves to lay the
foundations for future study in analysis, in geometry, and in algebraic topology. There
is no universal agreement among mathematicians as to what a first course in topology
should include; there are many topics that are appropriate to such a course, and not all
are equally relevant to these differing purposes. In the choice of material to be treated,
I have tried to strike a balance among the various points of view.

Prerequisites. There are no formal subject matter prerequisites for studying most of
this book. I do not even assume the reader knows much set theory. Having said that,
I must hasten to add that unless the reader has studied a bit of analysis or “rigorous
calculus,” much of the motivation for the concepts introduced in the first part of the
book will be missing. Things will go more smoothly if he or she already has had some
experience with continuous functions, open and closed sets, metric spaces, and the
like, although none of these is actually assumed. In Part II, we do assume familiarity
with the elements of group theory.

Most students in a topology course have, in my experience, some knowledge of
the foundations of mathematics. But the amount varies a great deal from one student
to another. Therefore, I begin with a fairly thorough chapter on set theory and logic. It
starts at an elementary level and works up to a level that might be described as “semi-
sophisticated.” It treats those topics (and only those) that will be needed later in the
book. Most students will already be familiar with the material of the first few sections,
but many of them will find their expertise disappearing somewhere about the middle
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of the chapter. How much time and effort the instructor will need to spend on this
chapter will thus depend largely on the mathematical sophistication and experience of
the students. Ability to do the exercises fairly readily (and correctly!) should serve as
a reasonable criterion for determining whether the student’s mastery of set theory is
sufficient for the student to begin the study of topology.

Many students (and instfuctors!) would prefer to skip the foundational material
of Chapter 1 and jump right in to the study of topology. One ignores the foundations,
however, only at the risk of later confusion and error. What one can do is to treat
initially only those sections that are needed at once, postponing the remainder until
they are needed. The first seven sections (through countability) are needed throughout
the book; I usually assign some of them as reading and lecture on the rest. Sections 9
and 10, on the axiom of choice and well-ordering, are not needed until the discussion
of compactness in Chapter 3. Section 11, on the maximum principle, can be postponed
even longer; it is needed only for the Tychonoff theorem (Chapter 5) and the theorem
on the fundamental group of a linear graph (Chapter 14).

How the book is organized. This book can be used for a number of different courses.
I have attempted to organize it as flexibly as possible, so as to enable the instructor to
follow his or her own preferences in the matter.

Part 1, consisting of the first eight chapters, is devoted to the subject commonly
called general topology. The first four chapters deal with the body of material that,
in my opinion, should be included in any introductory topology course worthy of the
name. This may be considered the “irreducible core” of the subject, treating as it does
set theory, topological spaces, connectedness, compactness (through compactness of
finite products), and the countability and separation axioms (through the Urysohn
metrization theorem). The remaining four chapters of Part I explore additional topics;
they are essentially independent of one another, depending on only the core material
of Chapters 14. The instructor may take them up in any order he or she chooses.

Part II constitutes an introduction to the subject of Algebraic Topology. It depends
on only the core material of Chapters 1-4. This part of the book treats with some
thoroughness the notions of fundamental group and covering space, along with their
many and varied applications. Some of the chapters of Part II are independent of one
another; the dependence among them is expressed in the following diagram:

Chapter 9 = The Fundamental Group

N

Chapter 10 Separation Theorems in the Plane 2
- b Chapter 11 The Seifert-van Kampen Theorem

¢ 4

Chapter 12  Classification of Surfaces o

Chapter 13  Classification of Covering Spaces

Chapter 14  Applications to Group Theory
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Certain sections of the book are marked with an asterisk; these sections may be
omitted or postponed with no loss of continuity. Certain theorems are marked sim-
ilarly. Any dependence of later material on these asterisked sections or theorems is
indicated at the time, and again when the results are needed. Some of the exercises
also depend on earlier asterisked material, but in such cases the dependence is obvious.

Sets of supplementary exercises appear at the ends of several of the chapters. They
provide an opportunity for exploration of topics that diverge somewhat from the main
thrust of the book; an ambitious student might use one as a basis for an independent
paper or research project. Most are fairly self-contained, but the one on topological
groups has as a sequel a number of additional exercises on the topic that appear in later
sections of the book.

Possible course outlines. Most instructors who use this text for a course in general
topology will wish to cover Chapters 1—4, along with the Tychonoff theorem in Chap-
ter 5. Many will cover additional topics as well. Possibilities include the following:
the Stone-Cech compactification (§38), metrization theorems (Chapter 6), the Peano
curve (§44), Ascoli’s theorem (§45 and/or §47), and dimension theory (§50). I have,
in different semesters, followed each of these options.

For a one-semester course in algebraic topology, one can expect to cover most of
Part II.

It is also possible to treat both aspects of topology in a single semester, although
with some corresponding loss of depth. One feasible outline for such a course would
consist of Chapters 1-3, followed by Chapter 9; the latter does not depend on the
material of Chapter 4. (The non-asterisked sections of Chapters 10 and 13 also are
independent of Chapter 4.)

Comments on this edition. The reader who is familiar with the first edition of this
book will find no substantial changes in the part of the book dealing with general
topology. I have confined myself largely to “fine-tuning” the text material and the
exercises. However, the final chapter of the first edition, which dealt with algebraic
topology, has been substantially expanded and rewritten. It has become Part II of this
book. In the years since the first edition appeared, it has become increasingly common
to offer topology as a two-term course, the first devoted to general topology and the
second to algebraic topology. By expanding the treatment of the latter subject, I have
intended to make this revision serve the needs of such a course.

Acknowledgments. Most of the topologists with whom I have studied, or whose
books I have read, have contributed in one way or another to this book; I mention
only Edwin Moise, Raymond Wilder, Gail Young, and Raoul Bott, but there are many
others. For their helpful comments concerning this book, my thanks to Ken Brown,
Russ McMillan, Robert Mosher, and John Hemperly, and to my colleagues George
Whitehead and Kenneth Hoffman.

The treatment of algebraic topology has been substantially influenced by the excel-
lent book by William Massey [M], to whom I express appreciation. Finally, thanks are
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diie Adam Lewenberg of MacroTeX for his extraordinary skill and patience in setting
text and juggling figures.

But most of all, to my students go my most heartfelt thanks. From them I learned
at least as much as they did from me; without them this book would be very different.

JRM.

b

SN L : T ! T AL AR £ 1 LR

ot ‘ #1 o B 15
A8 v ) s S



A Note to the Reader

Two matters require comment—the exercises and the examples.

Working problems is a crucial part of learning mathematics. No one can learn
topology merely by poring over the definitions, theorems, and examples that are worked
out in the text. One must work part of it out for oneself. To provide that opportunity is
the purpose of the exercises.

They vary in difficulty, with the easier ones usually given first. Some are routine
verifications designed to test whether you have understood the definitions or examples
of the preceding section. Others are less routine. You may, for instance, be asked to
generalize a theorem of the text. Although the result obtained may be interesting in its
own right, the main purpose of such an exercise is to encourage you to work carefully
through the proof in question, mastering its ideas thoroughly—more thoroughly (I
hope!) than mere memorization would demand.

Some exercises are phrased in an “‘open-ended” fashion. Students often find this
practice frustrating. When faced with an exercise that asks, “Is every regular Lindelof
space normal?” they respond in exasperation, “I don’t know what I’'m supposed to do!
Am I suppose to prove it or find a counterexample or what?” But mathematics (outside
textbooks) is usually like this. More often than not, all a mathematician has to work
with is a conjecture or question, and he or she doesn’t know what the correct answer
is. You should have some experience with this situation.

A few exercises that are more difficult than the rest are marked with asterisks. But
none are so difficult but that the best student in my class can usually solve them.
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Another important part of mastering any mathematical subject is acquiring a reper-
toire of useful examples. One should, of course, come to know those major examples
from whose study the theory itself derives, and to which the important applications
are made. But one should also have a few counterexamples at hand with which to test
plausible conjectures.

Now it is all too easy in studying topology to spend too much time dealing with
“weird counterexamples.” Constructing them requires ingenuity and is often great
fun. But they are not really what topology is about. Fortunately, one does not need
too many such counterexamples for a first course; there is a fairly short list that will
suffice for most purposes. Let me give it here:

R’ the product of the real line with itself, in the product, uniform, and box topolo-
gies.

R the real line in the topology having the intervals [a, b) as a basis.
Sq the minimal uncountable well-ordered set.

I? the closed unit square in the dictionary order topology.

These are the examples you should master and remember; they will be exploited
again and again.
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Chapter 1

Set Theory and Logic

We adopt, as most mathematicians do, the naive point of view regarding set theory.
We shall assume that what is meant by a ser of objects is intuitively clear, and we shall
proceed on that basis without analyzing the concept further. Such an analysis properly
belongs to the foundations of mathematics and to mathematical logic, and it is not our
purpose to initiate the study of those fields.

Logicians have analyzed set theory in great detail, and they have formulated ax-
ioms for the subject. Each of their axioms expresses a property of sets that mathe-
maticians commonly accept, and collectively the axioms provide a foundation broad
enough and strong enough that the rest of mathematics can be built on them.

It is unfortunately true that careless use of set theory, relying on intuition alone,
can lead to contradictions. Indeed, one of the reasons for the axiomatization of set
theory was to formulate rules for dealing with sets that would avoid these contradic-
tions. Although we shall not deal with the axioms explicitly, the rules we follow in
dealing with sets derive from them. In this book, you will learn how to deal with sets
in an “apprentice” fashion, by observing how we handle them and by working with
them yourself. At some point of your studies, you may wish to study set theory more
carefully and in greater detail; then a course in logic or foundations will be in order.
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§1 Fundamental Concepts

Here we introduce the ideas of set theory, and establish the basic terminology and
notation. We also discuss some points of elementary logic that, in our experience, are
apt to cause confusion.

Basic Notation

Commonly we shall use capital letters A, B, ... to denote sets, and lowercase letters
a, b, ... to denote the objects or elements belonging to these sets. If an object a
belongs to a set A, we express this fact by the notation

aeA.
If a does not belong to A, we express this fact by writing
a¢A.

The equality symbol = is used throughout this book to mean logical identity. Thus,
when we write a = b, we mean that “a” and “b” are symbols for the same object. This
is what one means in arithmetic, for example, when one writes % = % Similarly, the
equation A = B states that “A” and “B” are symbols for the same set; that is, A and B
consist of precisely the same objects.

If a and b are different objects, we write a # b; and if A and B are different sets,
we write A # B. For example, if A is the set of all nonnegative real numbers, and B
is the set of all positive real numbers, then A # B, because the number 0 belongs to A
and not to B.

We say that A is a subset of B if every element of A is also an element of B; and
we express this fact by writing

A C B.

Nothing in this definition requires A to be different from B; in fact, if A = B, it is true
thatboth A C Band B C A. If A C B and A is different from B, we say that A is a
proper subset of B, and we write

ACB.

The relations C and C are called inclusion and proper inclusion, respectively. If
A C B, we also write B O A, which is read “B contains A”

How does one go about specifying a set? If the set has only a few elements, one
can simply list the objects in the set, writing “A is the set consisting of the elements q,
b, and ¢.” In symbols, this statement becomes

A ={a,b,c},

where braces are used to enclose the list of elements.
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The usual way to specify a set, however, is to take some set A of objects and some
property that elements of A may or may not possess, and to form the set consisting
of all elements of A having that property. For instance, one might take the set of
real numbers and form the subset B consisting of all even integers. In symbols, this
statement becomes

B = {x | x is an even integer]}.

Here the braces stand for the words “the set of,” and the vertical bar stands for the
words “such that.” The equation is read “B is the set of all x such that x is an even
integer.”

The Union of Sets and the Meaning of “or”

Given two sets A and B, one can form a set from them that consists of all the elements
of A together with all the elements of B. This set is called the union of A and B and
is denoted by A U B. Formally, we define

AUB={x|x€Aorx € B}.

But we must pause at this point and make sure exactly what we mean by the statement
“xe Aorx € B”

In ordinary everyday English, the word “or” is ambiguous. Sometimes the state-
ment “P or Q” means “P or @, or both” and sometimes it means “P or @, but not
both.” Usually one decides from the context which meaning is intended. For example,
suppose I spoke to two students as follows:

“Miss Smith, every student registered for this course has taken either a course in
linear algebra or a course in analysis.”

“Mr. Jones, either you get a grade of at least 70 on the final exam or you will flunk
this course.”

In the context, Miss Smith knows perfectly well that I mean “everyone has had linear
algebra or analysis, or both,” and Mr. Jones knows I mean “either he gets at least 70
or he flunks, but not both.” Indeed, Mr. Jones would be exceedingly unhappy if both
statements turned out to be true!

In mathematics, one cannot tolerate such ambiguity. One has to pick just one
-meaning and stick with it, or confusion will reign. Accordingly, mathematicians have
agreed that they will use the word “or” in the first sense, so that the statement “P or Q"
always means “P or Q, or both.” If one means “P or Q, but not both,” then one has to
include the phrase “but not both” explicitly.

With this understanding, the equation defining A U B is unambiguous; it states that
A U B is the set consisting of all elements x that belong to A or to B or to both.
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The Intersection of Sets, the Empty Set, and the Meaning of “If . .. Then”

Given sets A and B, another way one can form a set is to take the common part of A
and B. This set is called the intersection of A and B and is denoted by AN B. Formally,
we define

ANB={x]|x¢€ Aand x € B}.

But just as with the definition of A U B, there is a difficulty. The difficulty is not in the
meaning of the word “and”; it is of a different sort. It arises when the sets A and B
happen to have no elements in common. What meaning does the symbol A N B have
in such a case?

To take care of this eventuality, we make a special convention. We introduce a
special set that we call the empty set, denoted by &, which we think of as “the set
having no elements.”

Using this convention, we express the statement that A and B have no elements in
common by the equation

ANB=a.

We also express this fact by saying that A and B are disjoint.

Now some students are bothered by the notion of an “empty set.” “How,” they say,
“can you have a set with nothing in it?” The problem is similar to that which arose
many years ago when the number O was first introduced.

The empty set is only a convention, and mathematics could very well get along
without it. But it is a very convenient convention, for it saves us a good deal of
awkwardness in stating theorems and in proving them. Without this convention, for
instance, one would have to prove that the two sets A and B do have elements in
common before one could use the notation A N B. Similarly, the notation

C = {x | x € A and x has a certain property}

could not be used if it happened that no element x of A had the given property. It is
much more convenient to agree that A N B and C equal the empty set in such cases.

Since the empty set & is merely a convention, we must make conventions relating
it to the concepts already introduced. Because @ is thought of as “the set with no
elements,” it is clear we should make the convention that for each object x, the relation
x € & does not hold. Similarly, the definitions of union and intersection show that for
every set A we should have the equations

AU =A and ANG =g,

The inclusion relation is a bit more tricky. Given a set A, should we agree that
& C A? Once more, we must be careful about the way mathematicians use the English
language. The expression & C A is a shorthand way of writing the sentence, “Every
element that belongs to the empty set also belongs to the set A.” Or to put it more
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formally, “For every object x, if x belongs to the empty set, then x also belongs to the
set A

Is this statement true or not? Some might say “yes” and others say “no.” You
will never settle the question by argument, only by agreement. This is a statement of
the form “If P, then Q,” and in everyday English the meaning of the “if ... then”
construction is ambiguous. It always means that if P is true, then Q is true also.
Sometimes that is all it means; other times it means something more: that if P is false,
Q must be false. Usually one decides from the context which interpretation is correct.

The situation is similar to the ambiguity in the use of the word “or.”” One can refor-
mulate the examples involving Miss Smith and Mr. Jones to illustrate the ambiguity.
Suppose I said the following:

“Miss Smith, if any student registered for this course has not taken a course in
linear algebra, then he has taken a course in analysis.”

“Mr. Jones, if you get a grade below 70 on the final, you are going to flunk this
course.”

In the context, Miss Smith understands that if a student in the course has not had linear
algebra, then he has taken analysis, but if he has had linear algebra, he may or may not
have taken analysis as well. And Mr. Jones knows that if he gets a grade below 70, he
will flunk the course, but if he gets a grade of at least 70, he will pass.

Again, mathematics cannot tolerate ambiguity, so a choice of meanings must be
made. Mathematicians have agreed always to use “if ... then” in the first sense, so
that 4 statement of the form “If P, then Q" means that if P is true, Q is true also, but
if P is false, Q may be either true or false.

As an example, consider the following statement about real numbers:

Ifx > 0, then x> # 0.

It is a statement of the form, “If P, then Q,” where P is the phrase “x > 07 (called
the hypothesis of the statement) and Q is the phrase “x~ # 0” (called the conclusion
of the statement). This is a true statement, for in every case for which the hypothesis
x > 0 holds, the conclusion x> # 0 holds as well.

Another true statement about real numbers is the following:

Ifx2 < 0, then x = 23;

in every case for which the hypothesis holds, the conclusion holds as well. Of course,
it happens in this example that there are no cases for which the hypothesis holds. A
statement of this sort is sometimes said to be vacuously true.

To return now to the empty set and inclusion, we see that the inclusion @ C A
does hold for every set A. Writing @ C A is the same as saying, “If x € @, then
x € A, and this statement is vacuously true.
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Contrapositive and Converse

Our discussion of the “if ... then” construction leads us to consider another point of
elementary logic that sometimes causes difficulty. It concerns the relation between a
statement, its contrapositive, and its converse.

Given a statement of the form “If P, then Q,” its contrapositive is defined to be
the statement “If Q is not true, then P is not true.” For example, the contrapositive of
the statement

Ifx >0, then x> #0,
is the statement
Ifx3 = 0, then it is not true that x > Q.
Note that both the statement and its contrapositive are true. Similarly, the statement
If x* <0, then x = 23,
has as its contrapositive the statement
If x # 23, then it is not true that x2 <.

Again, both are true statements about real numbers.

These examples may make you suspect that there is some relation between a state-
ment and its contrapositive. And indeed there is; they are two ways of saying precisely
the same thing. Each is true if and only if the other is true; they are logically equiva-
lent.

This fact is not hard to demonstrate. Let us introduce some notation first. As a
shorthand for the statement “If P, then Q,” we write '

P = 0,
which is read “P implies (.” The contrapositive can then be expressed in the form
(not Q) ==> (not P),

where “not Q” stands for the phrase “Q is not true.”

Now the only way in which the statement “P = Q” can fail to be correct is if the
hypothesis P is true and the conclusion Q is false. Otherwise it is correct. Similarly,
the only way in which the statement (not Q) = (not P) can fail to be correct is if
the hypothesis “not O is true and the conclusion “not P” is false. This is the same
as saying that Q is false and P is true. And this, in turn, is precisely the situation in
which P = Q fails to be correct. Thus, we see that the two statements are either both
correct or both incorrect; they are logically equivalent. Therefore, we shall accept a
proof of the statement “not Q = not P” as a proof of the statement “P = Q.”

There is another statement that can be formed from the statement P = Q. Itis
the statement

Q — P,
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which is called the converse of P = (. One must be careful to distinguish between a
statement’s converse and its contrapositive. Whereas a statement and its contrapositive
are logically equivalent, the truth of a statement says nothing at all about the truth or
falsity of its converse. For example, the true statement

Ifx >0, then x> # 0,
has as its converse the statement

Ifx3 # 0, then x > 0,
which is false. Similarly, the true statement

Ifx% <0, then x = 23,
has as its converse the statement

If x =23, then x? < 0,

which is false.
If it should happen that both the statement P = Q and its converse Q = P are
true, we express this fact by the notation

P = Q,

which is read “P holds if and only if Q holds.”

Negation

If one wishes to form the contrapositive of the statement P = (), one has to know
how to form the statement “not P,” which is called the negation of P. In many cases,
this causes no difficulty; but sometimes confusion occurs with statements involving the
phrases “for every” and “for at least one.” These phrases are called logical quantifiers.

To illustrate, suppose that X is a set, A is a subset of X, and P is a statement about
the general element of X. Consider the following statement:

(x) For every x € A, statement P holds.

How does one form the negation of this statement? Let us translate the problem into
the language of sets. Suppose that we let B denote the set of all those elements x
of X for which P holds. Then statement (x) is just the statement that A is a subset
of B. What is its negation? Obviously, the statement that A is not a subset of B; that
is, the statement that there exists at least one element of A that does not belong to B.
Translating back into ordinary language, this becomes

For at least one x € A, statement P does not hold.

Therefore, to form the negation of statement (x), one replaces the quantifier “for every”
by the quantifier “for at least one,” and one replaces statement P by its negation.
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The process works in reverse just as well; the negation of the statement
For at least one x € A, statement Q holds,
is the statement

For every x € A, statement Q does not hold.

The Difference of Two Sets

We return now to our discussion of sets. There is one other operation on sets that is
occasionally useful. It is the difference of two sets, denoted by A — B, and defined as
the set consisting of those elements of A that are not in B. Formally,

A—B={x|xe€Aandx ¢ B}.

It is sometimes called the complement of B relative to A, or the complement of B in A.
Our three set operations are represented schematically in Figure 1.1.

B B B
A A A
AuB ANB A-B

Figure 1.1

Rules of Set Theory

Given several sets, one may form new sets by applying the set-theoretic operations to
them. As in algebra, one uses parentheses to indicate in what order the operations are
to be performed. For example, A U (B N C) denotes the union of the two sets A and
B N C, while (A U B) N C denotes the intersection of the two sets A U B and C. The
sets thus formed are quite different, as Figure 1.2 shows.

AU(BNC) (AuB)NC

Figure 1.2
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Sometimes different combinations of operations/lead to the same set; when that
happens, one has a rule of set theory. For instance, it is true that for any sets A, B,
and C the equation

ANBUC)=(ANBIUMANDC)

holds. The equation is illustrated in Figure 1.3; the shaded region represents the set in
question, as you can check mentally. This equation can be thought of as a “distributive
law” for the operations N and U.

c

Figure 1.3

Other examples of set-theoretic rules include the second “distributive law,”
AUBNC)=(AUBNAUOD),
and DeMorgan’s laws,

A—(BUC)=(A-B)NA-0C),
A-(BNC)=(A-B)U((A-20).

We leave it to you to check these rules. One can state other rules of set theory, but
these are the most important ones. DeMorgan’s laws are easier to remember if you
verbalize them as follows:

The complement of the union equals the intersection of the complements.
The complement of the intersection equals the union of the complements.

Collections of Sets

The objects belonging to a set may be of any sort. One can consider the set of all even
integers, and the set of all blue-eyed people in Nebraska, and the set of all decks of
playing cards in the world. Some of these are of limited mathematical interest, we
admit! But the third example illustrates a point we have not yet mentioned: namely,
that the objects belonging to a set may themselves be sets. For a deck of cards is itself
a set, one consisting of pieces of pasteboard with certain standard designs printed on
them. The set of all decks of cards in the world is thus a set whose elements are
themselves sets (of pieces of pasteboard).



12 Set Theory and Logic Ch. 1

We now have another way to form new sets from old ones. Given a set A, we can
consider sets whose elements are subsets of A. In particular, we can consider the set
of all subsets of A. This set is sometimes denoted by the symbol 5(A) and is called
the power set of A (for reasons to be explained later).

When we have a set whose elements are sets, we shall often refer to it as a collec-
tion of sets and denote it by a script letter such as A or 8. This device will help us
in keeping things straight in arguments where we have to consider objects, and sets of
objects, and collections of sets of objects, all at the same time. For example, we might
use - to denote the collection of all decks of cards in the world, letting an ordinary
capital letter A denote a deck of cards and a lowercase letter a denote a single playing
card.

A certain amount of care with notation is needed at this point. We make a distinc-
tion between the object a, which is an element of a set A, and the one-element set {a},
which is a subset of A. To illustrate, if A is the set {a, b, c}, then the statements

acaA, {fa} C A, and {a} € P(A)

are all correct, but the statements {a} € A and a C A are not.

Arbitrary Unions and Intersections

We have already defined what we mean by the union and the intersection of two sets.
There is no reason to limit ourselves to just two sets, for we can just as well form the
union and intersection of arbitrarily many sets.

Given a collection A of sets, the union of the elements of A is defined by the
equation

U A= {x|x e Aforatleastone A € A}.
AcA

The intersection of the elements of A is defined by the equation

ﬂ A={x|x e Aforevery A € A}.
AcA

~ There is no problem with these definitions if one of the elements of A happens to be
the empty set. But it is a bit tricky to decide what (if anything) these definitions mean
if we allow A to be the empty collection. Applying the definitions literally, we see that
no element x satisfies the defining property for the union of the elements of 4. So it is
reasonable to say that
U A=

AcA

if /A is empty. On the other hand, every x satisfies (vacuously) the defining property for
the intersection of the elements of A. The question is, every x in what set? If one has a
given large set X that is specified at the outset of the discussion to be one’s “universe of
discourse,” and one considers only subsets of X throughout, it is reasonable to let

(lAa=X

AcA
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when # is empty. Not all mathematicians follow this convention, however. To avoid
difficulty, we shall not define the intersection when A is empty.

Cartesian Products

There is yet another way of forming new sets from old ones; it involves the notion of an
“ordered pair” of objects. When you studied analytic geometry, the first thing you did
was to convince yourself that after one has chosen an x-axis and a y-axis in the plane,
every point in the plane can be made to correspond to a unique ordered pair (x, y) of
real numbers. (In a more sophisticated treatment of geometry, the plane is more likely
to be defined as the set of all ordered pairs of real numbers!)

The notion of ordered pair carries over to general sets. Given sets A and B, we
define their cartesian product A x B to be the set of all ordered pairs (a, b) for which a
is an element of A and b is an element of B. Formally,

AxB={(a,b)|ae Aand b € B}.

This definition assumes that the concept of “ordered pair” is already given. It can be
taken as a primitive concept, as was the notion of “set”; or it can be given a definition in
terms of the set operations already introduced. One definition in terms of set operations is
expressed by the equation

(a,b) = {{a}, {a, b}};

it defines the ordered pair (a, b) as a collection of sets. If a # b, this definition says that
(a, b) is a collection containing two sets, one of which is a one-element set and the other
a two-element set. The first coordinate of the ordered pair is defined to be the element
belonging to both sets, and the second coordinate is the element belonging to only one of
the sets. If a = b, then (a, b) is a collection containing only one set {a}, since {a, b} =
{a,a} = {a} in this case. Its first coordinate and second coordinate both equal the element
in this single set.

I think it is fair to say that most mathematicians think of an ordered pair as a primitive
concept rather than thinking of it as a collection of sets!

Let us make a comment on notation. It is an unfortunate fact that the notation (a, b)
is firmly established in mathematics with two entirely different meanings. One mean-
ing, as an ordered pair of objects, we have just discussed. The other meaning is the
one you are familiar with from analysis; if a and b are real numbers, the symbol (a, b)
is used to denote the interval consisting of all numbers x such thata < x < b. Most of
the time, this conflict in notation will cause no difficulty because the meaning will be
clear from the context. Whenever a situation occurs where confusion is possible, we
shall adopt a different notation for the ordered pair (a, b), denoting it by the symbol

axb

instead.
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Exercises

1. Check the distributive laws for U and N and DeMorgan’s laws.

2. Determine which of the following statements are true for all sets A, B, C, and D.
If a double implication fails, determine whether one or the other of the possible
implications holds. If an equality fails, determine whether the statement be-
comes true if the “equals” symbol is replaced by one or the other of the inclusion
symbols C or D.

(@ ACBandAcCcC & AC(BUCQC).

(b) ACBorACC & AC(BUQ).

(c) ACBandACC & AC(BNCO).

d ACBorACC& AC(BNC).

() A—(A-B)=B.

f) A—-(B—A)=A-B.

(8 ANB-C)=(ANB)y—(ANCQ).

(h) AUB—-C)=(AUB)—(AUCQ).

(i) (ANBYU(A - B)=A.

() ACCandBC D= (A x B)C(C x D).

(k) The converse of (j).

() The converse of (j), assuming that A and B are nonempty.
(m) (AxB)U(C xD)=(AUC) x (BUD).

n) (AxB)YN({C xD)=(ANC)x (BN D).

() Ax(B-C)=(AXxB)—(AxO().

(p) (A—B)x(C—-D)=(AxC-BxCy—AxD.
(@ AxB)—(CxD)y=(A-C) x(B-D).

3. (a) Write the contrapositive and converse of the following statement: “If x < 0,
then x2 — x > 0,” and dete-mine which (if any) of the three statements are
true. .
(b) Do the same for the statement “If x > 0, then x> — x > 0.”

4. Let A and B be sets of real numbers. Write the negation of each of the following
statements:
(a) Foreverya € A, itis true that a? € B.
(b) For at least one a € A, it is true that a2 € B.
(c) Foreverya € A, itis true that a2 ¢ B.
(d) Foratleastone a ¢ A, it is true that a’ € B.

5. Let A be a nonempty collection of sets. Determine the truth of each of the
following statements and of their converses:
(@) x € Jgep A = x € Aforatleastone A € A.
) x € Jpgep A =>x € Aforevery A € .
(¢) x €[ )gep A = x € Aforatleastone A € A.
(d) x € (\gcp A = x € Aforevery A € .

6. Write the contrapositive of each of the statements of Exercise 5.
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7. Given sets A, B, and C, express each of the following sets in terms of A, B,
and C, using the symbols U, N, and —.

D={x|xeAand(x € Borx € C)},
E={x|(xeAandx € B)orx € C},
F={x|xeAand(x € B= x € C)}.

8. If a set A has two elements, show that (A) has four elements. How many
elements does P (A) have if A has one element? Three elements? No elements?
Why is P (A) called the power set of A?

9. Formulate and prove DeMorgan’s laws for arbitrary unions and intersections.

10. Let R denote the set of real numbers. For each of the following subsets of R x R,
determine whether it is equal to the cartesian product of two subsets of R.
(a) {(x,y) | x is an integer}.
®) {(x,»0<y=1}
©) {(x,»)|y>=x}
(d) {(x,y) | x is not an integer and y is an integer}.
© (C,») 2% +y? <1}

§2 Functions

The concept of function is one you have seen many times already, so it is hardly nec-
essary to remind you how central it is to all mathematics. In this section, we give the
precise mathematical definition, and we explore some of the associated concepts.

A function is usually thought of as a rule that assigns to each element of a set A,
an element of a set B. In calculus, a function is often given by a simple formula such
as f(x) = 3x? 4+ 2 or perhaps by a more complicated formula such as

fx)= Zxk.
k=1

One often does not even mention the sets A and B explicitly, agreeing to take A to be
the set of all real numbers for which the rule makes sense and B to be the set of all real
numbers.

As one goes further in mathematics, however, one needs to be more precise about
what a function is. Mathematicians think of functions in the way we just described,
but the definition they use is more exact. First, we define the following:

Definition. A rule of assignment is a subset r of the cartesian product C x D of two
sets, having the property that each element of C appears as the first coordinate of at
most one ordered pair belonging to r.
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Thus, a subset » of C x D is a rule of assignment if
[(c,d) erand(c,d) er]=>[d=4d.

We think of r as a way of assigning, to the element ¢ of C, the element d of D for
which (¢,d) €r.

Given a rule of assignment r, the domain of r is defined to be the subset of C
consisting of all first coordinates of elements of r, and the image set of r is defined as
the subset of D consisting of all second coordinates of elements of r. Formally,

domain r = {c | there exists d € D such that (c,d) € r},
image r = {d | there exists ¢ € C such that (c,d) € r}.

Note that given a rule of assignment r, its domain and image are entirely determined.
Now we can say what a function is.

Definition. A function f is arule of assignment r, together with a set B that contains
the image set of . The domain A of the rule r is also called the domain of the
function f; the image set of r is also called the image set of f; and the set B is called
the range of f.!

If f is a function having domain A and range B, we express this fact by writing
f:A— B,

which is read “f is a function from A to B,” or “f is a mapping from A into B,” or
simply “ f maps A into B.” One sometimes visualizes f asa geometric transformation
physically carrying the points of A to points of B.

If f: A — B andif a is an element of A, we denote by f(a) the unique element
of B that the rule determining f assigns to a; it is called the value of f at a, or
sometimes the image of a under f. Formally, if r is the rule of the function f, then
f (a) denotes the unique element of B such that (a, f(a)) €r.

Using this notation, one can go back to defining functions almost as one did before,
with po lack of rigor. For instance, one can write (letting R denote the real numbers)

“Let f be the function whose rule is {(x, x3 4+ 1) | x € R} and whose
range is R,”

or one can equally well write
“Let f : R — R be the function such that f(x) = 3417

Both sentences specify precisely the same function. But the sentence “Let f be the
function f(x) = x3 + 1” is no longer adequate for specifying a function because it
specifies neither the domain nor the range of f. N

¥ Analysts are apt to use the word “range” to denote what we have called the “image set” of f.
They avoid giving the set B a name.
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Definition. If f : A — B and if Ag is a subset of A, we define the restriction of f
to Ao to be the function mapping Ag into B whose rule is

{(a, f(@)) | a € Ag}.

It is denoted by f|Ag, which is read “ f restricted to Ap.”

EXAMPLE 1.  Let R denote the real numbers and let R, denote the nonnegative reals.
Consider the functions

f:R—R definedby  f(x) = x2,
g:Ry —R defined by g(x) = x2,
h:R— Ry definedby  h(x) = x2,

2

k:Ry — R,  defined by k(x) = x%.

The function g is different from the function f because their rules are different subsets of
R x R; it is the restriction of f to the set R,.. The function h is also different from f, even
though their rules are the same set, because the range specified for 4 is different from the
range specified for f. The function k is different from all of these. These functions are
pictured in Figure 2.1.

Figure 2.1

Restricting the domain of a function and changing its range are two ways of form-
ing a new function from an old one. Another way is to form the composite of two
functions.

Definition. Given functions f : A — B and g : B — C, we define the composite
go f of f and g as the function g o f : A — C defined by the equation (g o f)(a) =
g(f(a).

Formally, g o f : A — C is the function whose rule is
{(a,c) | Forsome b € B, f(a) = b and g(b) = c}.

We often picture the composite g o f as involving a physical movement of the point a
to the point f(a), and then to the point g(f(a)), as illustrated in Figure 2.2.
Note that g o f is defined only when the range of f equals the domain of g.
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. f(a{ =b
\,, o 9(f(a)=g(b)=c
g \—\/
C
B
Figure 2.2

EXAMPLE 2.  The composite of the function f : R — R given by f(x) = 3x% + 2 and
the function g : R — R given by g(x) = 5x is the function g o f : R — R given by

(go f)x) = g(f(x)) = gB3x* +2) = 53x% +2).

The composite f o g can also be formed in this case; it is the quite different function
fog:R— Rgivenby

(f o g)(x) = f(g(x)) = F(5x) = 3(5x)* +2.

Definition. A function f : A — B is said to be injective (or one-to-one) if for each
pair of distinct points of A, their images under f are distinct. It is said to be surjective
(or f is said to map A onto B) if every element of B is the image of some element
of A under the function f. If f is both injective and surjective, it is said to be bijective
(or is called a one-to-one correspondence).

More formally, f is injective if
[f(@) = f(a)] = [a = 4],
and f is surjective if
[b € Bl = [b = f(a) for atleastone g € A].

Injectivity of f depends only on the rule of f; surjectivity depends on the range
of f as well. You can check that the composite of two injective functions is injec-
tive, and the composite of two surjective functions is surjective; it follows that the
composite of two bijective functions is bijective.

If f is bijective, there exists a function from B to A called the inverse of f. Itis
denoted by f~! and is defined by letting f~!(b) be that unique element a of A for
which f(a) = b. Given b € B, the fact that f is surjective implies that there exists
such an element a € A; the fact that f is injective implies that there is only one such
element a. It is easy to see that if f is bijective, f~! is also bijective.

EXAMPLE 3.  Consider again the functions f, g, k, and k of Figure 2.1. The function
f : R — Rgiven by f(x) = x? is neither injective nor surjective. Its restriction g to the
nonnegative reals is injective but not surjective. The function # : R — R obtained from f
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by changing the range is surjective but not injective. The function k : R, — R obtained
from f by restricting the domain and changing the range is both injective and surjective,
so it has an inverse. Its inverse is, of course, what we usually call the square-root function.

A useful criterion for showing that a given function f is bijective is the following,
whose proof is left to the exercises:

Lemma 2.1. Let f : A — B. If there are functionsg : B — Aandh: B —> A
such that g(f(a)) = a forevery a in A and f(h(b)) = b for every b in B, then f is
bijectiveandg = h = f~1.

Definition. Let f : A — B. If Ag is a subset of A, we denote by f(Ag) the set
of all images of points of Ap under the function f; this set is called the image of Ay
under f. Formally,

f(Ao) ={b | b= f(a) for at least one a € Ap}.

On the other hand, if By is a subset of B, we denote by f~!(By) the set of all elements
of A whose images under f lie in Bo; it is called the preimage of By under f (or the
“counterimage,” or the “inverse image,” of By). Formally,

F(Bo) = {a | f(a) € By}

Of course, there may be no points a of A whose images lie in By; in that case, f ~1(By)
is empty.

Note that if f : A — B is bijective and By C B, we have two meanings for the
notation f~!(Byp). It can be taken to denote the preimage of Bg under the function f
or to denote the image of By under the function f~! : B — A. These two meanings
give precisely the same subset of A, however, so there is, in fact, no ambiguity.

Some care is needed if one is to use the f and ! notation correctly. The opera-
tion f~!, for instance, when applied to subsets of B, behaves very nicely; it preserves
inclusions, unions, intersections, and differences of sets. We shall use this fact fre-
quently. But the operation f, when applied to subsets of A, preserves only inclusions
and unions. See Exercises 2 and 3.

As another situation where care is needed, we note that it is not in general true that
Y f(A0)) = Ao and f(f~'(By)) = Bo. (See the following example.) The relevant
rules, which we leave to you to check, are the following: If f : A - Bandif Ag C A
and By C B, then

Ao C 7N (f(A0)) and  f(F~'(Bo)) C By.

The first inclusion is an equality if f is injective, and the second inclusion is an equality
if f is surjective.
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EXAMPLE 4. Consider the function f : R — R given by f(x) = 3x2 4 2 (Figure 2.3).
Let [a, b] denote the closed interval @ < x < b. Then

Yo = s =1-1,11,  and
FON0,5)) = FA-1. 1) =2, 5]

y= f(X)

Figure 2.3

Exercises

l.Let f: A — B.Let Ag C Aand By C B.
(a) Show that Ag C f ~1(f(Ag)) and that equality holds if f is injective.
(b) Show that f(f ~1(By)) C By and that equality holds if f is surjective.

2. Let f:A— BandletA; C Aand B; C Bfori =0andi = 1. Show that f~!
preserves inclusions, unions, intersections, and differences of sets:
(a) BoC Bi= f~'(Bo) C f'(By).
® f~'(BoUB) = f~'(Bo)U f~1(BY).
© f'(Bon B = f~'(Bo)N f~!(B).
d) f~'(Bo— B = f~'(Bo) — f~'(BY).
Show that f preserves inclusions and unions only:
(e) Ao C A1 = f(Ag) C f(AD).
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B f(AU A1) = f(Ao) U f(A)).

(g) f(ApN A1) C f(Ap) N f(Ay); show that equality holds if f is injective.

(h) f(Ao— A1) D f(Ao) — f(A}); show that equality holds if f is injective.
3. Show that (b), (c), (f), and (g) of Exercise 2 hold for arbitrary unions and inter-

sections.

4. letf:A— Bandg: B — C.
(a) If Co C C, show that (g o £)~1(Co) = f~ (g~ 1(Cy)).
(b) If f and g are injective, show that g o f is injective.
(c) If g o f is injective, what can you say about injectivity of f and g?
(d) If f and g are surjective, show that g o f is surjective.
(e) If g o f is surjective, what can you say about surjectivity of f and g?
(f) Summarize your answers to (b)—(e) in the form of a theorem.

S. In general, let us denote the identity function for a set C by ic. That is, define
ic : C — C to be the function given by the rule ic(x) = x for all x € C.
Given f : A — B, we say that a function g : B — A is a left inverse for fif
go f =ia;and wesaythath : B — A is a right inverse for f if foh=ip.
(a) Show thatif f has a left inverse, f is injective; and if f has a right inverse,

f is surjective.
(b) Give an example of a function that has a left inverse but no right inverse.
(¢) Give an example of a function that has a right inverse but no left inverse.
(d) Can a function have more than one left inverse? More than one right inverse?
(e) Show that if f has both a left inverse g and a right inverse 4, then fis
bijectiveand g = h = f~ 1.

6. Let f : R — R be the function f(x) = x3 — x. By restricting the domain and
range of f appropriately, obtain from f a bijective function g. Draw the graphs
of g and g~!. (There are several possible choices for g.)

§3 Relations

A concept that is, in some ways, more general than that of function is the concept of
a relation. In this section, we define what mathematicians mean by a relation, and
we consider two types of relations that occur with great frequency in mathematics:
equivalence relations and order relations. Order relations will be used throughout the
book; equivalence relations will not be used until §22.

Definition. A relation on a set A is a subset C of the cartesian product A x A.

If C is arelation on A, we use the notation xC'y to mean the same thing as (x, y) €
C. We read it “x is in the relation C to y.”

A rule of assignment r for a function f : A — A is also a subset of A x A. But it
is a subset of a very special kind: namely, one such that each element of A appears as
the first coordinate of an element of r exactly once. Any subset of A x A is a relation
on A.
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EXAMPLE 1. Let P denote the set of all people in the world, and define D C P x P by
the equation

D = {(x,y) | x is a descendant of y}.

Then D is a relation on the set P. The statements “x is in the relation D to y” and “x is
a descendant of y” mean precisely the same thing, namely, that (x, y} € D. Two other
relations on P are the following:

B = {(x, y) | x has an ancestor who is also an ancestor of y},
S = {(x, ) | the parents of x are the parents of y}.

We can call B the “blood relation” (pun intended), and we can call S the “sibling relation.”
These three relations have quite different properties. The blood relationship is symmetric,
for instance (if x is a blood relative of y, then y is a blood relative of x), whereas the
descendant relation is not. We shall consider these relations again shortly.

Equivalence Relations and Partitions

An equivalence relation on a set A is a relation C on A having the following three
properties:
(1) (Reflexivity) xCx for every x in A.
(2) (Symmetry) If xCy, then yCx.
(3) (Transitivity) If xCy and yCz, then xCz.
EXAMPLE 2.  Among the relations defined in Example 1, the descendant relation D is
neither reflexive nor symmetric, while the blood relation B is not transitive (I am not a

blood relation to my wife, although my children are!) The sibling relation S is, however,
an equivalence relation, as you may check.

There is no reason one must use a capital letter—or indeed a letter of any sort—
to denote a relation, even though it is a set. Another symbol will do just as well.
One symbol that is frequently used to denote an equivalence relation is the “tilde”
symbol ~. Stated in this notation, the properties of an equivalence relation become

(1) x ~ x for every x in A.

) Ifx ~y, theny ~ x.

(3) Ifx ~yandy ~ z,thenx ~ z.
There are many other symbols that have been devised to stand for particular equiva-
lence relations; we shall meet some of them in the pages of this book.

Given an equivalence relation ~ on a set A and an element x of A, we define a
certain subset E of A, called the equivalence class determined by x, by the equation

E={yly~x}

Note that the equivalence class E determined by x contains x, since x ~ x. Equiva-
lence classes have the following property:
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Lemma 3.1. Two equivalence classes E and E' are either disjoint or equal.

Proof.  Let E be the equivalence class determined by x, and let E’ be the equivalence
class determined by x’. Suppose that E N E’ is not empty; let y be a point of E N E’.
See Figure 3.1. We show that E = E’.

E E'

Figure 3.1

By definition, we have y ~ x and y ~ x’. Symmetry allows us to conclude that
x ~yand y ~ x'; from transitivity it follows that x ~ x’. If now w is any point of E,
we have w ~ x by definition; it follows from another application of transitivity that
w ~ x’. We conclude that E C E’.

The symmetry of the situation allows us to conclude that E’ C E as well, so that
E=E. |

Given an equivalence relation on a set A, let us denote by & the collection of all
the equivalence classes determined by this relation. The preceding lemma shows that
distinct elements of & are disjoint. Furthermore, the union of the elements of & equals
all of A because every element of A belongs to an equivalence class. The collection &
is a particular example of what is called a partition of A:

Definition. A partition of a set A is a collection of disjoint nonempty subsets of A
whose union is all of A.

Studying equivalence relations on a set A and studying partitions of A are really
the same thing. Given any partition & of A, there is exactly one equivalence relation
on A from which it is derived.

The proof is not difficult. To show that the partition £ comes from some equiv-
alence relation, let us define a relation C on A by setting xCy if x and y belong to
the same element of . Symmetry of C is obvious; reflexivity follows from the fact
that the union of the elements of £ equals all of A; transitivity follows from the fact
that distinct elements of D are disjoint. It is simple to check that the collection of
equivalence classes determined by C is precisely the collection D.

To show there is only one such equivalence relation, suppose that Cy and C, are
two equivalence relations on A that give rise to the same collection of equivalence
classes D. Given x € A, we show that yC;x if and only if yC,x, from which we
conclude that C; = C,. Let E be the equivalence class determined by x relative to
the relation Cy; let E; be the equivalence class determined by x relative to the relation
C,. Then E| is an element of D, so that it must equal the unique element D of D that
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contains x. Similarly, E; must equal D. Now by definition, E; consists of all y such
that yCjx; and E; consists of all y such that yCsx. Since E| = D = E, our result is
proved.

EXAMPLE 3. Define two points in the plane to be equivalent if they lie at the same
distance from the origin. Reflexivity, symmetry, and transitivity hold trivially. The collec-
tion &€ of equivalence classes consists of all circles centered at the origin, along with the set
consisting of the origin alone.

EXAMPLE 4. Define two points of the plane to be equivalent if they have the same
y-coordinate. The collection of equivalence classes is the collection of all straight lines in
the plane parallel to the x-axis.

EXAMPLE 5. Let £ be the collection of all straight lines in the plane parallel to the line
y = —x. Then .£ is a partition of the plane, since each point lies on exactly one such line.
The partition £ comes from the equivalence relation on the plane that declares the points
(xg, yo) and (x1, y1) to be equivalent if xo + yo = x1 + 1.

EXAMPLE 6. Let £ be the collection of all straight lines in the plane. Then £’ is not
a partition of the plane, for distinct elements of £ are not necessarily disjoint; two lines
may intersect without being equal.

Order Relations

A relation C on a set A is called an order relation (or a simple order, or a linear order)
if it has the following properties:

(1) (Comparability) For every x and y in A for which x # y, either xCy or yCx.

(2) (Nonreflexivity) For no x in A does the relation xCx hold.

(3) (Transitivity) If xCy and yCz, then xCz.
Note that property (1) does not by itself exclude the possibility that for some pair of
elements x and y of A, both the relations xCy and yCx hold (since “or” means “one
or the other, or both”). But properties (2) and (3) combined do exclude this possibil-
ity; for if both xCy and yCx held, transitivity would imply that xCx, contradicting
nonreflexivity.

EXAMPLE 7.  Consider the relation on the real line consisting of all pairs (x, y) of real
numbers such that x < y. It is an order relation, called the “usual order relation,” on the
real line. A less familiar order relation on the real line is the following: Define xCy if
x2 < y?, orif x2 = y? and x < y. You can check that this is an order relation.

EXAMPLE 8.  Consider again the relationships among people given in Example 1. The
blood relation B satisfies none of the properties of an order relation, and the sibling rela-
tion S satisfies only (3). The descendant relation D does somewhat better, for it satisfies
both (2) and (3); however, comparability still fails. Relations that satisfy (2) and (3) occur
often enough in mathematics to be given a special name. They are called strict partial
order relations; we shall consider them later (see §11).
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As the tilde, ~, is the generic symbol for an equivalence relation, the “less than”
symbol, <, is commonly used to denote an order relation. Stated in this notation, the
properties of an order relation become

(1) If x # y, then either x < yory < x.

(2) If x < y, then x # y.

3) Ifx <yandy <z, thenx < z.
We shall use the notation x < y to stand for the statement “either x < y or x = v’
and we shall use the notation y > x to stand for the statement “x < y.” We write
X <y<ztomean“x < yandy < z.”

Definition. If X is a set and < is an order relation on X, and if a < b, we use the
notation (a, b) to denote the set

{x |a <x < b};

it is called an open interval in X. If this set is empty, we call a the immediate prede-
cessor of b, and we call b the immediate successor of a.

Definition. Suppose that A and B are two sets with order relations <, and <p
respectively. We say that A and B have the same order type if there is a bijective
correspondence between them that preserves order; that is, if there exists a bijective
function f : A — B such that

a) <4 a3 = f(ay) < f(az).

EXAMPLE 9. The interval (—1, 1) of real numbers has the same order type as the set R
of real numbers itself, for the function f : (—1, 1) — R given by

X

SO=r"0

is an order-preserving bijective correspondence, as you can check. It is pictured in Fig-
ure 3.2.

EXAMPLE 10.  The subset A = {0} U (1, 2) of R has the same order type as the subset
0.D)={x]0<x<1}
of R. The function f : A — [0, 1) defined by

f(0)y =0,
f)=x-1 forxe(l,2)

is the required order-preserving correspondence.

One interesting way of defining an order relation, which will be useful to us later
in dealing with some examples, is the following:
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y=x/(1-x?)

Figure 3.2

Definition. Suppose that A and B are two sets with order relations <4 and <p
respectively. Define an order relation < on A x B by defining

a1 x by <ax x by

ifa; <4 ao, orif a; = ap and by <p b;. It is called the dictionary order relation on
A X B.

Checking that this is an order relation involves looking at several separate cases;
we leave it to you.

The reason for the choice of terminology is fairly evident. The rule defining < is
the same as the rule used to order the words in the dictionary. Given two words, one
compares their first letters and orders the words according to the order in which their
first letters appear in the alphabet. If the first letters are the same, one compares their
second letters and orders accordingly. And so on.

EXAMPLE 11. Consider the dictionary order on the plane R x R. In this order, the
point p is less than every point lying above it on the vertical line through p, and p is less
than every point to the right of this vertical line.

EXAMPLE 12. Consider the set [0, 1) of real numbers and the set Z_ of positive integers,
both in their usual orders; give Z x [0, 1) the dictionary order. This set has the same order
type as the set of nonnegative reals; the function

finxt)y=n+tr—1

is the required bijective order-preserving correspondence. On the other hand, the set
[0, 1) x Z, in the dictionary order has quite a different order type; for example, every
element of this ordered set has an immediate successor. These sets are pictured in Fig-
ure 3.3.
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One of the properties of the real numbers that you may have seen before is the
“least upper bound property.” One can define this property for an arbitrary ordered set.
First, we need some preliminary definitions.

Suppose that A is a set ordered by the relation <. Let Ag be a subset of A. We
say that the element b is the largest element of Ag if b € Ag and if x < b for every
x € Ag. Similarly, we say that a is the smallest element of Agifa € Apandifa < x
for every x € Ag. It is easy to see that a set has at most one largest element and at
most one smallest element.

We say that the subset Ag of A is bounded above if there is an element b of A such
that x < b for every x € Ag; the element b is called an upper bound for Ag. If the
set of all upper bounds for Ag has a smallest element, that element is called the least
upper bound, or the supremum, of Ao. It is denoted by sup Ap; it may or may not
belong to Ag. If it does, it is the largest element of Ao.

Similarly, Ag is bounded below if there is an element a of A such that a < x for
every x € Ag; the element a is called a lower bound for Ag. If the set of all lower
bounds for Ag has a largest element, that element is called the greatest lower bound,
or the infimum, of Ag. It is denoted by inf Ag; it may or may not belong to Ag. If it
does, it is the smallest element of Ag.

Now we can define the least upper bound property.

Definition. An ordered set A is said to have the least upper bound property if every
nonempty subset Ag of A that is bounded above has a least upper bound. Analogously,
the set A is said to have the greatest lower bound property if every nonempty subset
Ag of A that is bounded below has a greatest lower bound.

We leave it to the exercises to show that A has the least upper bound property if
and only if it has the greatest lower bound property.

EXAMPLE 13. Consider the set A = (=1, 1) of real numbers in the usual order. As-
suming the fact that the real numbers have the least upper bound property, it follows that
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the set A has the least upper bound property. For, given any subset of A having an upper
bound in A, it follows that its least upper bound (in the real numbers) must be in A. For
example, the subset {—1/2n | n € Z} of A, though it has no largest element, does have a
least upper bound in A, the number 0.

On the other hand, the set B = (—1, 0) U (0, 1) does not have the least upper bound

property. The subset {—1/2n | n € Z,} of B is bounded above by any element of (0, 1),
but it has no least upper bound in B.

Exercises

Equivalence Relations

1.

Define two points (xo, yp) and (x;, y;) of the plane to be equivalent if yg — xg =
Y1 — xf. Check that this is an equivalence relation and describe the equivalence
classes.

Let C be arelation on a set A. If Ag C A, define the restriction of C to Ag to be
the relation C N (Ag x Ag). Show that the restriction of an equivalence relation
is an equivalence relation.

- Here is a “proof” that every relation C that is both symmetric and transitive is

also reflexive: “Since C is symmetric, aCb implies bCa. Since C is transitive,
aCb and bCa together imply aCa, as desired.” Find the flaw in this argument.

Let f : A — B be a surjective function. Let us define a relation on A by setting
ag ~ ap if

flao) = f(ar).

(a) Show that this is an equivalence relation.
(b) Let A* be the set of equivalence classes. Show there is a bijective correspon-
dence of A* with B.

. Let S and S’ be the following subsets of the plane:

S={x,y)|y=x+1and0 < x <2},
S"={(x,y) | y — x is an integer}.

(a) Show that S’ is an equivalence relation on the real line and S’ O S. Describe
the equivalence classes of §’.

(b) Show that given any collection of equivalence relations on a set A, their
intersection is an equivalence relation on A.

(c) Describe the equivalence relation T on the real line that is the intersection
of all equivalence relations on the real line that contain S. Describe the
equivalence classes of T.
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Order Relations

6.

11.

12.

13.

14.

15.

Define a relation on the plane by setting

(x0, y0) < (x1, Y1)
if either yg — xé‘ <y — xlz, or yo — xg =y — xl2 and xo < x1. Show that this
is an order relation on the plane, and describe it geometrically.
Show that the restriction of an order relation is an order relation.
Check that the relation defined in Example 7 is an order relation.

. Check that the dictionary order is an order relation.
10.

(a) Show that the map f : (—1, 1) = R of Example 9 is order preserving.

(b) Show that the equation g(y) = 2y/[1 + (1 + 4y?)!/?] defines a function
g : R — (=1, 1) that is both a left and a right inverse for f.

Show that an element in an ordered set has at most one immediate successor and

at most one immediate predecessor. Show that a subset of an ordered set has at

most one smallest element and at most one largest element.

Let Z denote the set of positive integers. Consider the following order relations
onZy X Zy:
(i) The dictionary order.
(i) (x0, o) < (x1, y1) if either xo — yo < x1 — Y1, 0r X0 — yo = X1 — y) and
Yo < ¥1-
(iii) (x0, yo) < (xi, 1) if either xo + yo < x) + y1, 0r xo + yo = X1 + y1 and
Yo < Yi-
In these order relations, which elements have immediate predecessors? Does the
set have a smatiest element? Show that all three order types are different.

Prove the following:

Theorem. If an ordered set A has the least upper bound property, then it has the
greatest lower bound property.

If C is a relation on a set A, define a new relation D on A by letting (b,a) € D
if (a,b) € C.

(a) Show that C is symmetric if and only if C = D.

(b) Show that if C is an order relation, D is also an order relation.

(c) Prove the converse of the theorem in Exercise 13.

Assume that the real line has the least upper bound property.
(a) Show that the sets

[0, 11={x0=x=<1},
0,)={x]0=<x <1}
have the least upper bound property.

(b) Does [0, 1] x [0, 1] in the dictionary order have the least upper bound prop-
erty? What about [0, 1] x [0, 1)? What about [0, 1) x [0, 1]?
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§4 The Integers and the Real Numbers

Up to now we have been discussing what might be called the logical foundations for
our study of topology—the elementary concepts of set theory. Now we turn to what
we might call the mathematical foundations for our study—the integers and the real
number system. We have already used them in an informal way in the examples and
exercises of the preceding sections. Now we wish to deal with them more formally.

One way of establishing these foundations is to construct the real number system,
using only the axioms of set theory—to build them with one’s bare hands, so to speak.
This way of approaching the subject takes a good deal of time and effort and is of
greater logical than mathematical interest.

A second way is simply to assume a set of axioms for the real numbers and work
from these axioms. In the present section, we shall sketch this approach to the real
numbers. Specifically, we shall give a set of axioms for the real numbers and shall
indicate how the familiar properties of real numbers and the integers are derived from
them. But we shall leave most of the proofs to the exercises. If you have seen all
this before, our description should refresh your memory. If not, you may want to
work through the exercises in detail in order to make sure of your knowledge of the
mathematical foundations.

First we need a definition from set theory.

Definition. A binary operation on a set A is a function f mapping A x A into A.

When dealing with a binary operation f on a set A, we usually use a notation
different from the standard functional notation introduced in §2. Instead of denoting
the value of the function f at the point (a, a) by f(a, a’), we usually write the symbol
for the function between the two coordinates of the point in question, writing the value
of the function at (a, a’) as afa’. Furthermore (just as was the case with relations),
it is more common to use some symbol other than a letter to denote an operation.
Symbols often used are the plus symbol +, the multiplication symbols - and o, and the
asterisk *; however, there are many others.

Assumption

We assume there exists a set R, called the set of real numbers, two binary operations +
and - on R, called the addition and multiplication operations, respectively, and an order
relation < on R, such that the following properties hold:

Algebraic Properties
D xc+y+z=x+(y+2),
(x-y)-z=x-(y-z)forallx, y,zinR.
2 x+y=y+nx,
x-y=y-xforalx, yinR.
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(3) There exists a unique element of R called zero, denoted by 0, such that x +0 = x
forall x € R.
There exists a unique element of R called one, different from 0 and denoted by 1,
such that x - 1 = x for all x € R.

(4) For each x in R, there exists a unique y in R such that x +y = 0.
For each x in R different from 0, there exists a unique y in R such that x - y = 1.

G)x-y+z)=x-y)+x-z)forallx,y,zeR.

A Mixed Algebraic and Order Property
(6) Ifx > y,thenx +z>y+z
Ifx >yandz >0,thenx-z>y-z.

Order Properties
(7) The order relation < has the least upper bound property.
(8) If x <y, there exists an element z such that x < zand z < y.

From properties (1)—(5) follow the familiar “laws of algebra.” Given x, one de-
notes by —x that number y such that x + y = 0; it is called the negative of x. One
defines the subtraction operation by the formula z — x = z + (—x). Similarly, given
x # 0, one denotes by 1/x that number y such that x - y = 1; it is called the reciprocal
of x. One defines the quotient z/x by the formula z/x = z - (1/x). The usual laws of
signs, and the rules for adding and multiplying fractions, follow as theorems. These
laws of algebra are listed in Exercise 1 at the end of the section. We often denote x - y
simply by xy.

When one adjoins property (6) to properties (1)~(5), one can prove the usual “laws
of inequalities,” such as the following:

If x>yand z <0, then x-z<y-z.
—1 <0 and 0 < 1.

The laws of inequalities are listed in Exercise 2.

We define a number x to be positive if x > 0, and to be negative if x < 0. We
denote the positive reals by R, and the nonnegative reals (for reasons to be explained
later) by R, . Properties (1)—(6) are familiar properties in modern algebra. Any set
with two binary operations satisfying {1)—(5) is called by algebraists a field; if the field
has an order relation satisfying (6), it is called an ordered field.

Properties (7) and (8), on the other hand, are familiar properties in topology. They
involve only the order relation; any set with an order relation satisfying (7) and (8) is
called by topologists a linear continuum.

Now it happens that when one adjoins to the axioms for an ordered field [proper-
ties (1)—~(6)] the axioms for a linear continuum [properties (7) and (8)], the resulting
list contains some redundancies. Property (8), in particular, can be proved as a conse-
quence of the others; given x < y one can show that z = (x + y)/(1 + 1) satisfies
the requirements of (8). Therefore, in the standard treatment of the real numbers,
properties (1)-(7) are taken as axioms, and property (8) becomes a theorem. We have
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included (8) in our list merely to emphasize the fact that it and the least upper bound
property are the two crucial properties of the order relation for R. From these two
properties many of the topological properties.of R may be derived, as we shall see in
Chapter 3.

Now there is nothing in this list as it stands to tell us what an integer is. We now
define the integers, using only properties (1)—(6).

Definition. A subset A of the real numbers is said to be inductive if it contains the
number 1, and if for every x in A, the number x+ 1 is also in A. Let . be the collection
of all inductive subsets of R. Then the set Z. of positive integers is defined by the

equation
Z+ - ﬂ A
AeA

Note that the set R of positive real numbers is inductive, for it contains 1 and
the statement x > O implies the statement x + 1 > 0. Therefore, Z, C R4, so the
elements of Z,. are indeed positive, as the choice of terminology suggests. Indeed, one
sees readily that 1 is the smallest element of Z , because the set of all real numbers x
for which x > 1 is inductive.

The basic properties of Z, which follow readily from the definition, are the fol-
lowing:

(1) Z4 is inductive.
(2) (Principle of induction). If A is an inductive set of positive integers, then A =
Z.
We define the set Z of integers to be the set consisting of the positive integers Z.,
the number O, and the negatives of the elements of Z,. One proves that the sum,
difference, and product of two integers are integers, but the quotient is not necessarily
an integer. The set Q of quotients of integers is called the set of rational numbers.

One proves also that, given the integer n, there is no integer a such that n < a <
n+ 1.

If n is a positive integer, we use the symbol S, to denote the set of all positive
integers less than n; we call it a section of the positive integers. The set S; is empty,
and S,+; denotes the set of positive integers between 1 and n, inclusive. We also use
the notation

{1,...,n} = Spn

for the latter set.

Now we prove two properties of the positive integers that may not be quite so
familiar, but are quite useful. They may be thought of as alternative versions of the
induction principle.

Theorem 4.1 (Well-ordering property). Every nonempty subset of Z4 has a small-
est element.
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Proof. 'We first prove that, for each n € Z., the following statement holds: Every
nonempty subset of {1, . .., n} has a smallest element.

Let A be the set of all positive integers n for which this statement holds. Then A
contains 1, since if n = 1, the only nonempty subset of {1, ..., n} is the set {1} itself.
Then, supposing A contains n, we show that it contains n + 1. So let C be a nonempty
subset of the set {1, ...,n + 1}. If C consists of the single element n + 1, then that
element is the smallest element of C. Otherwise, consider the set CN{1, ..., n}, which
is nonempty. Because n € A, this set has a smallest element, which will automatically
be the smallest element of C also. Thus A is inductive, so we conclude that A = Z;
hence the statement is true foralln € Z,..

Now we prove the theorem. Suppose that D is a nonempty subset of Z... Choose

an element n of D. Then the set A = D N {l,...,n} is nonempty, so that A has a
smallest element k. The element k is automatically the smallest element of D as well.
|

Theorem 4.2 (Strong induction principle). Let A be a set of positive integers.
Suppose that for each positive integer n, the statement S, C A implies the statement
neA Then A=17Z,.

Proof. If A does not equal all of Z, let n be the smallest positive integer that is not
in A. Then every positive integer less than n is in A, so that 5§, C A. Our hypothesis
implies that n € A, contrary to assumption. [ |

Everything we have done up to now has used only the axioms for an ordered field,
properties (1)—(6) of the real numbers. At what point do you need (7), the least upper
bound axiom?

For one thing, you need the least upper bound axiom to prove that the set Z. of
positive integers has no upper bound in R. This is the Archimedean ordering property
of the real line. To prove it, we assume that Z, has an upper bound and derive a
contradiction. If Z has an upper bound, it has a least upper bound b. There exists
n € Z4 such that n > b — 1; for otherwise, b — 1 would be an upper bound for Z,
smaller than . Then n + 1 > b, contrary to the fact that b is an upper bound for Z,..

The least upper bound axiom is also used to prove a number of other things
about R. It is used for instance to show that R has the greatest lower bound prop-
erty. It is also used to prove the existence of a unique positive square root Jx for
every positive real number. This fact, in turn, can be used to demonstrate the existence
of real numbers that are not rational numbers; the number /2 is an easy example.

We use the symbol 2 to denote 1 + 1, the symbol 3 to denote 2 + 1, and so on
through the standard symbols for the positive integers. It is a fact that this procedure
assigns to each positive integer a unique symbol, but we never need this fact and shall
not prove it.

Proofs of these properties of the integers and real numbers, along with a few other
properties we shall need later, are outlined in the exercises that follow.
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Exercises

1. Prove the following “laws of algebra” for R, using only axioms (1)~(5):
(a) Ifx+y=x,theny =0.
(b) 0-x = 0. [Hint: Compute (x +0) - x.]

(c) -0=0.

d) —(—x)=x.

) x(—y) = —(xy) = (=x)y.
) (=Dx=—x.

(8 x(y —2) =xy —xz.
h) —G+y)=—x—y;—(x—y)=—x+y.
(i) Ifx#0andx-y=x,theny = 1.
@ x/x=1ifx #0.
k) x/1 =x.
(D) x#0andy #0= xy #0.
(m) (1/y)(1/z) =1/(yz)ify,z #0.
) (x/y)(w/z) = (xw)/(yz) if y,z # 0.
() (x/y)+ (w/z) = (xz +wy)/(yz) if y, 2 #0.
P x#0=1/x#0.
(@ 1/(w/z) =z/wifw,z #0.
0 x/y)/(w/z) = (xz2)/(yw) if y, w, z £ 0.
(s) (ax)/y =a(x/y)ify #0.
® (=x)/y=x/(-y) =—(x/y)ify #0.
2. Prove the following “laws of inequalities” for R, using axioms (1)~(6) along with
the results of Exercise 1:
@ x>yandw>z=x+w>y+z.
() x>0andy>0=>x+y>0andx-y>0.
© x>0& —x <0.
dx>ye —x <—y.
(&) x>yandz < 0= xz < yz.
® x ;w‘_-0=>x2 > 0, where x? = x - x.
(g) -1<0<1.
(h) xy > 0 & x and y are both positive or both negative.
@ x>0=1/x>0.
G x>y>0=1/x <1/y.
K x<y=x<@x+y)/2<y.

3. (a) Show that if - is a collection of inductive sets, then the intersection of the
elements of 4 is an inductive set.
v (b) Prove the basic properties (1) and (2) of Z...

4. (a) Prove by induction that given n € Z,, every nonempty subset of {1, ..., n}
has a largest element.

(b) Explain why you cannot conclude from (a) that every nonempty subset of Z_,.
has a largest element.
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Prove the following properties of Z and Z. :

(a) a,b € Z+ = a+ b € Z,;. [Hint: Show that given a € Z,, the set
X ={x|x e Randa + x € Z,} is inductive.]

() a,beZy =>a'b€Z+.

(c) Showthata €e Zy = a—- 1€ Z, U{0}. [Hint: Let X = {x | x € R and
x — 1 € Z4 U {0}; show that X is inductive.]

d) c,d€Z =>c+deZandc~d e Z. [Hint: Prove it first ford = 1.]

() c,deZ=c-decl.

Let a € R. Define inductively

for n € Z,. (See §7 for a discussion of the process of inductive definition.)
Show that forn,m € Z, anda, b e R,

a"a™ =a"tm,
(an)m — anm,
ab™ = (ab)™.

These are called the laws of exponents. [Hint: For fixed n, prove the formulas
by induction on m.]

Leta € Randa # 0. Define a® = 1, and forn € Z,, a™" = 1/a". Show that
the laws of exponents hold fora, b # 0andn,m € Z.

(a) Show that R has the greatest lower bound property.

(b) Show thatinf{l/n |neZ,}=0.

(c) Show that given a with 0 < a < 1, inf{a” | n € Z;} = 0. [Hint: Let
h = (1 —a)/a, and show that (1 + h)" > 1 + nh.]

(a) Show that every nonempty subset of Z that is bounded above has a largest
element. ,

(b) If x ¢ Z, show there is exactly one n € Z suchthatn < x <n+ 1.

(c) If x —y > 1, show there is at least one n € Z such that y < n < x.

(d) If y < x, show there is a rational number z such that y < z < x.

Show that every positive number a has exactly one positive square root, as fol-
lows:
(a) Show thatif x > 0and0 < A < 1, then

(x+h)? <x>+h@2x+ 1),
(x — h)? > x2 — h(2x).

(b) Let x > 0. Show that if x2 < a, then (x + h)? < a for some h > 0; and if

x2 > g, then (x — h)? > a for some h > 0.
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(c) Given a > 0, let B be the set of all real numbers x such that x% < a.
Show that B is bounded above and contains at least one positive number.
Let b = sup B; show that b = a.

(d) Show that if b and c are positive and b? = c?, thenb =c.

11. Given m € Z, we say that m is even if m/2 € Z, and m is odd otherwise.

(a) Show that if m is odd, m = 2n + 1 for some n € Z. [Hint: Choose n so that
n<m/2<n+1]

(b) Show that if p and g are odd, so are p - g and p", forany n € Z,.

(c) Show that if @ > 0 is rational, then a = m/n for some m,n € Z, where
not both m and n are even. [Hint: Let n be the smallest element of the set
(x| x€Zyandx-aeZi}]

(d) Theorem. /2 is irrational.

85 Cartesian Products

We have already defined what we mean by the cartesian product A x B of two sets.
Now we introduce more general cartesian products.

Definition. Let 4 be a nonempty collection of sets. An indexing function for A is
a surjective function f from some set J, called the index set, to 4. The collection A,
together with the indexing function f, is called an indexed family of sets. Given
a € J, we shall denote the set f(x) by the symbol A,. And we shall denote the
indexed family itself by the symbol

{A(X}GEJ9

which is read “the family of all A,, as « ranges over J.” Sometimes we write merely
{A}, if it is clear what the index set is.

Note that although an indexing function is required to be surjective, it is not re-
quired to be injective. It is entirely possible for A, and Ag to be the same set of A,
even though o # f.

One way in which indexing functions are used is to give a new notation for arbi-
trary unions and intersections of sets. Suppose that f : J — s is an indexing function
for A; let A, denote f(a). Then we define

U Ay = {x | foratleastone o € J, x € Ay},
aelJ

and

ﬂAa ={x|foreverya € J, x € Ay}.

ael
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These are simply new notations for previously defined concepts; one sees at once
(using the surjectivity of the index function) that the first equals the union of all the
elements of 4 and the second equals the intersection of all the elements of A.

Two especially useful index sets are the set {1, ..., n} of positive integers from 1
to n, and the set Z_. of all positive integers. For these index sets, we introduce some
special notation. If a collection of sets is indexed by the set {1, ..., n}, we denote the
indexed family by the symbol {A, ..., A,}, and we denote the union and intersection,
respectively, of the members of this family by the symbols

AlU.---UA, and A;N---NA,.

In the case where the index set is the set Z,, we denote the indexed family by the
symbol {A1, Az, ...}, and the union and intersection by the respective symbols

AitUAU ... and A NAN---.

Definition. Let m be a positive integer. Given a set X, we define an m-tuple of
elements of X to be a function

x:{l,...,m} > X.

If x is an m-tuple, we often denote the value of x at i by the symbol x; rather than x(i)
and call it the ith coordinate of x. And we often denote the function x itself by the
symbol

X1y .eey Xm).

Now let {A, ..., A,x} be a family of sets indexed with the set {1,...,m}. Let X =
A1 U---U A,,. We define the cartesian product of this indexed family, denoted by

I_IA,- or A|x---xXA,,

to be the set of all m-tuples (x, ..., x»,) of elements of X such that x; € A; foreachi.

EXAMPLE 1. We now have two definitions for the symbol A x B. One definition is,
of course, the one given earlier, under which A x B denotes the set of all ordered pairs
(a,b) such thata € A and b € B. The second definition, just given, defines A x B as
the set of all functions x : {1,2} — A U B such that x(1) € A and x(2) € B. There
is an obvious bijective correspondence between these two sets, under which the ordered
pair (a, b) corresponds to the function x defined by x(1) = a and x(2) = b. Since we
commonly denote this function x in “tuple notation” by the symbol (a, b), the notation
itself suggests the correspondence. Thus for the cartesian product of two sets, the general
definition of cartesian product reduces essentially to the earlier one.

EXAMPLE 2. How does the cartesian product A x B x C differ from the cartesian products
A x (B x C)and (A x B) x C? Very little. There are obvious bijective correspondences
between these sets, indicated as follows:

(a,b,c) «— (a,(b,c)) «— ((a,b),c).
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Definition. Given a set X, we define an w-tuple of elements of X to be a function
Xx:Zy — X;

we also call such a function a sequence, or an infinite sequence, of elements of X. If
X is an w-tuple, we often denote the value of x at i by x; rather than x(7), and call it the
ith coordinate of x. We denote x itself by the symbol

(x1,x2,...) o (Xn)nez,-

Now let {A|, A, ...} be a family of sets, indexed with the positive integers; let X be
the union of the sets in this family. The cartesian product of this indexed family of
sets, denoted by

nA,- or A XAy x---,

iEZ+
is defined to be the set of all w-tuples (x1, x2, ...) of elements of X such that x; € A;
for each .

Nothing in these definitions requires the sets A; to be different from one another.
Indeed, they may all equal the same set X. In that case, the cartesian product Aj X
- X Ap is just the set of all m-tuples of elements of X, which we denote by X™.
Similarly, the product A x A x --- is just the set of all w-tuples of elements of X,
which we denote by X.
Later we will define the cartesian product of an arbitrary indexed family of sets.
EXAMPLE 3. If R is the set of real numbers, then R™ denotes the set of all m-tuples of
real numbers; it is often called euclidean m-space (although Euclid would never recognize

it). Analogously, R® is sometimes called “infinite-dimensional euclidean space”; it is the
set of all w-tuples (xy, x2, ...) of real numbers, that is, the set of all functions x : Z4 — R.

Exercises

1. Show there is a bijective correspondence of A x B with B x A.
2. (a) Show thatif n > 1 there is bijective correspondence of

Al X ---x A, with (A] X - X Ap_1) X Ap.

(b) Given the indexed family {A[, A2,...}, let B; = Aj;_| x Ay for each
positive integer i. Show there is bijective correspondence of Aj x Az x - --
with By X By X ---.

JoletA=A; x Ay x---and B=B| x By x ---.

(a) Show that if B; C A; for all i, then B C A. (Strictly speaking, if we are
given a function mapping the index set Z into the union of the sets B;, we
must change its range before it can be considered as a function mapping Z.
into the union of the sets A;. We shall ignore this technicality when dealing
with cartesian products).
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(b) Show the converse of (a) holds if B is nonempty.

(c) Show that if A is nonempty, each A; is nonempty. Does the converse hold?
(We will return to this question in the exercises of §19.)

(d) What is the relation between the set A U B and the cartesian product of the
sets A; U B;? What is the relation between the set A N B and the cartesian
product of the sets A; N B;?

4. letm,neZy. Let X £ 2.
(a) If m < n, find an injective map f : X" — X".
(b) Find a bijective map g : X™ x X" — X™*".
(¢) Find an injective map h : X" — X%,
(d) Find a bijective map k : X" x X® — X,
(e) Find a bijective map !/ : X* x X* — X¢.
(fH If A C B, find an injective map m : (A®)" — B®.
5. Which of the following subsets of R® can be expressed as the cartesian product
of subsets of R?
(a) {x| x;is an integer for all i}.
(b) {x|x; >iforalli}.
(¢) {x| x; is an integer for all i > 100}.
@) {x | x2 =x3}.

§6 Finite Sets

Finite sets and infinite sets, countable sets and uncountable sets, these are types of sets
that you may have encountered before. Nevertheless, we shall discuss them in this
section and the next, not only to make sure you understand them thoroughly, but also
to elucidate some particular points of logic that will arise later on. First we consider
finite sets.

Recall that if n is a positive integer, we use S, to denote the set of positive integers
less than n; it is called a section of the positive integers. The sets S, are the prototypes
for what we call the finite sets.

Definition. A set is said to be finite if there is a bijective correspondence of A with
some section of the positive integers. That is, A is finite if it is empty or if there is a
bijection

f:A—{1,...,n}

for some positive integer n. In the former case, we say that A has cardinality 0; in the
latter case, we say that A has cardinality n.

For instance, the set {1, ..., n} itself has cardinality n, for it is in bijective corre-
spondence with itself under the identity function.
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Now note carefully: We have not yet shown that the cardinality of a finite set is
uniquely determined by the set. It is of course clear that the empty set must have
cardinality zero. But as far as we know, there might exist bijective correspondences
of a given nonempty set A with two different sets {1,...,n} and {I,....m}. The
possibility may seem ridiculous, for it is like saying that it is possible for two people
to count the marbles in a box and come out with two different answers, both correct.
Our experience with counting in everyday life suggests that such is impossible, and in
fact this is easy to prove when n is a small number such as 1, 2, or 3. But a direct proof
when #n is 5 million would be impossibly demanding.

Even empirical demonstration would be difficult for such a large value of n. One
might, for instance, construct an experiment by taking a freight car full of marbles and
hiring 10 different people to count them independently. If one thinks of the physical
problems involved, it seems likely that the counters would not all arrive at the same
answer. Of course, the conclusion one could draw is that at least one person made a
mistake. But that would mean assuming the correctness of the result one was trying
to demonstrate empirically. An alternative explanation could be that there do exist
bijective correspondences between the given set of marbles and two different sections
of the positive integers.

In real life, we accept the first explanation. We simply take it on faith that our
experience in counting comparatively small sets of objects demonstrates a truth that
holds for arbitrarily large sets as well.

However, in mathematics (as opposed to real life), one does not have to take this
statement on faith. If it is formulated in terms of the existence of bijective correspon-
dences rather than in terms of the physical act of counting, it is capable of mathemat-
ical proof. We shall prove shortly that if n # m, there do not exist bijective functions
mapping a given set A onto both the sets {1,...,n}and {1,...,m}.

There are a number of other “intuitively obvious” facts about finite sets that are
capable of mathematical proof; we shall prove some of them in this section and leave
the rest to the exercises. Here is an easy fact to start with:

Lemma 6.1. Let n be a positive integer. Let A be a set; let ap be an element of A.
Then there exists a bijective correspondence f of the set A with the set {1, ..., n + 1}
if and only if there exists a bijective correspondence g of the set A — {ag} with the set
{1,...,n}

Proof. There are two implications to be proved. Let us first assume that there is a
bijective correspondence

g:A—{ag} — {1,...,n}.
We then define a function f : A — {1, ..., n -+ 1} by setting

fx)=gkx) forx € A—{ap},
flag) =n+ L

One checks at once that f is bijective.
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To prove the converse, assume there is a bijective correspondence
f:A—{l,....,n+1}L

If f maps ap to the number n + 1, things are especially easy; in that case, the restric-
tion f|A — {ap} is the desired bijective correspondence of A — {ap} with {1, ..., n}.
Otherwise, let f(ag) = m, and let a; be the point of A such that f(a;) =n + 1. Then
a) # ag. Define a new function

h:A—{l,...,n+1}
by setting

h(ag) =n+1,
h(a)) = m,
h(x) = f(x) forx € A—{ag} —{a1}.

See Figure 6.1. It is easy to check that £ is a bijection.
Now we are back in the easy case; the restriction /| A —{ao} is the desired bijection
of A — {ap} with {1, ..., n}. u

Q D C—/_D
(. ,n+1) C j

Figure 6.1

From this lemma a number of useful consequences follow:

Theorem 6.2. Let A be a set; suppose that there exists a bijection f : A — {1, ..., n}
for some n € Z,. Let B be a proper subset of A. Then there exists no bijection
g : B — (l,...,n); but (provided B # @) there does exist a bijection h:B —
{1,...,m} for somem < n.

Proof. The case in which B = @ is trivial, for there cannot exist a bijection of the
empty set B with the nonempty set {1, ..., n}.

We prove the theorem “by induction.” Let C be the subset of Z consisting of
those integers n for which the theorem holds. We shall show that C is inductive. From
this we conclude that C = Z, so the theorem is true for all positive integers n.

First we show the theorem is true for n = 1. In this case A consists of a single
element {a}, and its only proper subset B is the empty set.
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Now assume that the theorem is true for n; we prove it true for n + 1. Suppose
that f : A — {1,...,n 4+ 1} is a bijection, and B is a nonempty proper subset of A.
Choose an element ag of B and an element a; of A — B. We apply the preceding
lemma to conclude there is a bijection

g:A—{ag} — {1,...,n}.

Now B — {aop} is a proper subset of A — {ap}, for a; belongs to A — {ag} and not to
B —{aop}. Because the theorem has been assumed to hold for the integer n, we conclude
the following:

(1) There exists no bijection 2 : B — {ag} — {1, ..., n}.

(2) Either B — {ag} = @, or there exists a bijection

k:B—{ap} — {1,...,p} forsome p < n.

The preceding lemma, combined with (1), implies that there is no bijection of B with
{1, ..., n+ 1}. This is the first half of what we wanted to proved. To prove the second
half, note that if B — {ap} = @, there is a bijection of B with the set {1}; while if
B — {ap} # 2, we can apply the preceding lemma, along with (2), to conclude that
there is a bijection of B with {1, ..., p + 1). In either case, there is a bijection of B
with {1, ..., m} for some m < n + 1, as desired. The induction principle now shows
that the theorem is true for alln € Z,.. [ |

Corollary 6.3. If A is finite, there is no bijection of A with a proper subset of itself,

Proof.  Assume that B is a proper subset of A and that f : A — B is a bijection. By
assumption, there is a bijection g : A — {1, ..., n} for some n. The composite go f~!
is then a bijection of B with {1, ..., n}. This contradicts the preceding theorem. ®

Corollary 6.4. Z. is not finite.

Proof. The function f : Z; — Z, — {1} defined by f(n) = n + 1 is a bijection
of Z, with a proper subset of itself. [ ]

Corollary 6.5. The cardinality of a finite set A is uniquely determined by A.

Proof. Letm < n. Suppose there are bijections

fA—{l,...,n}
g:A—>{l,...,m}.

Then the composite
gof_l:{],...,n}——-> {1,...,m}

is a bijection of the finite set {1, ..., n} with a proper subset of itself, contradicting the
corollary just proved. .
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Corollary 6.6. If B is a subset of the finite set A, then B is finite. If B is a proper
subset of A, then the cardinality of B is less than the cardinality of A.

Corollary 6.7. Let B be a nonempty set. Then the following are equivalent:
(1) B is finite.
(2) There is a surjective function from a section of the positive integers onto B.
(3) There is an injective function from B into a section of the positive integers.

Proof. (1) = (2). Since B is nonempty, there is, for some 7, a bijective function
f:{l,...,n} > B.

) == 3). If f:({1,...,n} > B issurjective, define g : B — {1,...,n} by
the equation

g(b) = smallest element of f _1({b}).

Because f is surjective, the set £ ~!{(b)} is nonempty; then the well-ordering property
of Z, tells us that g(b) is uniquely defined. The map g is injective, for if b # b/,
then the sets f~1({b}) and f —1({b'}) are disjoint, so their smallest elements must be
different.

(3) = (1).Ifg: B — {1, ..., n}is injective, then changing the range of g gives
a bijection of B with a subset of {1, ..., n}. It follows from the preceding corollary
that B is finite. [ |

Corollary 6.8. Finite unions and finite cartesian products of finite sets are finite.

Proof. We first show that if A and B are finite, so is A U B. The result is trivial
if A or B is empty. Otherwise, there are bijections f : {l,...,m} — A and g :
{1,...,n} — B for some choice of m and n. Define a function & : {1,...,m +
n}) = AU B by setting h(i) = f() fori = 1,2,...,mand h(i) = g(i — m) for
i=m+1,...,m+ n. Itis easy to check that h is surjective, from which it follows
that A U B is finite.

Now we show by induction that finiteness of the sets Ay, ..., A, implies finiteness
of their union. This result is trivial for n = 1. Assuming it true for n — 1, we note that
A1 U---U A, is the union of the two finite sets A U ---U A,_1 and Ay, so the result
of the preceding paragraph applies.

Now we show that the cartesian product of two finite sets A and B is finite. Given
a € A, the set {a} x B is finite, being in bijective correspondence with B. The set
A x B is the union of these sets; since there are only finitely many of them, A x B is
a finite union of finite sets and thus finite.

To prove that the product A; X - -+ X Ay is finite if each A; is finite, one proceeds
by induction. |
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Exercises

1. (a) Make a list of all the injective maps
f:{1,2,31 — {1,2,3,4}.

Show that none is bijective. (This constitutes a direct proof that a set A of
cardinality three does not have cardinality four.)
(b) How many injective maps

fi{l,...,8) — {1,..., 10}

are there? (You can see why one would not wish to try to prove directly that
there is no bijective correspondence between these sets.)

2. Show that if B is not finite and B C A, then A is not finite.

3. Let X be the two-element set {0, 1}. Find a bijective correspondence between
X® and a proper subset of itself.

4. Let A be a nonempty finite simply ordered set.
(a) Show that A has a largest element. [Hint: Proceed by induction on the
cardinality of A.]
(b) Show that A has the order type of a section of the positive integers.
5. If A x B is finite, does it follow that A and B are finite?
6. (a) Let A = {1,...,n}. Show there is a bijection of P (A) with the cartesian
product X", where X is the two-element set X = {0, 1}.
(b) Show that if A is finite, then 5 (A) is finite.

7. If A and B are finite, show that the set of all functions f : A — B is finite.

§7 Countable and Uncountable Sets

Just as sections of the positive integers are the prototypes for the finite sets, the set of
all the positive integers is the prototype for what we call the countably infinite sets. In
this section, we shall study such sets; we shall also construct some sets that are neither
finite nor countably infinite. This study will lead us into a discussion of what we mean
by the process of “inductive definition.”

Definition. A set A is said to be infinite if it is not finite. It is said to be countably
infinite if there is a bijective correspondence

f A — Z+.
EXAMPLE 1. The set Z of all integers is countably infinite. One checks easily that the
function f : Z — Z, defined by
2n ifn >0,
fn) =

—2n+1 ifn<0

is a bijection.
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EXAMPLE 2. The product Z x Z, is countably infinite. If we represent the elements of
the product Z x Z by the integer points in the first quadrant, then the left-hand portion
of Figure 7.1 suggests how to “count” the points, that is, how to put them in bijective
correspondence with the positive integers. A picture is not a proof, of course, but this
picture suggests a proof. First, we define a bijection f :7Z4 x Zy — A, where A is the
subset of Z,. x Z, consisting of pairs (x, y) for which y < x, by the equation

fx,=&+y—-1y).

Then we construct a bijection of A with the positive integers, defining g : A — Z, by the
formula

1
glx,y)= —2-(x - Dx+y.

We leave it to you to show that f and g are bijections.
Another proof that Z x Z is countably infinite will be given later.

ao\o °
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Figure 7.1

Definition. A set is said to be countable if it is either finite or countably infinite. A
set that is not countable is said to be uncountable.

There is a very useful criterion for showing that a set is countable. It is the follow-
ing:

Theorem 7.1. Let B be a nonempty set. Then the following are equivalent:
(1) B is countable.
(2) There is a surjective function f : Z4 — B.
(3) There is an injective function g : B — Z.

Proof. (1) == (2). Suppose that B is countable. If B is countably infinite, there is
a bijection f : Z4y — B by definition, and we are through. If B is finite, there is a
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bijection 4 : {1,...,n} — B for some n > 1. (Recall that B # &.) We can extend h
to a surjection f : Z, — B by defining

N h(i) forl <i <n,
f(l)_[h(l) fori > n.

2) = (3). LetA f :Z, — B be asurjection. Define g : B — Z, by the equation
g(b) = smallest element of £~ ({b}).

Because f is surjective, f~!({b}) is nonempty; thus g is well defined. The map g is
injective, for if b # &/, the sets f~'({b}) and f~!({»'}) are disjoint, so their smallest
elements are different.

(3) = (1). Let g : B — Z, be an injection; we wish to prove B is countable.
By changing the range of g, we can obtain a bijection of B with a subset of Z, . Thus
to prove our result, it suffices to show that every subset of Z is countable. So let C
be a subset of Z .

If C is finite, it is countable by definition. So what we need to prove is that every
infinite subset C of Z is countably infinite. This statement is certainly plausible. For
the elements of C can easily be arranged in an infinite sequence; one simply takes the
set Z in its usual order and “erases” all the elements of Z that are not in C!

The plausibility of this argument may make one overlook its informality. Provid-
ing a formal proof requires a certain amount of care. We state this result as a separate
lemma, which follows. B

Lemma 7.2. If C is an infinite subset of Z, then C is countably infinite.

Proof. 'We define a bijection h : Z, — C. We proceed by induction. Define k(1) to
be the smallest element of C; it exist~ because every nonempty subset C of Z has a
smallest element. Then assuming that A(1), ..., A(n — 1) are defined, define

h(n) = smallest element of [C — A({1,...,n — 1}D].

The set C — h({1, ..., n — 1}) is not empty; for if it were empty, thenh : {1,...,n —
1} — C would be surjective, so that C would be finite (by Corollary 6.7). Thus h(n)
is well defined. By induction, we have defined h(n) foralln € Z, .

To show that 4 is injective is easy. Given m < n, note that h(m) belongs to the set
h({1,...,n — 1}), whereas h(n), by definition, does not. Hence h(n) # h(m).

To show that 4 is surjective, let ¢ be any element of C; we show that ¢ lies in the
image set of A. First note that ~(Z,) cannot be contained in the finite set {1, ..., c},
because h(Z.) is infinite (since & is injective). Therefore, there is an n in Z,, such
that h(n) > c. Let m be the smallest element of Z_, such that h(m) > c. Then for all
i < m, we must have h(i) < c. Thus, ¢ does not belong to the set A({1,...,m — 1}).
Since h(m) is defined as the smallest element of the set C — A({1,...,m — 1}), we
must have h(m) < c¢. Putting the two inequalities together, we have h(m) = c, as
desired. ]
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There is a point in the preceding proof where we stretched the principles of logic
a bit. It occurred at the point where we said that “using the induction principle” we
had defined the function & for all positive integers n. You may have seen arguments
like this used before, with no questions raised concerning their legitimacy. We have
already used such an argument ourselves, in the exercises of §4, when we defined a”.

But there is a problem here. After all, the induction principle states only that if A
is an inductive set of positive integers, then A = Z,. To use the principle to prove a
theorem “by induction,” one begins the proof with the statement “Let A be the set of
all positive integers n for which the theorem is true,” and then one goes ahead to prove
that A is inductive, so that A must be all of Z ..

In the preceding theorem, however, we were not really proving a theorem by in-
duction, but defining something by induction. How then should we start the proof?
Can we start by saying, “Let A be the set of all integers n for which the function A is
defined”? But that’s silly; the symbol & has no meaning at the outset of the proof. It
only takes on meaning in the course of the proof. So something more is needed.

What is needed is another principle, which we call the principle of recursive defi-
nition. In the proof of the preceding theorem, we wished to assert the following:

Given the infinite subset C of Z, there is a unique function h : Z, — C
satisfying the formula:

h(1) = smallest element of C,

*
(*) h(i) = smallest element of [C — ({1, ...,i —1}] foralli > 1.
The formula (%) is called a recursion formula for h; it defines the function 4 in
terms of itself. A definition given by such a formula is called a recursive definition.
Now one can get into logical difficulties when one tries to define something recur-
sively. Not all recursive formulas make sense. The recursive formula

h(i) = smallest element of [C — A({1,...,i + 1}],

for example, is self-contradictory; although (i) necessarily is an element of the set
h({1,...,i+1}), this formula says that it does not belong to the set. Another example
is the classic paradox:

Let the barber of Seville shave every man of Seville who does not shave himself.
Who shall shave the barber?

In this statement, the barber appears twice, once in the phrase “the barber of Seville”
and once as an element of the set “men of Seville”; this definition of whom the barber
shall shave is a recursive one. It also happens to be self-contradictory.

Some recursive formulas do make sense, however. Specifically, one has the fol-
lowing principle:

Principle of recursive definition. Let A be a set. Given a formula that defines h(1)
as a unique element of A, and for i > 1 defines h(i) uniquely as an element of A
in terms of the values of h for positive integers less than i, this formula determines a
unique function h : Z4 — A.
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This principle is the one we actually used in the proof of Lemma 7.2. You can
simply accept it on faith if you like. It may however be proved rigorously, using the
principle of induction. We shall formulate it more precisely in the next section and
indicate how it is proved. Mathematicians seldom refer to this principle specifically.
They are much more likely to write a proof like our proof of Lemma 7.2 above, a proof
in which they invoke the “induction principle” to define a function when what they are
really using is the principle of recursive definition. We shall avoid undue pedantry in
this book by following their example.

Corollary 7.3. A subset of a countable set is countable.

Proof. Suppose A C B, where B is countable. There is an injection f of B into Z;
the restriction of f to A is an injection of A into Z... [ ]

Corollary 7.4. The set Zy x Z. is countably infinite.

Proof. In view of Theorem 7.1, it suffices to construct an injective map f : Z4 X
Z+ — Zy. We define f by the equation

f(n, m) =2"3"

It is easy to check that f is injective. For suppose that 2"3™ = 2739, If n < p, then
3™ = 2P7"34, contradicting the fact that 3™ is odd for all m. Therefore, n = p. As
aresult, 3™ = 39, Then if m < g, it follows that | = 397", another contradiction.
Hence m = q. |

EXAMPLE 3.  The set Q4 of positive rational numbers is countably infinite. For we can
define a surjection g : Z x Z4 — Q4 by the equation

gn,m)=m/n.

Because Z, x Z, is countable, there is a surjection f : Z; — Z4 x Z4. Then the
composite g o f : Z4 — Q4 is a surjection, so that Q4 is countable. And, of course, Q+
is infinite because it contains Z. .

We leave it as an exercise to show the set Q of all rational numbers is countably infinite.

Theorem 7.5. A countable union of countable sets is countable.

Proof. Let {Ap}nes be an indexed family of countable sets, where the index set J is
either {1, ..., N} or Z,. Assume that each set A, is nonempty, for convenience; this
assumption does not change anything.

Because each A, is countable, we can choose, for each n, a surjective function
fa i Zy+ — A,. Similarly, we can choose a surjective function g : Z4 — J. Now
define

h:Z+xZ+——>UA,,

nel



§7 Countable and Uncountable Sets 49

by the equation
h(k,m) = fg)(m).
It is easy to check that h is surjective. Since Z4 x Zy is in bijective correspondence

with Z.., the countability of the union follows from Theorem 7.1. u

Theorem 7.6. A finite product of countable sets is countable.

Proof. First let us show that the product of two countable sets A and B is countable.
The result is trivial if A or B is empty. Otherwise, choose surjective functions f :
Z, — Aand g : Z, — B.Then the function h : Z4 x Z4 — A x B defined by the
equation h(n, m) = ( f(n), g(m)) is surjective, so that A x B is countable.

In general, we proceed by induction. Assuming that Ay X - -+ X Ap—1 18 countable
if each A; is countable, we prove the same thing for the product A x --- X A,. First,
note that there is a bijective correspondence

g:A1x---xAn——>(A1x---xA,,_1)xA,,
defined by the equation
g(xlv LI 7xll) = ((x19 o axn—l)»xn)-

Because the set Ay X -+ X Ap—118 countable by the induction assumption and A i8
countable by hypothesis, the product of these two sets is countable, as proved in the
preceding paragraph. We conclude that Ay X - -- X Ap is countable as well. |

It is very tempting to assert that countable products of countable sets should be
countable; but this assertion is in fact not true:

Theorem 7.7. Let X denote the two element set {0, 1}. Then the set X* is uncount-
able.

Proof. 'We show that, given any function
g:Zy — X%,
g is not surjective. For this purpose, let us denote g(n) as follows :

g(n) = (xnl’ Xn2» Xn3, .- - Xnms - - ~)v

where each x;; is either 0 or 1. Then we define an element y = (Y1, Y2, --+» Yns -+ )
of X? by letting

o ifxm=1,
=11 if xpn = O.
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(If we write the numbers x,,; in a rectangular array, the particular elements x,, appear
as the diagonal entries in this array; we choose y so that its nth coordinate differs from
the diagonal entry x,,.)

Now y is an element of X, and y does not lie in the image of g; given n, the
point g(n) and the point y differ in at least one coordinate, namely, the nth. Thus, g is
not surjective. |

The cartesian product {0, 1}¢ is one example of an uncountable set. Another is the
set J(Z.), as the following theorem implies:

Theorem 7.8. Let A be a set. There is no injective map f : (A) — A, and there is
no surjectivemap g : A — P(A).

Proof. In general, if B is a nonempty set, the existence of an injective map f : B —
C implies the existence of a surjective map g : C — B; one defines g(¢) = f~!(c)
for each c in the image set of f, and defines g arbitrarily on the rest of C.

Therefore, it suffices to prove that given amap g : A — P (A), the map g is not
surjective. For each a € A, the image g(a) of a is a subset of A, which may or may
not contain the point a itself. Let B be the subset of A consisting of all those points a
such that g(a) does not contain a;

B={a|aeA-ga)}

Now, B may be empty, or it may be all of A, but that does not matter. We assert that B
is a subset of A that does not lie in the image of g. For suppose that B = g(ag) for
some ap € A. We ask the question: Does ap belong to B or not? By definition of B,

ag€E B aysc A—glay) < ayec A—B.

In either case, we have a contradiction. [ ]

Now we have proved the existence of uncountable sets. But we have not yet men-
tioned the most familiar uncountable set of all—the set of real numbers. You have
probably seen the uncountability of R demonstrated already. If one assumes that every
real number can be represented uniquely by an infinite decimal (with the proviso that a
representation ending in an infinite string of 9’s is forbidden), then the uncountability
of the reals can be proved by a variant of the diagonal procedure used in the proof of
Theorem 7.7. But this proof is in some ways not very satisfying. One reason is that
the infinite decimal representation of a real number is not at all an elementary conse-
quence of the axioms but requires a good deal of labor to prove. Another reason is
that the uncountability of R does not, in fact, depend on the infinite decimal expansion
of R or indeed on any of the algebraic properties of R; it depends on only the order
properties of R. We shall demonstrate the uncountability of R, using only its order
properties, in a later chapter.
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Exercises

1. Show that QQ is countably infinite.
2. Show that the maps f and g of Examples 1 and 2 are bijections.

3. Let X be the two-element set {0, 1}. Show there is a bijective correspondence
between the set P(Z. ) and the cartesian product X®.

4. (a) Areal number x is said to be algebraic (over the rationals) if it satisfies some
polynomial equation of positive degree

X" a1 x4+ ax+ap=0

with rational coefficients a;. Assuming that each polynomial equation has
only finitely many roots, show that the set of algebraic numbers is countable.

(b) A real number is said to be transcendental if it is not algebraic. Assuming
the reals are uncountable, show that the transcendental numbers are uncount-
able. (It is a somewhat surprising fact that only two transcendental numbers
are familiar to us: e and 7. Even proving these two numbers transcendental
is highly nontrivial.)

5. Determine, for each of the following sets, whether or not it is countable. Justify
your answers.

(a) The set A of all functions f : {0, 1} —> Z,.

(b) The set B, of all functions f : {1,...,n} — Z,.

(c) Theset C = ez, Bn-

(d) The set D of all functions f : Z, — Z..

(e) The set E of all functions f : Z, — {0, 1}.

(f) The set F of all functions f : Z, — {0, 1} that are “eventually zero.”
[We say that f is eventually zero if there is a positive integer N such that
f(n)=0foralln > N.]

(g) The set G of all functions f : Z, — Z. that are eventually 1.

(h) The set H of all functions f : Z, — Z, that are eventually constant.

(i) The set I of all two-element subsets of Z., .

(7) The set J of all finite subsets of Z_ .

6. We say that two sets A and B have the same cardinality if there is a bijection
of A with B.
(a) Show thatif B C A and if there is an injection

f:A— B,

then A and B have the same cardinality. [Hint: Define A} = A, B; = B,
and forn > 1, A, = f(A,—)) and B, = f(B,-1). (Recursive definition
again!) Note that Ay D B} D A D B2 D A3 D ---. Define a bijection
h: A — B by therule

fx) ifx e A, — B, for some n,

h(x) = .
X otherwise.]
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(b) Theorem (Schroeder-Bernstein theorem). If there are injections f : A —
Candg:C — A, then A and C have the same cardinality.
7. Show that the sets D and E of Exercise 5 have the same cardinality.
8. Let X denote the two-element set {0, 1}; let B be the set of countable subsets of
X. Show that X and B have the same cardinality.
9. (a) The formula

() =1,
(*) h(2) =2,
h(n) =[h(n + DP? = [h(n — D)* forn >2

is not one to which the principle of recursive definition applies. Show that
nevertheless there does exist a function 4 : Z4 — R satisfying this formula.
[Hint: Reformulate (%) so that the principle will apply and require h to be
positive.]

(b) Show that the formula (x) of part (a) does not determine uniquely. [Hint:
If h is a positive function satisfying (%), let f(i) = h(i) for i # 3, and let

f3)=-h(3)]
(c) Show that there is no function & : Z4 — R satisfying the formula
h(D) =1,
h(2) =2,

h(n) = [h(n + D + [A(n — D> forn > 2.

*§8 The Principle of Recursive Definition

Before considering the general form of the principle of recursive definition, let us first
prove it in a specific case, that of Lemma 7.2. That should make the underlying idea
of the proof much clearer when we consider the general case.

So, given the infinite subset C of Z., let us consider the following recursion for-
mula for a function b : Z, — C:

h(1) = smallest element of C,
h(i) = smallest element of [C — h({1,...,i —1})] fori > L

We shall prove that there exists a unique function h : Z4. — C satisfying this recursion
formula.

The first step is to prove that there exist functions defined on sections {1, ..., n}
of Z, that satisfy (x):

(%)

Lemma 8.1. Givenn € Z, there exists a function
f:{l,....n} > C

that satisfies (%) for all i in its domain.
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Proof.  The point of this lemma is that it is a statement that depends on n; therefore, it
is capable of being proved by induction. Let A be the set of all n for which the lemma
holds. We show that A is inductive. It then follows that A = Z .

The lemma is true for n = 1, since the function f : {1} — C defined by the
equation

f(1) = smallest element of C

satisfies (x).

Supposing the lemma to be true for n — 1, we prove it true for n. By hypothesis,
there is a function f' : {1,...,n — 1} — C satisfying (+) for all i in its domain.
Define f : {1, ..., n} = C by the equations

fG@)=f'G) forie{l,...,n—1)},
f(n) = smallest element of [C — f'({1,...,n — 1})].

Since C is infinite, f’ is not surjective; hence the set C — f'({1, ..., n — 1}) is not
empty, and f(n) is well defined. Note that this definition is an acceptable one; it does
not define f in terms of itself but in terms of the given function f’.

It is easy to check that f satisfies () for all i in its domain. The function f
satisfies (x) for i < n — 1 because it equals f’ there. And f satisfies (x) fori = n
because, by definition,

f(n) = smallest element of [C — f/({1,...,n — 1})]

and f'({1,....n—1})) = f({1L,...,n— 1}). "

Lemma 8.2. Suppose that f : {1,...,n} - Candg : {1,...,m} — C both
satisfy () for all i in their respective domains. Then f(i) = g(i) for all i in both
domains.

Proof.  Suppose not. Let i be the smallest integer for which f(i) # g(i). The inte-
ger i is not 1, because

f(1) = smallest element of C = g(1),
by (x). Now forall j < i, we have f(j) = g(j). Because f and g satisfy (),

f(i) = smallest element of [C — f({1,...,i — 1})],
g(i) = smallest element of [C — g({1,...,i — 1}].

Since f({1,...,i —1}) = g({1,...,i — 1}), we have f(i) = g(i), contrary to the
choice of i. a
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Theorem 8.3. There exists a unique function h : Z, — C satisfying (x) for all
i€ Z+.

Proof. By Lemma 8.1, there exists for each n a function that maps {1, ...,n}into C
and satisfies (x) for all i in its domain. Given n, Lemma 8.2 shows that this func-
tion is unique; two such functions having the same domain must be equal. Let f, :
{1,...,n} = C denote this unique function.

Now comes the crucial step. We define a function h : Z; — C by defining its
rule to be the union U of the rules of the functions f,,. The rule for f, is a subset of
{1, ..., n} x C; therefore, U is a subset of Z, x C. We must show that U is the rule
for a function h : Z, — C. '

That is, we must show that each element { of Z . appears as the first coordinate of
exactly one element of U. This is easy. The integer i lies in the domain of f, if and
only if n > i. Therefore, the set of elements of U of which i is the first coordinate is
precisely the set of all pairs of the form (i, f,(i)), forn > i. Now Lemma 8.2 tells us
that f,(i) = f(i) if n, m > i. Therefore, all these elements of U are equal; that is,
there is only one element of U that has i as its first coordinate.

To show that & satisfies (x) is also easys; it is a consequence of the following facts:

h(i) = fo(i) fori <n,
fn satisfies (x) for all i in its domain.

The proof of uniqueness is a copy of the proof of Lemma 8.2. ]

Now we formulate the general principle of recursive definition. There are no new
ideas involved in its proof, so we leave it as an exercise. ‘

Theorem 8.4 (Principle of recursive definition). Let A be a set; let ap be an el-
ement of A. Suppose p is a function that assigns, to each function f mapping a
nonempty section of the positive integers into A, an element of A. Then there exists a
unique function

h: Z+ —> A
such that

h(1) = ag,

(*) h . .
@y=p@t|{l,....,i =1}) fori>1.

The formula (%) is called a recursion formula for h. It specifies h(1), and it
expresses the value of 2 at { > 1 in terms of the values of A for positive integers less
than i.

EXAMPLE 1.  Let us show that Theorem 8.3 is a special case of this theorem. Given the
infinite subset C of Z, , let ag be the smallest element of C, and define p by the equation

o(f) = smallest element of [C — (image set of f)].
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Because C is infinite and f is a function mapping a finite set into C, the image set of f is
not all of C; therefore, p is well defined. By Theorem 8.4 there exists a function # : Z; —
C such that A(1) = ag, and fori > 1,

h(@)=pl{1,...,i =1}
= smallest element of [C — (image set of A|{1,...,i — 1]}
= smallest element of [C — h({1...,i — 1})],

as desired.

EXAMPLE 2. Given a € R, we “defined” a”, in the exercises of §4, by the recursion
formula

a =a,

n n—1

a =a a.

We wish to apply Theorem 8.4 to define a function # : Z, — R rigorously such that
h(n) = a". To apply this theorem, let gy denote the element a of R, and define p by the
equation p(f) = f(m)-a, where f : {1, ..., m} — R. Then there exists a unique function
h:Z4+ — Rsuchthat

h(1) = ao,
h@) =pm|{1,...,i-1} fori > 1.

This means that A(1) = a, and A(i/) = h(i — 1) - a fori > 1. If we denote k(i) by a’, we
have

as desired.

Exercises

1. Let (by, by, .. .) be an infinite sequence of real numbers. The sum ZLI by is
defined by induction as follows :

n
Zbk:bl forn =1,
k=1

n n—1
Zbk = (Zbk)+b,, forn > 1.
k=1 k=1

Let A be the set of real numbers; choose p so that Theorem 8.4 applies to define
this sum rigorously. We sometimes denote the sum ) ;_, by by the symbol
by+by+---+by.
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2. Let (b1, by, . ..) be an infinite sequence of real numbers. We define the product
[T~ bx by the equations

by = by,

:_

x
1l
—_

=

n—1
by = (]_[bk) b, forn> 1.
k k=1

1

Use Theorem 8.4 to define this product rigorously. We sometimes denote the
product [T;_, bx by the symbol b1b; - - - by,.
3. Obtain the definitions of a" and n! for n € Z as special cases of Exercise 2.
4. The Fibonacci numbers of number theory are defined recursively by the formula
A=ty =1,
An=An—1+Ar,—2 forn>2.
Define them rigorously by use of Theorem 8 4.
5. Show that there is a unique function 4 : Z, — R, satisfying the formula

h(1) = 3,
hG)=[hG — D)+ 1]'"?  fori > 1.

6. (a) Show that there is no function 4 : Z4 — R satisfying the formula

h(l) = 3,
hGy=[hG — 1) - 11"?  fori > 1.

Explain why this example does not violate the principle of recursive defini-

tion.
(b) Consider the recursion formula
h(l) =3,
i — 1) - 112 ifrG-1)>1
niy = {PE - D -1 ifAG =1 > fori > 1.
5 ifhG—1 <1

Show that there exists a unique function & : Z; — R, satisfying this for-
mula.

7. Prove Theorem 8.4.

8. Verify the following version of the principle of recursive definition: Let A be
a set. Let p be a function assigning, to every function f mapping a section S,
of Z into A, an element p (f) of A. Then there is a unique function : Z, — A
such that h(n) = p(h|S,) foreachn € Z, .
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§9 Infinite Sets and the Axiom of Choice

We have already obtained several criteria for a set to be infinite. We know, for instance,
that a set A is infinite if it has a countably infinite subset, or if there is a bijection of A
with a proper subset of itself. It turns out that either of these properties is sufficient
to characterize infinite sets. This we shall now prove. The proof will lead us into a
discussion of a point of logic we have not yet mentioned—the axiom of choice.

Theorem 9.1. Let A be a set. The following statements about A are equivalent:

(1) There exists an injective function f : Z4 — A.

(2) There exists a bijection of A with a proper subset of itself.

(3) A is infinite.
Proof. We prove the implications (1) = (2) = (3) = (1). To prove that (1) = ),
we assume there is an injective function f : Z; — A. Let the image set f(Z) be
denoted by B; and let f(n) be denoted by a,. Because f is injective, a, # am if
n # m. Define

g:A— A—{a}
by the equations

glan) = apyy fora, € B,
gx)=x forx € A — B.

The map g is indicated schematically in Figure 9.1; one checks easily that it is a
bijection.

g
A A A A Qg
® [ ] [ ] [ ] [ ] e o *
a, a, a, a, ag x
B A-B
Figure 9.1

The implication (2) = (3) is just the contrapositive of Corollary 6.3, so it has
already been proved. To prove that (3) = (1), we assume that A is infinite and
construct “by induction” an injective function f : Z, — A.

First, since the set A is not empty, we can choose a point a; of A; define f(1) to
be the point so chosen.

Then, assuming that we have defined f (1), .. . f(n~ 1), we wish to define f(n).
The set A— f({1, ..., n—1}) is not empty; for if it were empty, the map f : {1, ..., n—
1} — A would be a surjection and A would be finite. Hence, we can choose an



58 Set Theory and Logic Ch. 1

element of the set A — f({1,...,n — 1}) and define f(n) to be this element. “Using
the induction principle”, we have defined f foralln € Z,.

It is easy to see that f is injective. For suppose that m < n. Then f(m) belongs to
the set f({1,...,n — 1}), whereas f(n), by definition, does not. Therefore, f(n) #
f(m). ]

Let us try to reformulate this “induction” proof more carefully, so as to make
explicit our use of the principle of recursive definition.

Given the infinite set A, we attempt to define f : Z, — A recursively by the
formula

f) =a,

) S (i) = an arbitrary element of [A — f({1,...,i —1})] fori > 1.

But this is not an acceptable recursion formula at all! For it does not define fF@
uniquely in terms of f|{1,...,i — 1}.

In this respect this formula differs notably from the recursion formula we consid-
ered in proving Lemma 7.2. There we had an infinite subset C of Z.,., and we defined A
by the formula

h(1) = smallest element of C,
h(i) = smallest element of [C — h({1,...,i — 1})] fori > 1.

This formula does define 4 (i) uniquely in terms of A}{1,...,i — 1}.

Another way of seeing that (x) is not an acceptable recursion formula is to note
that if it were, the principle of recursive definition would imply that there is a unique
function f : Z; — A satisfying (x). But by no stretch of the imagination does (%)
specify f uniquely. In fact, this “definition” of f involves infinitely many arbitrary
choices.

What we are saying is that the proof we have given for Theorem 9.1 is not actually
a proof. Indeed, on the basis of the properties of set theory we have discussed up to
now, it is not possible to prove this theorem. Something more is needed.

Previously, we described certain definite allowable methods for specifying sets:

(1) Defining a set by listing its elements, or by taking a given set A and specifying a
subset B of it by giving a property that the elements of B are to satisfy.

(2) Taking unions or intersections of the elements of a given collection of sets, or
taking the difference of two sets.

(3) Taking the set of all subsets of a given set.

(4) Taking cartesian products of sets.
Now the rule for the function f is really a set: a subset of Z. x A. Therefore, to prove
the existence of the function f, we must construct the appropriate subset of Z, x A,
using the allowed methods for forming sets. The methods already given simply are not
adequate for this purpose. We need a new way of asserting the existence of a set. So,
we add to the list of allowed methods of forming sets the following:
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Axiom of choice. Given a collection 4 of disjoint nonempty sets, there exists a set C
consisting of exactly one element from each element of A; that is, a set C such that C
is contained in the union of the elements of 4, and for each A € A, theset CN A
contains a single element.

The set C can be thought of as having been obtained by choosing one element
from each of the sets in sA.

The axiom of choice certainly seems an innocent-enough assertion. And, in fact,
most mathematicians today accept it as part of the set theory on which they base their
mathematics. But in years past a good deal of controversy raged around this particular
assertion concerning set theory, for there are theorems one can prove with its aid that
some mathematicians were reluctant to accept. One such is the well-ordering theorem,
which we shall discuss shortly. For the present we shall simply use the choice axiom
to clear up the difficulty we mentioned in the preceding proof. First, we prove an easy
consequence of the axiom of choice:

Lemma 9.2 (Existence of a choice function). Given a collection 8 of nonempty
sets (not necessarily disjoint), there exists a function

c. B — UB

such that c(B) is an element of B, for each B € B.

The function c is called a choice function for the collection B.

The difference between this lemma and the axiom of choice is that in this lemma
the sets of the collection B are not required to be disjoint. For example, one can
allow B to be the collection of all nonempty subsets of a given set.

Proof of the lemma. ~ Given an element B of B, we define a set B’ as follows:
B' = {(B,x) | x € B}.

That is, B’ is the collection of all ordered pairs, where the first coordinate of the ordered
pair is the set B, and the second coordinate is an element of B. The set B’ is a subset
of the cartesian product

B x U B.

BeB

Because B contains at least one element x, the set B’ contains at least the element
(B, x), so it is nonempty.

Now we claim that if By and B are two different sets in B, then the corresponding
sets B| and B are disjoint. For the typical element of Bj is a pair of the form (By, x1)
and the typical element of Bj is a pair of the form (Bz, x2). No two such elements can
be equal, for their first coordinates are different. Now let us form the collection

C={B'|Be 8}
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it is a collection of disjoint nonempty subsets of

:BXUB.

BeB

By the choice axiom, there exists a set ¢ consisting of exactly one element from each
element of C. Our claim is that ¢ is the rule for the desired choice function.
In the first place, ¢ is a subset of

BXUB.

Be8B

In the second place, ¢ contains exactly one element from each set B’; therefore, for
each B € B, the set ¢ contains exactly one ordered pair (B, x) whose first coordinate
is B. Thus c is indeed the rule for a function from the collection B to the set | g 5 B.
Finally, if (B, x) € c, then x belongs to B, so that c(B) € B, as desired. ]

A second proof of Theorem 9.1. Using this lemma, one can make the proof of
Theorem 9.1 more precise. Given the infinite set A, we wish to construct an injective
function f : Z, — A. Let us form the collection B of all nonempty subsets of A. The
lemma just proved asserts the existence of a choice function for 8; that is, a function

c: B —> UB:A
BeB

such that ¢(B) € B for each B € 8. Let us now define a function f : Z, — A by the
recursion formula

f(1) =c(A),
f)=c(A-f{1,...,i—1}) fori > 1.

Because A is infinite, the set A — f({1,...,i — 1}) is nonempty; therefore, the right
side of this equation makes sense. Since this formula defines f (i) uniquely in terms of
fI{1,...,i — 1}, the principle of recursive definition applies. We conclude that there
exists a unique function f : Z; — A satisfying (+) for all i € Z,. Injectivity of f
follows as before. [ ]

(%)

Having emphasized that in order to construct a proof of Theorem 9.1 that is logi-
cally correct, one must make specific use of a choice function, we now backtrack and
admit that in practice most mathematicians do no such thing. They go on with no
qualms giving proofs like our first version, proofs that involve an infinite number of
arbitrary choices. They know that they are really using the choice axiom; and they
know that if it were necessary, they could put their proofs into a logically more sat-
isfactory form by introducing a choice function specifically. But usually they do not
bother.

And neither will we. You will find few further specific uses of a choice function
in this book; we shall introduce a choice function only when the proof would become
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confusing without it. But there will be many proofs in which we make an infinite
number of arbitrary choices, and in each such case we will actually be using the choice
axiom implicitly.

Now we must confess that in an earlier section of this book there is a proof in
which we constructed a certain function by making an infinite number of arbitrary
choices. And we slipped that proof in without even mentioning the choice axiom. Our
apologies for the deception. We leave it to you to ferret out which proof it was!

Let us make one final comment on the choice axiom. There are two forms of
this axiom. One can be called the finite axiom of choice; it asserts that given a finite
collection + of disjoint nonempty sets, there exists a set C consisting of exactly one
element from each element of A. One needs this weak form of the choice axiom
all the time; we have used it freely in the preceding sections with no comment. No
mathematician has any qualms about the finite choice axiom; it is part of everyone’s
set theory. Said differently, no one has qualms about a proof that involves only finitely
many arbitrary choices.

The stronger form of the axiom of choice, the one that applies to an arbitrary col-
lection 4 of nonempty sets, is the one that is properly called *“the axiom of choice.”
When a mathematician writes, “This proof depends on the choice axiom,” it is invari-
ably this stronger form of the axiom that is meant.

Exercises

1. Define an injective map f : Z, — X%, where X is the two-element set {0, 1},
without using the choice axiom.

2. Find if possible a choice function for each of the following collections, without
using the choice axiom:
(a) The collection 4 of nonempty subsets of Z .
(b) The collection B of nonempty subsets of Z.
(c¢) The collection C of nonempty subsets of the rational numbers Q.
(d) The collection D of nonempty subsets of X, where X = {0, 1}.

3. Suppose that A is a set and { f, }»cz, is a given indexed family of injective func-
tions

fo:{l,...,n} — A.

Show that A is infinite. Can you define an injective function f : Z; — A
without using the choice axiom?

4. There was a theorem in §7 whose proof involved an infinite number of arbitrary
choices. Which one was it? Rewrite the proof so as to make explicit the use of
the choice axiom. (Several of the earlier exercises have used the choice axiom
also.)
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5.

*8.

(a) Use the choice axiom to show that if f : A — B is surjective, then f has a
rightinverse h : B — A.

(b) Show thatif f : A — B is injective and A is not empty, then f has a left
inverse. Is the axiom of choice needed?

. Most of the famous paradoxes of naive set theory are associated in some way or

other with the concept of the “set of all sets.”” None of the rules we have given for

forming sets allows us to consider such a set. And for good reason—the concept

itself is self-contradictory. For suppose that A denotes the “set of all sets.”

(a) Show that P (A) C A; derive a contradiction.

(b) (Russell’s paradox.) Let B be the subset of 4 consisting of all sets that are
not elements of themselves;

B={A|AcAand A ¢ A}.

(Of course, there may be no set A such that A € A; if such is the case, then
B = A.) Is B an element of itself or not?

. Let A and B be two nonempty sets. If there is an injection of B into A, but no

injection of A into B, we say that A has greater cardinality than B.

(a) Conclude from Theorem 9.1 that every uncountable set has greater cardinal-
ity than Z, .

(b) Show that if A has greater cardinality than B, and B has greater cardinality
than C, then A has greater cardinality than C.

(c) Find a sequence A}, Az, ... of infinite sets, such that for each n € Z, the
set A,y has greater cardinality than A,,.

(d) Find a set that for every n has cardinality greater than A,,.

Show that P (Z,) and R have the same cardinality. [Hint: You may use the fact
that every real number has a cecimal expansion, which is unique if expansions
that end in an infinite string of 9’s are forbidden.]

A famous conjecture of set theory, called the continuum hypothesis, asserts
that there exists no set having greater cardinality than Z. and lesser cardinality
than R. The generalized continuum hypothesis asserts that, given the infinite
set A, there is no set having greater cardinality than A and lesser cardinality
than & (A). Surprisingly enough, both of these assertions have been shown to
be independent of the usual axioms for set theory. For a readable expository
account, see [Sm].

§10 Well-Ordered Sets

One of the useful properties of the set Z, of positive integers is the fact that each of
its nonempty subsets has a smallest element. Generalizing this property leads to the
concept of a well-ordered set.
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Definition. A set A with an order relation < is said to be well-ordered if every
nonempty subset of A has a smallest element.

EXAMPLE 1.  Consider the set {1, 2} x Z. in the dictionary ordering. Schematically, it
can be represented as one infinite sequence followed by another infinite sequence:

ai,az,as,...; b1,by, b3, ...

with the understanding that each element is less than every element to the right of it. It is
not difficult to see that every nonempty subset C of this ordered set has a smallest element:
If C contains any one of the elements a,, we simply take the smallest element of the
intersection of C with the sequence ay, a3, ...; while if C contains no ay, then itis a
subset of the sequence by, by, . .. and as such has a smallest element.

EXAMPLE 2. Consider the set Z,. x Z, in the dictionary order. Schematically, it can be
represented as an infinite sequence of infinite sequences. We show that it is well-ordered.
Let X be a nonempty subset of Z x Z,. Let A be the subset of Z.. consisting of all first
coordinates of elements of X. Now A has a smallest element; call it ap. Then the collection

{b|ag x b e X}

is a nonempty subset of Z.; let by be its smallest element. By definition of the dictionary
order, ag x by is the smallest element of X. See Figure 10.1.

o —>r 06— @ —> 6 —> ®
e —> 06 —» 06— 6 —>

b,e
a
Figure 10.1
EXAMPLE 3. The set of integers is not well-ordered in the usual order; the subset

consisting of the negative integers has no smallest element. Nor is the set of real numbers in
the interval 0 < x < 1 well-ordered; the subset consisting of those x for which0 < x < 1
has no smallest element (although it has a greatest lower bound, of course).

There are several ways of constructing well-ordered sets. Two of them are the
following:

(1) If A is a well-ordered set, then any subset of A is well-ordered in the restricted
order relation.
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(2) If A and B are well-ordered sets, then A x B is well-ordered in the dictionary
order.
The proof of (1) is trivial; the proof of (2) follows the pattern given in Example 2.

It follows that the set Z; x (Z, x Z,) is well-ordered in the dictionary order; it
can be represented as an infinite sequence of infinite sequences of infinite sequences.
Similarly, (Z,)* is well-ordered in the dictionary order. And so on. But if you try to
generalize to an infinite product of Z, with itself, you will run into trouble. We shall
examine this situation shortly.

Now, given a set A without an order relation, it is natural to ask whether there
exists an order relation for A that makes it into a well-ordered set. If A is finite, any
bijection

f:A—{1,...,n}

can be used to define an order relation on A; under this relation, A has the same order
type as the ordered set {1, ..., n}. In fact, every order relation on a finite set can be
obtained in this way:

Theorem 10.1. Every nonempty finite ordered set has the order type of a section
{1,...,n}of Z, so it is well-ordered.

Proof.  This was given as an exercise in §6; we prove it here. First, we show that
every finite ordered set A has a largest element. If A has one element, this is trivial.
Supposing it true for sets having n — 1 elements, let A have n elements and let ag € A.
Then A — {ag} has a largest element a;, and the larger of {ag, a1} is the largest element
of A.

Second, we show there is an order-preserving bijection of A with {1, ..., n} for
some n. If A has one element, this fact is trivial. Suppose that it is true for sets
having n — 1 elements. Let b be the largest element of A. By hypothesis, there is an
order-preserving bijection

A=} —{1,....,n—1).

Define an order-preserving bijection f : A — {1, ..., n} by setting
fx)=f'(x) forx #b,
fb) =n, [

Thus, a finite ordered set has only one possible order type. For an infinite set,
things are quite different. The well-ordered sets

Z.,,
{1,...,”} XZ+,
Z+ XZ+,

Z+ X (Z+ X Z+)
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are all countably infinite, but they all have different order types, as you can check.
All the examples we have given of well-ordered sets are orderings of countable
sets. It is natural to ask whether one can find a well-ordered uncountable set.
The obvious uncountable set to try is the countably infinite product

X—'_—Z+XZ+X"'=(Z+)w

of Z,. with itself. One can generalize the dictionary order to this set in a natural way,
by defining

(@i,a2,...) < (b1, b2,...)
if for some n > 1,
a; = b;, for i <n and a, < b,.

This is, in fact, an order relation on the set X ; but unfortunately it is not a well-ordering.
Consider the set A of all elements x of X of the form

x=(1,...,1,2,1,1,...),

where exactly one coordinate of x equals 2, and the others are all equal to 1. The set A
clearly has no smallest element.

Thus, the dictionary order at least does not give a well-ordering of the set (Z4)”.
Is there some other order relation on this set that is a well-ordering? No one has ever
constructed a specific well-ordering of (Z.)®. Nevertheless, there is a famous theorem
that says such a well-ordering exists:

Theorem (Well-ordering theorem). If A is a set, there exists an order relation on
A that is a well-ordering.

This theorem was proved by Zermelo in 1904, and it startled the mathematical
world. There was considerable debate as to the correctness of the proof; the lack of
any constructive procedure for well-ordering an arbitrary uncountable set led many to
be skeptical. When the proof was analyzed closely, the only point at which it was found
that there might be some question was a construction involving an infinite number of
arbitrary choices, that is, a construction involving—the choice axiom.

Some mathematicians rejected the choice axiom as a result, and for many years a
legitimate question about a new theorem was: Does its proof involve the choice axiom
or not? A theorem was considered to be on somewhat shaky ground if one had to use
the choice axiom in its proof. Present-day mathematicians, by and large, do not have
such qualms. They accept the axiom of choice as a reasonable assumption about set
theory, and they accept the well-ordering theorem along with it.

The proof that the choice axiom implies the well-ordering theorem is rather long
(although not exceedingly difficult) and primarily of interest to logictans; we shall omit
it. If you are interested, a proof is outlined in the supplementary exercises at the end
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of the chapter. Instead, we shall simply assume the well-ordering theorem whenever
we need it. Consider it to be an additional axiom of set theory if you like!

We shall in fact need the full strength of this assumption only occasionally. Most
of the time, all we need is the following weaker result:

Corollary. There exists an uncountable well-ordered set.

We now use this result to construct a particular well-ordered set that will prove to
be very useful.

Definition. Let X be a well-ordered set. Given « € X, let Se denote the set
So ={x|x€Xandx < a}.

It is called the section of X by a.

Lemma 10.2. There exists a well-ordered set A having a largest element 2, such that
the section Sq of A by 2 is uncountable but every other section of A is countable.

Proof. We begin with an uncountable well-ordered set B. Let C be the well-ordered
set {1, 2} x B in the dictionary order; then some section of C is uncountable. (Indeed,
the section of C by any element of the form 2 x b is uncountable.) Let  be the
smallest element of C for which the section of C by Q is uncountable. Then let A
consist of this section along with the element $2. [ ]

Note that Sq is an uncountable well-ordered set every section of which is count-
able. Its order type is in fact uniquely determined by this condition. We shall call it a
minimal uncountable well-ordered set. Furthermore, we shall denote the well-ordered
set A = Sq U {2} by the symbol S'Q (for reasons to be seen later).

The most useful property of the set S, for our purposes is expressed in the follow-
ing theorem:

Theorem 10.3. If A is a countable subset of Sq, then A has an upper bound in Sg.

Proof. Let A be a countable subset of Sg. For each a € A, the section S4 18 count-
able. Therefore, the union B = Uae 4 Sa is also countable. Since Sq is uncountable,
the set B is not all of Sq; let x be a point of Sq that is not in B. Then x is an upper
bound for A. For if x < a for some a in A, then x belongs to S, and hence to B,
contrary to choice. [ ]

Exercises

1. Show that every well-ordered set has the least upper bound property.
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. (a) Show that in a well-ordered set, every element except the largest (if one

exists) has an immediate successor.
(b) Find a set in which every element has an immediate successor that is not
well-ordered.

. Both {1, 2} x Z4 and Z, x {1, 2} are well-ordered in the dictionary order. Do

they have the same order type?

. (a) Let Z_ denote the set of negative integers in the usual order. Show that

a simply ordered set A fails to be well-ordered if and only if it contains a
subset having the same order type as Z_.

(b) Show that if A is simply ordered and every countable subset of A is well-
ordered, then A is well-ordered.

Show the well-ordering theorem implies the choice axiom.

Let S be the minimal uncountable well-ordered set.

(a) Show that Sq has no largest element.

(b) Show that for every « € Sq, the subset {x | @ < x} is uncountable.

(c) Let X be the subset of Sq consisting of all elements x such that x has no
immediate predecessor. Show that X is uncountable.

. Let J be a well-ordered set. A subset Jp of J is said to be inductive if for every

aeld,
Sy C Jop) = a € Jy.

Theorem (The principle of transfinite induction). If J is a well-ordered set
and Jy is an inductive subset of J, then Jy = J.

(a) Let Ay and A; be disjoint sets, well-ordered by <; and <3, respectively.
Define an order relation on A; U A by letting a < b eitherifa, b € A; and
a <y b,orifa,be Aranda <3 b,orifa € A; and b € A,. Show that this
is a well-ordering.

(b) Generalize (a) to an arbitrary family of disjoint well-ordered sets, indexed
by a well-ordered set.

. Consider the subset A of (Z.)“ consisting of all infinite sequences of positive in-

tegers X = (xj, x2, ...) that end in an infinite string of 1’s. Give A the following

order: x < yif x, < y, and x; = y; fori > n. We call this the “antidictionary

order” on A.

(a) Show that for every n, there is a section of A that has the same order type as
(Z4)" in the dictionary order.

(b) Show A is well-ordered.

Theorem. Let J and C be well-ordered sets; assume that there is no surjective
function mapping a section of J onto C. Then there exists a unique function
h : J -> C satisfying the equation

(%) h(x) = smallest [C — h(S;)]
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for each x € J, where Sy is the section of J by x.
Proof.

(a) If h and k map sections of J, or all of J, into C and satisfy (x) for all x in
their respective domains, show that h(x) = k(x) for all x in both domains.

(b) If there exists a function 4 : S, — C satisfying (x), show that there exists a
function k : Sy U {a} — C satisfying (*).

(¢) If K C J and for all ¢ € K there exists a function hy : Sq — C satisfying
(%), show that there exists a function

kil )8 —C
aek
satisfying (x).

(d) Show by transfinite induction that for every 8 € J, there exists a function
hg : Sg — C satisfying (x). [Hint: If B has an immediate predecessor o,
then Sg = Sy U {a}. If not, Sg is the union of all S, witha < B.]

(e) Prove the theorem.

11. Let A and B be two sets. Using the well-ordering theorem, prove that either they
have the same cardinality, or one has cardinality greater than the other. [Hint: If
there is no surjection f : A — B, apply the preceding exercise.]

*§11 The Maximum Principle’

We have already indicated that the axiom of choice leads to the deep theorem that ev-
ery set can be well-ordered. The axiom of choice has other consequences that are even
more important in mathematics. Collectively referred to as “maximum principles,”
they come in many versions. Formulated independently by a number of mathemati-
cians, including F. Hausdorff, K. Kuratowski, S. Bochner, and M. Zorn, during the
years 1914-1935, they were typically proved as consequences of the well-ordering
theorem. Later, it was realized that they were in fact equivalent to the well-ordering
theorem. We consider several of them here.

First, we make a definition. Given a set A, a relation < on A is called a strict
partial order on A if it has the following two properties:

(1) (Nonreflexivity) The relation a < a never holds.

(2) (Transitivity) Ifa < band b < ¢, thena < c.

These are just the second and third of the properties of a simple order (see §3); the
comparability property is the one that is omitted. In other words, a strict partial order
behaves just like a simple order except that it need not be true that for every pair of
distinct points x and y in the set, either x < yory < x.

If < is a strict partial order on a set A, it can easily happen that some subset B
of A is simply ordered by the relation; all that is needed is for every pair of elements
of B to be comparable under <.

This section will be assumed in Chapters 5 and 14,
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Now we can state the following principle, which was first formulated by Hausdorff
in 1914.

Theorem (The maximum principle). Let A be a set; let < be a strict partial order
on A. Then there exists a maximal simply ordered subset B of A.

Said differently, there exists a subset B of A such that B is simply ordered by <
and such that no subset of A that properly contains B is simply ordered by <.

EXAMPLE 1. If 4 is any collection of sets, the relation “is a proper subset of” is a
strict partial order on ». Suppose that , is the collection of all circular regions (interiors
of circles) in the plane. One maximal simply ordered subcollection of # consists of all
circular regions with centers at the origin. Another maximal simply ordered subcollection
consists of all circular regions bounded by circles tangent from the right to the y-axis at the
origin. See Figure 11.1.

Figure 11.1

EXAMPLE 2. If (x9, yo) and (x1, y1) are two points of the plane R?, define

(x0, yo) < (x1, y1)

if yo = y; and xo < x;. This is a partial ordering of R? under which two points are
comparable only if they lie on the same horizontal line. The maximal simply ordered sets
are the horizontal lines in R2.

One can give an intuitive “proof” of the maximum principle that is rather appeal-
ing. It involves a step-by-step procedure, which one can describe in physical terms as
follows. Suppose we take a box, and put into it some of the elements of A according
to the following plan: First we pick an arbitrary element of A and put it in the box.
Then we pick another element of A. If it is comparable with the element in the box,
we put it in the box too; otherwise, we throw it away. At the general step, we will have
a collection of elements in the box and a collection of elements that have been tossed
away. Take one of the remaining elements of A. If it is comparable with everything
in the box, toss it in the box, too; otherwise, throw it away. Similarly continue. After
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you have checked all the elements of A, the elements you have in the box will be com-
parable with one another, and thus they will form a simply ordered set. Every element
not in the box will be noncomparable with at least one element in the box, for that was
why it was tossed away. Hence, the simply ordered set in the box is maximal, for no
larger subset of A can satisfy the comparability condition.

Now of course the weak point in the preceding “proof” comes when we said,
“After you have checked all the elements of A" How do you know you ever “get
through” checking all the elements of A? If A should happen to be countable, it is not
hard to make this intuitive proof into a real proof. Let us take the countably infinite
case; the finite case is even easier. Index the elements of A bijectively with the positive
integers, so that A = {ay, a;...}. This indexing gives a way of deciding what order
to test the elements of A in, and how to know when one has tested them all.

Now we define a function A : Z, — {0, 1}, by letting it assign the value O to
i if we “put g; in the box,” and the value 1 if we “throw a; away.” This means that
h(1) =0, and fori > 1, we have (i) = 0 if and only if @; is comparable with every
element of the set

{a; | j <iandh(j)=0}.

By the principle of recursive definition, this formula determines a unique function
h : Zy — {0, 1}. It is easy to check that the set of those a; for which A(j) = 0isa
maximal simply ordered subset of A.

If A is not countable, a variant of this procedure will work, if we allow ourselves to
use the well-ordering theorem. Instead of indexing the elements of A with the set Z,
we index them (in a bijective fashion) with the elements of some well-ordered set J, so
that A = {a, | @ € J}. For this we need the well-ordering theorem, so that we know
there is a bijection between A and some well-ordered set J. Then we can proceed as
in the previous paragraph, letting « replace i in the argument. Strictly speaking, you
need to generalize the principle of recursive definition to well-ordered sets as well, but
that is not particularly difficult. (See the Supplementary Exercises.)

Thus, the well-ordering theorem implies the maximum principle.

Although the maximum principle of Hausdorff was the first to be formulated and
is probably the simplest to understand, there is another such principle that is nowadays
the one most frequently quoted. It is popularly called “Zorn’s Lemma,” although Ku-
ratowski (1922) and Bochner (1922) preceded Zorn (1935) in enunciating and proving
versions of it. For a history and discussion of the tangled history of these ideas, see [C]
or [Mo]. To state this principle, we need some terminology.

Definition. Let A be a set and let < be a strict partial order on A. If B is a subset
of A, an upper bound on B is an element ¢ of A such that for every b in B, either
b = corb < c. A maximal element of A is an element m of A such that for no
element a of A does the relation m < a hold.

Zorn’s Lemma. Let A be a set that is strictly partially ordered. If every simply
ordered subset of A has an upper bound in A, then A has a maximal element.
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Zorn’s lemma is an easy consequence of the maximum principle: Given A, the
maximum principle implies that A has a maximal simply ordered subset B. The hy-
pothesis of Zorn’s lemma tells us that B has an upper bound c in A. The element ¢ is
then automatically a maximal element of A. For if ¢ < d for some element d of A,
then the set B U {d}, which properly contains B, is simply ordered because b < d for
every b € B. This fact contradicts maximality of B.

It is also true that the maximum principle is an easy consequence of Zorn’s lemma.
See Exercises 5-7.

One final remark. We have defined what we mean by a strict partial order on a set,
but we have not said what a partial order itself is. Let < be a strict partial order on a
set A. Suppose that we define a < b if either a < b or a = b. Then the relation < is
called a partial order on A. For example, the inclusion relation C on a collection of
sets is a partial order, whereas proper inclusion is a strict partial order.

Many authors prefer to deal with partial orderings rather than strict partial order-
ings; the maximum principle and Zorn’s lemma are often expressed in these terms.
Which formulation is used is simply a matter of taste and convenience.

Exercises

1. If a and b are real numbers, define a < b if b — a is positive and rational. Show
this is a strict partial order on R. What are the maximal simply ordered subsets?

2. (a) Let < be a strict partial order on the set A. Define a relation on A by letting
a < bifeithera < b ora = b. Show that this relation has the following
properties, which are called the partial order axioms:

(i) a<aforalla e A.
(i) axbandb <a=>a=b.
(ili) a <bandb<c=a <c.
(b) Let P be arelation on A that satisfies properties (i)—(iii). Define a relation S

on A by letting aSb if aPb and a # b. Show that § is a strict partial order
on A.

3. Let A be a set with a strict partial order <; let x € A. Suppose that we wish to
find a maximal simply ordered subset B of A that contains x. One plausible way
of attempting to define B is to let B equal the set of all those elements of A that
are comparable with x;

B={ylye Aandeitherx < yory < x}.

But this will not always work. In which of Examples 1 and 2 will this procedure
succeed and in which will it not?

4. Given two points (xg, yo) and (x1, y;) of R?, define

(XO’ )’0) < (XI, )’1)
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if xp < xj and yo < y;. Show that the curves y = x3 and y = 2 are maximal
simply ordered subsets of R?, and the curve y = x2 is not. Find all maximal
simply ordered subsets.

5. Show that Zorn’s lemma implies the following:
Lemma (Kuratowski). Let A be a collection of sets. Suppose that for every
subcollection B of A that is simply ordered by proper inclusion, the union of the
elements of B belongs to A. Then A has an element that is properly contained
in no other element of A.

6. A collection A of subsets of a set X is said to be of finite type provided that a
subset B of X belongs to - if and only if every finite subset of B belongs to .
Show that the Kuratowski lemma implies the following:

Lemma (Tukey, 1940). Let A be a collection of sets. If A is of finite type, then
4 has an element that is properly contained in no other element of A.

7. Show that the Tukey lemma implies the Hausdorff maximum principle. [Hint:
If < is a strict partial order on A, let A be the collection of all subsets of A that
are simply ordered by <. Show that 44 is of finite type.]

8. A typical use of Zorn’s lemma in algebra is the proof that every vector space
has a basis. Recall that if A is a subset of the vector space V, we say a vector
belongs to the span of A if it equals a finite linear combination of elements of A.
The set A is independent if the only finite linear combination of elements of A
that equals the zero vector is the trivial one having all coefficients zero. If A is
independent and if every vector in V belongs to the span of A, then A is a basis
for V.

(a) If Aisindependentand v € V does not belong to the span of A, show AU{v}
is independent.

(b) Show the collection of all independent sets in V has a maximal element.

(c) Show that V has a basis.

*Supplementary Exercises: Well-Ordering

In the following exercises, we ask you to prove the equivalence of the choice axiom,
the well-ordering theorem, and the maximum principle. We comment that of these
exercises, only Exercise 7 uses the choice axiom.

1. Theorem (General principle of recursive definition). Let J be a well-ordered
set; let C be a set. Let ¥ be the set of all functions mapping sections of J into C.
Given a function p : ¥ — C, there exists a unique function h : J — C such
that h(a) = p(h|S,) foreacha € J.

" [Hint: Follow the pattern outlined in Exercise 10 of §10.]

2. (a) Let J and E be well-ordered sets; let h : J — E. Show the following two
statements are equivalent:

(i) A is order preserving and its image is E or a section of E.
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(i1) h(a) = smallest [E — h(Sy)] for all a.
[Hint: Show that each of these conditions implies that £(S,) is a section of
E; conclude that it must be the section by h(a).] ‘

(b) If E is a well-ordered set, show that no section of E has the order type of E,
nor do two different sections of E have the same order type. [Hint: Given J,
there is at most one order-preserving map of J into E whose image is E or
a section of E.]

Let J and E be well-ordered sets; suppose there is an order-preserving map

k : J — E. Using Exercises 1 and 2, show that J has the order type of E or

a section of E. [Hint: Choose ¢y € E. Define h : J — E by the recursion

formula

h(a) = smallest [E — h(Sy)] if  h(Sy) # E,

and h(a) = eg otherwise. Show that h(a) < k(a) for all «; conclude that
h(Sy) # E for all «.]

. Use Exercises 1-3 to prove the following:

(a) If A and B are well-ordered sets, then exactly one of the following three
conditions holds: A and B have the same order type, or A has the order type
of a section of B, or B has the order type of a section of A. [Hint: Form
a well-ordered set containing both A and B, as in Exercise 8 of §10; then
apply the preceding exercise.]

(b) Suppose that A and B are well-ordered sets that are uncountable, such that
every section of A and of B is countable. Show A and B have the same order

type.

. Let X be a set; let A be the collection of all pairs (A, <), where A is a subset

of X and < is a well-ordering of A. Define
(A, <) < (A, <)

if (A, <) equals a section of (A’, <).

(a) Show that < is a strict partial order on A.

(b) Let B be a subcollection of » that is simply ordered by <. Define B’ to be
the union of the sets B, for all (B, <) € B; and define <’ to be the union
of the relations <, for all (B, <) € 8. Show that (B’, <’) is a well-ordered
set.

. Use Exercises 1 and 5 to prove the following:

Theorem. The maximum principle is equivalent to the well-ordering theorem.

. Use Exercises 1-5 to prove the following:

Theorem. The choice axiom is equivalent to the well-ordering theorem.

Proof. Let X be a set; let ¢ be a fixed choice function for the nonempty subsets
of X. If T is a subset of X and < is a relation on T, we say that (T, <) is a fower
in X if < is a well-ordering of T and if foreach x € T,

x =c(X = S(T)),
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where Sy (T) is the section of T by x.

(a) Let (T, <1) and (T», <3) be two towers in X. Show that either these two
ordered sets are the same, or one equals a section of the other. [Hint: Switch-
ing indices if necessary, we can assume that 4 : T} — T is order preserving
and h(T}) equals either T; or a section of 7;. Use Exercise 2 to show that
h(x) = x for all x.]

() If (T,<)isatowerin X and T # X, show there is a tower in X of which
(T, <) is a section.

(c) Let {(T%, <k)ik € K} be the collection of all towers in X. Let

T = U Tt and <= U(<k)-

keK keK

Show that (T, <) is a tower in X. Conclude that T = X.

8. Using Exercises 14, construct an uncountable well-ordered set, as follows. Let
# be the collection of all pairs (A, <), where A is a subset of Z and < is a well-
ordering of A. (We allow A to be empty.) Define (A, <) ~ (A/, <') if (A, <)
and (A’, <’) have the same order type. It is trivial to show this is an equivalence
relation. Let [(A, <)] denote the equivalence class of (A, <); let E denote the
collection of these equivalence classes. Define

(A, 91« (4", <N)]

if (A, <) has the order type of a section of (4’, <’).

(a) Show that the relation « is well defined and is a simple order on E. Note
that the equivalence class [(&, @)] is the smallest element of E.

(b) Show that if @ = [(A, <)] is an element of E; then (A, <) has the same
order type as the section S (E) of E by «. [Hint: Defineamap f : A > E
by setting f(x) = [(Sx(A), restriction of <)] for each x € A.]

(c) Conclude that E is well-ordered by «.

(d) Show that E is uncountable. [Hint: If h : E — Z4 is a bijection, then h
gives rise to a well-ordering of Z,..]

This same argument, with Z replaced by an arbitrary well-ordered set X,
proves (without use of the choice axiom) the existence of a well-ordered set E
whose cardinality is greater than that of X.

This exercise shows that one can construct an uncountable well-ordered set,
and hence the minimal uncountable well-ordered set, by an explicit construction
that does not use the choice axiom. However, this result is less interesting than it
might appear. The crucial property of Sq, the one we use repeatedly, is the fact
that every countable subset of Sq has an upper bound in Sg. That fact depends,
in turn, on the fact that a countable union of countable sets is countable. And the
proof of that result (if you examine it carefully) involves an infinite number of
arbitrary choices—that is, it depends on the choice axiom.

Said differently, without the choice axiom we may be able to construct the
minimal uncountable well-ordered set, but we can’t use it for anything!



Chapter 2

Topological Spaces
and Continuous Functions

The concept of topological space grew out of the study of the real line and euclidean
space and the study of continuous functions on these spaces. In this chapter, we de-
fine what a topological space is, and we study a number of ways of constructing a
topology on a set so as to make it into a topological space. We also consider some
of the elementary concepts associated with topological spaces. Open and closed sets,
limit points, and continuous functions are introduced as natural generalizations of the
corresponding ideas for the real line and euclidean space.

§12 Topological Spaces

The definition of a topological space that is now standard was a long time in being
formulated. Various mathematicians—Fréchet, Hausdorff, and others—proposed dif-
ferent definitions over a period of years during the first decades of the twentieth cen-
tury, but it took quite a while before mathematicians settled on the one that seemed
most suitable. They wanted, of course, a definition that was as broad as possible,
so that it would include as special cases all the various examples that were useful
in mathematics—euclidean space, infinite-dimensional euclidean space, and function
spaces among them—but they also wanted the definition to be narrow enough that the
standard theorems about these familiar spaces would hold for topological spaces in

75
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general. This is always the problem when one is trying to formulate a new mathe-
matical concept, to decide how general its definition should be. The definition finally
settled on may seem a bit abstract, but as you work through the various ways of con-
structing topological spaces, you will get a better feeling for what the concept means.

Definition. A fopology on a set X is a collection 7 of subsets of X having the
following properties:
(1) oand X arein 7.

(2) The union of the elements of any subcollection of 7 is in 7.

(3) The intersection of the elements of any finite subcollection of 7 is in 7.
A set X for which a topology 7 has been specified is called a topological space.

Properly speaking, a topological space is an ordered pair (X, 7°) consisting of a
set X and a topology 7 on X, but we often omit specific mention of 7~ if no confusion
will arise.

If X is a topological space with topology 7, we say that a subset U of X is an
open set of X if U belongs to the collection 7 Usmg this terminology, one can say
that a topological space is a set X together w1th a collection of subsets of X, called
open sets, such that @ and X are both open, and such that arbitrary unions and finite
intersections of open sets are open.

EXAMPLE 1. Let X be a three-element set, X = {a, b, c). There are many possible
topologies on X, some of which are indicated schematically in Figure 12.1. The diagram
in the upper right-hand corner indicates the topology in which the open sets are X, @,
{a, b}, {b}, and {b, c}. The topology in the upper lefi-hand corner contains only X and @,
while the topology in the lower right-hand corner contains every subset of X. You can get
other topologies on X by permuting a, b, and c.

Figure 12.1

From this example, you can see that even a three-element set has many different
topologies. But not every collection of subsets of X is a topology on X Neither of the
collections indicated in Figure 12.2 is a topology, for instance.
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QO

Figure 12.2

EXAMPLE 2. If X is any set, the collection of all subsets of X is a topology on X it is
called the discrete topology. The collection consisting of X and & only is also a topology
on X; we shall call it the indiscrete topology, or the trivial topology.

EXAMPLE 3. Let X be aset; let T be the collection of all subsets U of X such that X —U
either is finite or is all of X. Then 77 is a topology on X, called the finite complement
topology. Both X and @ are in T, since X — X is finite and X ~ @ is all of X. If {Uq]} is
an indexed family of nonempty elements of 77, to show that | J Uy is in Ty, we compute

X—UUa=ﬂ(X—Ua).

The latter set is finite because each set X — Uy is finite. If Uy, ..., U, are nonempty
elements of 7, to show that (Ui is in Ty, we compute

X——ﬁUi = LnJ(X—U,').
i=1 i=l

The latter set is a finite union of finite sets and, therefore, finite.

EXAMPLE 4. Let X be a set; let 7. be the collection of all subsets U of X such that
X — U either is countable or is all of X. Then 7, is a topology on X, as you can check.

Definition. Suppose that 7 and 7’ are two topologies on a givenset X. If 7/ O T,
we say that 7 is finer than 7'; if 7' properly contains 7, we say that 7' is strictly
finer than 7. We also say that 7~ is coarser than 7', or strictly coarser, in these two
respective situations. We say 7 is comparable with 7' if either 7' D T or 7 D 7.

This terminology is suggested by thinking of a topological space as being some-
thing like a truckload full of gravel—the pebbles and all unions of collections of peb-
bles being the open sets. If now we smash the pebbles into smaller ones, the collection
of open sets has been enlarged, and the topology, like the gravel, is said to have been
made finer by the operation.

Two topologies on X need not be comparable, of course. In Figure 12.1 preced-
ing, the topology in the upper right-hand corner is strictly finer than each of the three
topologies in the first column and strictly coarser than each of the other topologies in
the third column. But it is not comparable with any of the topologies in the second
column.

Other terminology is sometimes used for this concept. If 7/ O 7, some math-
ematicians would say that 7' is larger than 7, and 7 is smaller than 7'. This is
certainly acceptable terminology, if not as vivid as the words “finer” and “coarser.”
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Many mathematicians use the words “weaker” and “stronger” in this context. Un-
fortunately, some of them (particularly analysts) are apt to say that 7/ is stronger
than 7 if 7/ O 7, while others (particularly topologists) are apt to say that 7' is
weaker than 7 in the same situation! If you run across the terms “strong topology”
or “weak topology” in some book, you will have to decide from the context which
inclusion is meant. We shall not use these terms in this book.

§13 Basis for a Topology

For each of the examples in the preceding section, we were able to specify the topology
by describing the entire collection 7 of open sets. Usually this is too difficult. In
most cases, one specifies instead a smaller collection of subsets of X and defines the
topology in terms of that.

Definition. If X is a set, a basis for a topology on X is a collection B of subsets of X
(called basis elements) such that

(1) For each x € X, there is at least one basis element B containing x.

(2) If x belongs to the intersection of two basis elements B and Bj, then there is a

basis element B3 containing x such that B3 C B N B;.

If B satisfies these two conditions, then we define the topology T generated by B as
follows: A subset U of X is said to be open in X (that is, to be an element of 77) if for
each x € U, there is a basis element B € B such that x € B and B C U. Note that
each basis element is itself an element of 7.

We will check shortly that the collection 7 is indeed a topology on X. But first let
us consider some examples.

EXAMPLE 1. Let B be the collection of all circular regions (interiors of circles) in the
plane. Then B satisfies both conditions for a basis. The second condition is illustrated in
Figure 13.1. In the topology generated by B, a subset U of the plane is open if every x
in U lies in some circular region contained in U.

xe

Figure 13.1 Figure 13.2
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EXAMPLE 2. Let B’ be the collection of all rectangular regions (interiors of rectangles)
in the plane, where the rectangles have sides parallel to the coordinate axes. Then B’
satisfies both conditions for a basis. The second condition is illustrated in Figure 13.2; in
this case, the condition is trivial, because the intersection of any two basis elements is itself
a basis element (or empty). As we shall see later, the basis B’ generates the same topology
on the plane as the basis B given in the preceding example.

EXAMPLE 3.  If X is any set, the collection of all one-point subsets of X is a basis for
the discrete topology on X.

Let us check now that the collection 7~ generated by the basis B is, in fact, a
topology on X. If U is the empty set, it satisfies the defining condition of openness
vacuously. Likewise, X is in 7, since for each x € X there is some basis element
B containing x and contained in X. Now let us take an indexed family {U,}qecs, of
elements of 7 and show that

U= U

ael

belongs to 7. Given x € U, there is an index « such that x € Uy. Since U, is open,
there is a basis element B such that x € B C U,. Thenx € B and B C U, so that U
is open, by definition.

Now let us take two elements U} and U, of 7 and show that U NU; belongs to 7.
Given x € U;NU,, choose a basis element B; containing x such that B; C Uy; choose
also a basis element B; containing x such that B, C U,. The second condition for a
basis enables us to choose a basis element B3 containing x such that B3 C By N B,.
See Figure 13.3. Then x € B3 and B3 C U; N Uy, so U; N U; belongs to 7, by
definition.

Figure 13.3

Finally, we show by induction that any finite intersection U1 N- - - N U, of elements
of 7 isin 7. This fact is trivial for n = 1; we suppose it true for n — 1 and prove it
for n. Now

Un---nUpy)y=WN---NU—) NU,.
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By hypothesis, U N --- N U,_1 belongs to 7 ; by the result just proved, the inter-
section of Uy N --- N Uy,_1 and U, also belongs to 7.

Thus we have checked that collection of open sets generated by a basis B is, in
fact, a topology.

Another way of describing the topology generated by a basis is given in the fol-
lowing lemma: '

Lemma 13.1. Let X be a set; let B be a basis for a topology 7 on X. Then T equals
the collection of all unions of elements of B.

Proof.  Given a collection of elements of BB, they are also elements of 7. Because 7
is a topology, their union is in 7. Conversely, given U € T, choose for each x € U
an element B, of B suchthat x € B, C U. Then U = | J, .y Bx, so U equals a union
of elements of B. [ |

This lemma states that every open set U in X can be expressed as a union of
basis elements. This expression for U is not, however, unique. Thus the use of the
term “basis” in topology differs drastically from its use in linear algebra, where the
equation expressing a given vector as a linear combination of basis vectors is unique.

We have described in two different ways how to go from a basis to the topology
it generates. Sometimes we need to go in the reverse direction, from a topology to a
basis generating it. Here is one way of obtaining a basis for a given topology; we shall
use it frequently.

Lemma 13.2. Let X be a topological space. Suppose that C is a collection of open
sets of X such that for each open set U of X and each x in U, there is an element C
of C such that x € C C U. Then C is a basis for the topology of X.

Proof. 'We must show that C is a basis. The first condition for a basis is easy: Given
x € X, since X is itself an open set, there is by hypothesis an element C of C such
that x € C C X. To check the second condition, let x belong to C; N C;, where C;
and C; are elements of C. Since C; and C3 are open, so is C; N C2. Therefore, there
exists by hypothesis an element C3 in € such that x € C3 C C; N C,.

Let 7 be the collection of open sets of X; we must show that the topology 7’
generated by C equals the topology 7. First, note that if U belongs to 7 and if x € U,
then there is by hypothesis an element C of C such that x € C C U. It follows that U
belongs to the topology 7/, by definition. Conversely, if W belongs to the topology 7,
then W equals a union of elements of C, by the preceding lemma. Since each element
of C belongs to 7 and 7 is a topology, W also belongs to 7. ]

When topologies are given by bases, it is useful to have a criterion in terms of the
bases for determining whether one topology is finer than another. One such criterion
is the following:
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Lemma 13.3. Let B and B’ be bases for the topologies 7 and 7, respectively, on
X. Then the following are equivalent:
(1) 7' is finer than T .

(2) For each x € X and each basis element B € B containing x, there is a basis
element B’ € 8’ such thatx € B’ C B.

Proof. (2) = (1). Given an element U of 7, we wish to show that U € 7'. Let
x € U. Since B generates 7, there is an element B € B such that x € B C U.
Condition (2) tells us there exists an element B’ € B’ such that x € B’ C B. Then
x € B CcU,soU € 7', by definition.

(1) = (2). Weare givenx € X and B € B, with x € B. Now B belongs to 7
by definition and 7 C 7’ by condition (1); therefore, B € 7. Since 7 is generated
by 8B’, there is an element B’ € B’ such that x € B’ C B. n

Some students find this condition hard to remember. “Which way does the inclu-
sion go?”’ they ask. It may be easier to remember if you recall the analogy between
a topological space and a truckload full of gravel. Think of the pebbles as the basis
elements of the topology; after the pebbles are smashed to dust, the dust particles are
the basis elements of the new topology. The new topology is finer than the old one,
and each dust particle was contained inside a pebble, as the criterion states.

EXAMPLE 4.  One can now see that the collection B of all circular regions in the plane
generates the same topology as the collection B’ of all rectangular regions; Figure 13.4
illustrates the proof. We shall treat this example more formally when we study metric
spaces.

@B B B

Figure 13.4

We now define three topologies on the real line R, all of which are of interest.

Definition. If B is the collection of all open intervals in the real line,
(a,b) ={x|{a <x <b},

the topology generated by B is called the standard topology on the real line. Whenever
we consider R, we shall suppose it is given this topology unless we specifically state
otherwise. If B’ is the collection of ail half-open intervals of the form

l[a,b) ={x|a <x < b},
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where a < b, the topology generated by B’ is called the lower limit topology on R.
When R is given the lower limit topology, we denote it by R, . Finally let K denote the
set of all numbers of the form 1/n, forn € Z,, and let B” be the collection of all open
intervals (a, b), along with all sets of the form (a, ) — K. The topology generated
by B” will be called the K-topology on R. When R is given this topology, we denote
itby Rg.

It is easy to see that all three of these collections are bases; in each case, the
intersection of two basis elements is either another basis element or is empty. The
relation between these topologies is the following:

Lemma 13.4. The topologies of Ry and Rk are strictly finer than the standard topol-
ogy on R, but are not comparable with one another.

Proof. Let 7, 7', and 7" be the topologies of R, Ry, and R, respectively. Given
a basis element (a, b) for 7 and a point x of (a, b), the basis element [x, b) for T’
contains x and lies in (a, ). On the other hand, given the basis element [x, d) for 7',
there is no open interval (a, b) that contains x and lies in [x, d). Thus 7/ is strictly
finer than 7.

A similar argument applies to Rx. Given a basis element (a, b) for 7 and a
point x of (a, b), this same interval is a basis element for 7” that contains x. On the
other hand, given the basis element B = (—1,1) — K for 7" and the point O of B,
there is no open interval that contains O and lies in B.

We leave it to you to show that the topologies of R, and Rg are not comparable.

|

A question may occur to you at this point. Since the topology generated by a
basis 8 may be described as the collection of arbitrary unions of elements of 8, what
happens if you start with a given collection of sets and take finite intersections of
them as well as arbitrary unions? This question leads to the notion of a subbasis for a
topology.

Definition. A subbasis S for a topology on X is a collection of subsets of X whose
union equals X. The topology generated by the subbasis S is defined to be the collec-
tion 7 of all unions of finite intersections of elements of S.

We must of course check that 7 is a topology. For this purpose it will suffice to
show that the collection 8B of all finite intersections of elements of § is a basis, for
then the collection 7 of all unions of elements of B is a topology, by Lemma 13.1.
Given x € X, it belongs to an element of § and hence to an element of B; this is the
first condition for a basis. To check the second condition, let

Bi=5Sn---Nn§, and Bz:Siﬂ---ﬂS:,
be two elements of B. Their intersection

BINB,=(S1N---NSu)N(S;N---NSy)
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is also a finite intersection of elements of §, so it belongs to B.

Exercises

1.

2.

8.

Let X be a topological space; let A be a subset of X. Suppose that foreach x € A
there is an open set U containing x such that U C A. Show that A is open in X.

Consider the nine topologies on the set X = {a, b, ¢} indicated in Example 1
of §12. Compare them; that is, for each pair of topologies, determine whether
they are comparable, and if so, which is the finer.

. Show that the collection 7. given in Example 4 of §12 is a topology on the set X.

Is the collection
T = {U | X — U is infinite or empty or all of X}

a topology on X?

. (a) If {74} is a family of topologies on X, show that (] 7y is a topology on X.

Is 74 a topology on X?

(b) Let {7} be a family of topologies on X. Show that there is a unique small-
est topology on X containing all the collections 7, and a unique largest
topology contained in all 7.

(c) If X ={a,b,c}, let

N1={2,X,{a},{a,b}} and T3 ={&, X, {a},{b,c}}.

Find the smallest topology containing 77 and 73, and the largest topology
contained in 77 and 7>.

. Show that if + is a basis for a topology on X, then the topology generated by A

equals the intersection of all topologies on X that contain +. Prove the same if
s is a subbasis.

. Show that the topologies of R, and Rg are not comparable.
. Consider the following topologies on R:

71 = the standard topology,

73 = the topology of Rg,

73 = the finite complement topology,

T4 = the upper limit topology, having all sets (a, b] as basis,

Ts5 = the topology having all sets (—oo, @) = {x | x < a} as basis.

Determine, for each of these topologies, which of the others it contains.
(a) Apply Lemma 13.2 to show that the countable collection

B = {(a,b) | a < b, a and b rational}
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is a basis that generates the standard topology on R.
(b) Show that the collection

C = {[a, b) | a < b, a and b rational}

is a basis that generates a topology different from the lower limit topology
on R.

§14 The Order Topology

If X is a simply ordered set, there is a standard topology for X, defined using the order
relation. It is called the order topology; in this section, we consider it and study some
of its properties.

Suppose that X is a set having a simple order relation <. Given elements a and b
of X such that a < b, there are four subsets of X that are called the intervals deter-
mined by a and b. They are the following :

(a,b) ={x | a < x < b},
(@, b]l={x|a <x <bh},
la,b) ={x|a < x < b},
fa, bl ={x|a <x < b}

The notation used here is familiar to you already in the case where X is the real line,
but these are intervals in an arbitrary ordered set. A set of the first type is called an
open interval in X, a set of the last type is called a closed interval in X, and sets of the
second and third types are called half-open intervals. The use of the terrn “open” in
this connection suggests that open intervals in X should turn out to be open sets when
we put a topology on X. And so they will.

Definition. Let X be a set with a simple order relation; assume X has more than one
element. Let B be the collection of all sets of the following types:

(1) All open intervals (a, b) in X.

(2) All intervals of the form [ag, b), where ag is the smallest element (if any) of X.

(3) All intervals of the form (a, bp], where by is the largest element (if any) of X.
The collection B is a basis for a topology on X, which is called the order topology.

If X has no smallest element, there are no sets of type (2), and if X has no largest
element, there are no sets of type (3).

One has to check that B satisfies the requirements for a basis. First, note that every
element x of X lies in at least one element of B: The smallest element (if any) lies
in all sets of type (2), the largest element (if any) lies in all sets of type (3), and every
other element lies in a set of type (1). Second, note that the intersection of any two sets
of the preceding types is again a set of one of these types, or is empty. Several cases
need to be checked; we leave it to you.
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EXAMPLE 1.  The standard topology on R, as defined in the preceding section, is just the
order topology derived from the usual order on R.

EXAMPLE 2.  Consider the set R x R in the dictionary order; we shall denote the general
element of R x R by x x y, to avoid difficulty with notation. The set R x R has neither a
largest nor a smallest element, so the order topology on R x R has as basis the collection
of all open intervals of the form (a x b,¢ x d) fora < ¢, and fora = c and b < d. These
two types of intervals are indicated in Figure 14.1. The subcollection consisting of only
intervals of the second type is also a basis for the order topology on R x R, as you can

check.

axb

exd axh

Figure 14.1

EXAMPLE 3. The positive integers Z,. form an ordered set with a smallest element. The
order topology on Z,. is the discrete topology, for every one-point set is open: If n > 1,
then the one-point set {n} = (n — 1, n + 1) is a basis element; and if n = 1, the one-point
set {1} = [1, 2) is a basis element.

EXAMPLE 4.  The set X = {1, 2} x Z,. in the dictionary order is another example of
an ordered set with a smallest element. Denoting 1 x n by a, and 2 x n by b,, we can
represent X by

ay,az,...; b1, b2, . ...

The order topology on X is not the discrete topology. Most one-point sets are open, but
there is an exception—the one-point set {b;}. Any open set containing b; must contain a
basis element about b; (by definition), and any basis element containing b; contains points
of the a; sequence.

Definition. If X is an ordered set, and a is an element of X, there are four subsets
of X that are called the rays determined by a. They are the following:

(@, +00) = {x | x > a},
(—00,a) ={x | x <a),
[a, +00) = {x | x = a},
(—o0,al=1{x|x <a).
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Sets of the first two types are called open rays, and sets of the last two types are called
closed rays.

The use of the term “open” suggests that open rays in X are open sets in the order
topology. And so they are. Consider, for example, the ray (a, +00). If X has a largest
element by, then (a, +0o0) equals the basis element (a, bg]. If X has no largest element,
then (a, 4+00) equals the union of all basis elements of the form (a, x), for x > a. In
either case, (a, +00) is open. A similar argument applies to the ray (—oo, a).

The open rays, in fact, form a subbasis for the order topology on X, as we now
show. Because the open rays are open in the order topology, the topology they gen-
erate is contained in the order topology. On the other hand, every basis element for
the order topology equals a finite intersection of open rays; the interval (a, ) equals
the intersection of (—oo, b) and (a, +00), while [ag, b) and (a, bg], if they exist, are
themselves open rays. Hence the topology generated by the open rays contains the
order topology.

§15 The Product Topology on X x Y

If X and Y are topological spaces, there is a standard way of defining a topology on
the cartesian product X x Y. We consider this topology now and study some of its
properties.

Definition. Let X and Y be topological spaces. The product topology on X x Y is
the topology having as basis the collection B of all sets of the form U x V, where U
is an open subset of X and V is an open subset of Y.

Let us check that B is a basis. The first condition is trivial, since X x Y is itself
a basis element. The second condition is almost as easy, since the intersection of any
two basis elements U; x V| and U, x V> is another basis element. For

U1 x V) NnUz x Vp) = (Ui NUR) x (Vi NV),

and the latter set is a basis element because Uy NUs; and V)NV, are openin X and Y,
respectively. See Figure 15.1.

Note that the collection B is not a topology on X x Y. The union of the two
rectangles pictured in Figure 15.1, for instance, is not a product of two sets, so it
cannot belong to B; however, itis openin X x Y.

Each time we introduce a new concept, we shall try to relate it to the concepts that
have been previously introduced. In the present case, we ask: What can one say if the
topologies on X and Y are given by bases? The answer is as follows:

Theorem 15.1. If B is a basis for the topology of X and C is a basis for the topology
of Y, then the collection
D={BxC|BeBandC € C)

is a basis for the topology of X x Y.
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Proof. We apply Lemma 13.2. Given an open set W of X x Y and a point x x y
of W, by definition of the product topology there is a basis element U x V such that
xxyeUxV C W. Because B and C are bases for X and Y, respectively, we can
choose an element B of B such that x € B C U, and an element C of € such that
ye CCV.Thenx x y € Bx C C W. Thus the collection £ meets the criterion of
Lemma 13.2, so D is a basis for X x Y. u

EXAMPLE 1.  We have a standard topology on R: the order topology. The product of
this topology with itself is called the standard topology on R x R = R2. It has as basis
the collection of all products of open sets of R, but the theorem just proved tells us that the
much smaller collection of all products (a, b) x (¢, d) of open intervals in R will also serve
as a basis for the topology of R?. Each such set can be pictured as the interior of a rectangie
in R?. Thus the standard topology on R? is just the one we considered in Example 2 of §13.

It is sometimes useful to express the product topology in terms of a subbasis. To
do this, we first define certain functions called projections.

Definition. Letm; : X x ¥ — X be defined by the equation
m(x, y) = x;

let 7o : X X Y — Y be defined by the equation
m(x, y) =y.

The maps m; and 7, are called the projections of X x Y onto its first and second
factors, respectively.

We use the word “onto” because m; and 7, are surjective (unless one of the
spaces X or Y happens to be empty, in which case X x Y is empty and our whole
discussion is empty as well!).

If U is an open subset of X, then the set Yy is precisely the set U x Y, which
isopenin X x Y. Similarly, if V is openin Y, then

L (Vy=XxV,
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which is also open in X x Y. The intersection of these two sets is the set U x V, as
indicated in Figure 15.2. This fact leads to the following theorem:

Theorem 15.2. The collection
S = {zrl"l(U) | U open in X}U{H{I(V) | V openinY}

is a subbasis for the product topology on X x Y.
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Figure 15.2

Proof. Let 7 denote the product topology on X x Y; let 7’ be the topology gener-
ated by S. Because every element of § belongs to 7, so do arbitrary unions of finite
intersections of elements of §. Thus 7/ C 7. On the other hand, every basis element
U x V for the topology 7 is a finite intersection of elements of §, since

UxV=a(U)nay (V).

Therefore, U x V belongs to 7', so that T C 7' as well. ]

§16 The Subspace Topology

Definition. Let X be a topological space with topology 7. If Y is a subset of X, the
collection

Ty ={¥NU|UeT)

is a topology on Y, called the subspace topology. With this topology, Y is called a
subspace of X its open sets consist of all intersections of open sets of X with Y.
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It is easy to see that 7y is a topology. It contains & and Y because
g=YN@ and Y=YNX,

where @ and X are elements of 7. The fact that it is closed under finite intersections
and arbitrary unions follows from the equations

manynn-.--NnU,NY)y=W1N---NU,)NY,
Uwanry = Jua)ny.

ael ael

Lemma 16.1. If B is a basis for the topology of X then the collection
By ={BNY|Be B}

is a basis for the subspace topology on'Y.

Proof. Given U openin X and given y € U NY, we can choose an element B of B
suchthaty e B C U.Theny € BNY Cc UNY. It follows from Lemma 13.2 that By
is a basis for the subspace topology on Y. [ ]

When dealing with a space X and a subspace Y, one needs to be careful when
one uses the term “open set”. Does one mean an element of the topology of ¥ or an
element of the topology of X? We make the following definition : If Y is a subspace
of X, we say that a set U is open in Y (or open relative to Y) if it belongs to the
topology of Y'; this implies in particular that it is a subset of Y. We say that U is open
in X if it belongs to the topology of X.

There is a special situation in which every set open in Y is also open in X:

Lemma 16.2. LetY be a subspace of X. If U isopeninY andY is open in X, then
U isopeninX.

Proof. Since U isopeninY,U =Y NV for some set V open in X. Since Y and V
are both open in X, sois Y NV. ]

Now let us explore the relation between the subspace topology and the order and
product topologies. For product topologies, the result is what one might expect; for
order topologies, it is not.

Theorem 16.3. If A is a subspace of X and B is a subspace of Y, then the product
topology on A x B is the same as the topology A x B inherits as a subspace of X x Y.

Proof. Theset U x V is the general basis element for X x Y, where U is open in X
and V is openin Y. Therefore, (U x V)N (A x B) is the general basis element for the
subspace topology on A x B. Now

UxV)N(AxB)y=(UNA)x (VNB).
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Since U N A and V N B are the general open sets for the subspace topologies on A
and B, respectively, the set (U N A) x (V N B) is the general basis element for the
product topology on A x B.

The conclusion we draw is that the bases for the subspace topology on A x B and
for the product topology on A x B are the same. Hence the topologies are the same.

Now let X be an ordered set in the order topology, and let Y be a subset of X. The
order relation on X, when restricted to Y, makes Y into an ordered set. However, the
resulting order topology on Y need not be the same as the topology that Y inherits as
a subspace of X. We give one example where the subspace and order topologies on Y
agree, and two examples where they do not.

EXAMPLE 1. Consider the subset ¥ = [0, 1] of the real line R, in the subspace topology.

The subspace topology has as basis all sets of the form (a, b) N Y, where (a, b) is an open
interval in R. Such a set is of one of the following types:

(a,b) ifaandbarein?,
[0,b) ifonlybisin?,

(a,1] ifonlyaisin?,

Yor2 ifneitheranorbisiny.

@byny =

By definition, each of these sets is open in Y. But sets of the second and third types are not
open in the larger space R.

Note that these sets form a basis for the order topology on Y. Thus, we see that in the
case of the set Y = [0, 1], its subspace topology (as a subspace of R) and its order topology
are the same.

EXAMPLE 2.  Let Y be the subset [0, 1) U {2} of R. In the subspace topology on Y the
one-point set {2} is open, because it is the intersection of the open set (%, 5) with Y. Butin
the order topology on Y, the set {2} is not open. Any basis element for the order topology
on Y that contains 2 is of the form

{x | x e Yanda < x <2}

for some a € Y'; such a set necessarily contains points of Y less than 2.

EXAMPLE 3.  Let I = [0, 1]. The dictionary order on I x I is just the restriction to
I x I of the dictionary order on the plane R x R. However, the dictionary order topology
on I x I is not the same as the subspace topology on I x I obtained from the dictionary
order topology on R x R! For example, the set {1/2} x (1/2, 1] is open in I x I in the
subspace topology, but not in the order topology, as you can check. See Figure 16.1.

The set I x I in the dictionary order topology will be called the ordered square, and
denoted by 12.

The anomaly illustrated in Examples 2 and 3 does not occur for intervals or rays
in an ordered set X. This we now prove.

Given an ordered set X, let us say that a subset Y of X is convex in X if for each
pair of points a < b of Y, the entire interval (a, b) of points of X lies in Y. Note that
intervals and rays in X are convex in X.
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Subspace Order

Figure 16.1

Theorem 16.4. Let X be an ordered set in the order topology; let Y be a subset
of X that is convex in X. Then the order topology on Y is the same as the topology Y
inherits as a subspace of X.

Proof. Consider the ray (a, +00) in X. What is its intersection with ¥? Ifaey,
then

(a,+00)NY ={x|x € Y and x > a};

this is an open ray of the ordered set Y. If a ¢ Y, then a is either a lower bound on Y
or an upper bound on Y, since Y is convex. In the former case, the set (a, +o0) NY
equals all of Y; in the latter case, it is empty.

A similar remark shows that the intersection of the ray (—oo, a) with Y is either
an open ray of Y, or Y itself, or empty. Since the sets (a, +00) NY and (—00,a) NY
form a subbasis for the subspace topology on Y, and since each is open in the order
topology, the order topology contains the subspace topology.

To prove the reverse, note that any open ray of Y equals the intersection of an open
ray of X with Y, so it is open in the subspace topology on Y. Since the open rays of Y
are a subbasis for the order topology on Y, this topology is contained in the subspace
topology. |

To avoid ambiguity, let us agree that whenever X is an ordered set in the order
topology and Y is a subset of X, we shall assume that Y is given the subspace topology
unless we specifically state otherwise. If Y is convex in X, this is the same as the order
topology on Y; otherwise, it may not be.

Exercises

1. Show that if Y is a subspace of X, and A is a subset of Y, then the topology A
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10.

§17

inherits as a subspace of Y is the same as the topology it inherits as a subspace
of X.

. If 7 and 7 are topologies on X and 7' is strictly finer than 7, what can you

say about the corresponding subspace topologies on the subset ¥ of X?

. Consider the set Y = [—1, 1] as a subspace of R. Which of the following sets

are open in Y? Which are open in R?
A=1{x13<lxl <1}
B={x|3<lxl<1},
C={x|3=<lxl<1}
D={x|z<kxl<1}
E={x]0<|x|<landl/x ¢ Z,}.

. Amap f : X — Y is said to be an open map if for every open set U of X, the

set f(U)isopeninY. Show thatm; : X xY — Xandn : X XY — Y are
open maps.

. Let X and X’ denote a single set in the topologies 7~ and T/, respectively; let Y

and Y’ denote a single set in the topologies U and U’, respectively. Assume

these sets are nonempty.

(a) Show thatif 7/ > 7 and U’ D U, then the product topology on X’ x ¥ is
finer than the product topology on X x Y.

(b) Does the converse of (a) hold? Justify your answer.

Show that the countable collection
{(a,b) x (c,d)|a <bandc < d, and a, b, c, d are rational}

is a basis for R2.

Let X be an ordered set. If Y is a proper subset of X that is convex in X, does it
follow that Y is an interval or a ray in X?

If L is a straight line in the plane, describe the topology L inherits as a subspace
of R; x R and as a subspace of R, x R;. In each case it is a familiar topology.
Show that the dictionary order topology on the set R x R is the same as the
product topology R; x R, where R4 denotes R in the discrete topology. Compare
this topology with the standard topology on R2.

Let I = [0, 1]. Compare the product topology on I x I, the dictionary order
topology on I x I, and the topology / x I inherits as a subspace of R x R in the
dictionary order topology.

Closed Sets and Limit Points

Now that we have a few examples at hand, we can introduce some of the basic concepts
associated with topological spaces. In this section, we treat the notions of closed set,
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closure of a set, and limit point. These lead naturally to consideration of a certain
axiom for topological spaces called the Hausdorff axiom.

Closed Sets
A subset A of a topological space X is said to be closed if the set X — A is open.
EXAMPLE 1. The subset [a, b] of R is closed because its complement
R — {a, b] = (—00, a) U (b, +00),
is open. Similarly, [a, +00) is closed, because its complement (—o0, a) is open. These

facts justify our use of the terms “closed interval” and “closed ray.” The subset [a, b) of R
is neither open nor closed.

EXAMPLE 2. In the plane R?, the set
{xxy|x>0andy > 0}
is closed, because its complement is the union of the two sets
(=00,0) x R and R x (—o00,0),

each of which is a product of open sets of R and is, therefore, open in R2.

EXAMPLE 3. In the finite complement topology on a set X, the closed sets consist of X
itself and all finite subsets of X.

EXAMPLE 4. In the discrete topology on the set X, every set is open; it follows that
every set is closed as well.

EXAMPLE 5. Consider the following subset of the real line:
Y =1[0,11U(2,3),

in the subspace topology. In this space, the set [0, 1] is open, since it is the intersection of
the open set (—%, %) of R with Y. Similarly, (2, 3) is open as a subset of Y'; it is even open
as a subset of R. Since [0, 1] and (2, 3) are complements in ¥ of each other, we conclude
that both [0, 1] and (2, 3) are closed as subsets of Y.

These examples suggest that an answer to the mathematician’s riddle: “How is
a set different from a door?” should be: “A door must be either open or closed, and
cannot be both, while a set can be open, or closed, or both, or neither!”

The collection of closed subsets of a space X has properties similar to those satis-
fied by the collection of open subsets of X:
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Theorem 17.1. Let X be a topological space. Then the following conditions hold:
(1) @ and X are closed.

(2) Arbitrary intersections of closed sets are closed.
(3) Finite unions of closed sets are closed.

Proof. (1) @ and X are closed because they are the complements of the open sets X
and &, respectively.
(2) Given a collection of closed sets {Ag }acs, we apply DeMorgan’s law,

X—ﬂAa=U(X—Aa).

ael ael

Since the sets X — A, are open by definition, the right side of this equation represents
an arbitrary union of open sets, and is thus open. Therefore, ] A, is closed.
(3) Similarly, if A; is closed fori = 1, ..., n, consider the equation

n n

X—UA,~ =ﬂ(X—Ai).
i=1 i=1

The set on the right side of this equation is a finite intersection of open sets and is
therefore open. Hence | J A; is closed. [ ]

Instead of using open sets, one could just as well specify a topology on a space by
giving a collection of sets (to be called “closed sets”) satisfying the three properties of
this theorem. One could then define open sets as the complements of closed sets and
proceed just as before. This procedure has no particular advantage over the one we
have adopted, and most mathematicians prefer to use open sets to define topologies.

Now when dealing with subspaces, one needs to be careful in using the term
“closed set.” If Y is a subspace of X, we say that a set A is closed in Y if A is a
subset of ¥ and if A is closed in the subspace topology of Y (that is, if ¥ — A is open
in Y). We have the following theorem:

Theorem 17.2. Let Y be a subspace of X. Then a set A is closed in Y if and only if
it equals the intersection of a closed set of X withY .

Proof. Assume that A = C NY, where C is closed in X. (See Figure 17.1.) Then
X — Cisopenin X, so that (X — C) NY is open in Y, by definition of the subspace
topology. But (X ~C)NY =Y — A. Hence Y — A is openin Y, so that A is closed in
Y. Conversely, assume that A is closed in Y. (See Figure 17.2.) Then Y — A is open
in Y, so that by definition it equals the intersection of an open set U of X with Y. The
set X — Uisclosedin X, and A = Y N (X — U), so that A equals the intersection of
a closed set of X with Y, as desired. ]

A set A that is closed in the subspace ¥ may or may not be closed in the larger
space X. As was the case with open sets, there is a criterion for A to be closed in X:
we leave the proof to you:
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Theorem 17.3. LetY be a subspace of X. If A isclosed in Y and Y is closed in X,
then A is closed in X.

Closure and Interior of a Set

Given a subset A of a topological space X, the interior of A is defined as the union of
all open sets contained in A, and the closure of A is defined as the intersection of all
closed sets containing A.

The interior of A is denoted by Int A and the closure of A is denoted by Cl A or
by A. Obviously Int A is an open set and A is a closed set; furthermore,

IntAC ACA.

If A is open, A = Int A; while if A is closed, A = A.

We shall not make much use of the interior of a set, but the closure of a set will be
quite important.

When dealing with a topological space X and a subspace Y, one needs to exercise
care in taking closures of sets. If A is a subset of Y, the closure of A in Y and the
closure of A in X will in general be different. In such a situation, we reserve the
notation A to stand for the closure of A in X. The closure of A in Y can be expressed
in terms of A, as the following theorem shows:

Theorem 17.4. Let Y be a subspace of X; let A be a subset of Y ; let A denote the
closure of A in X. Then the closure of A inY equals ANY.

Proof. Let B denote the closure of A in Y. The set Aisclosedin X,s0 ANY is
closed in Y by Theorem 17.2. Since ANY contains A, and since by definition B equals
the intersection of all closed subsets of Y containing A, we must have B C (ANY).
On the other hand, we know that B is closed in Y. Hence by Theorem 17.2,
B = CNY for some set C closed in X. Then C is a closed set of X containing A;
because A is the intersection of all such closed sets, we conclude that A C C. Then
(ANY)cC (CNY)=B. [ ]
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The definition of the closure of a set does not give us a convenient way for actually
finding the closures of specific sets, since the collection of all closed sets in X, like
the collection of all open sets, is usually much too big to work with. Another way of
describing the closure of a set, useful because it involves only a basis for the topology
of X, is given in the following theorem.

First let us introduce some convenient terminology. We shall say that a set A
intersects a set B if the intersection A N B is not empty.

Theorem 17.5. Let A be a subset of the topological space X.
(a) Then x € A if and only if every open set U containing x intersects A.
(b) Supposing the topology of X is given by a basis, then x € A if and only if every
basis element B containing x intersects A.

Proof. Consider the statement in (a). It is a statement of the form P < Q. Let
us transform each implication to its contrapositive, thereby obtaining the logically
equivalent statement (not P) < (not Q). Written out, it is the following:

x ¢ A <= there exists an open set U containing x that does not intersect A.

In this form, our theorem is easy to prove. If x is notin A, the set U = X — A is an
open set containing x that does not intersect A, as desired. Conversely, if there exists
an open set U containing x which does not intersect A, then X — U is a closed set
containing A. By definition of the closure A, the set X — U must contain A; therefore,
x cannot be in A.

Statement (b) follows readily. If every open set containing x intersects A, so does
every basis element B containing x, because B is an open set. Conversely, if every
basis element containing x intersects A, so does every open set U containing x, be-
cause U contains a basis element that contains x. |

Mathematicians often use some special terminology here. They shorten the state-
ment “U is an open set containing x” to the phrase

“U is a neighborhood of x.”
Using this terminology, one can write the first half of the preceding theorem as follows:

If A is a subset of the topological space X, then x € A if and only if every
neighborhood of x intersects A.

EXAMPLE 6. Let X be the real line R. If A = (0, 1], then A = [0,1], for every
neighborhood of 0 intersects A, while every point outside [0, 1] has a neighborhood disjoint
from A. Similar arguments apply to the following subsets of X:

IfB={l/n|neZy} then B={0)UB.IfC={0}U(1,2),then C = {0} U[1,2].
If Q is the set of rational numbers, then Q@ = R. If Z is the set of positive integers, then
Zy = Z4. If Ry is the set of positive reals, then the closure of R, is the set R U {0].
(This is the reason we introduced the notation R for the set R} U {0}, back in §2.)
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EXAMPLE 7.  Consider the subspace ¥ = (0, 1] of the real line R. The set A = (0, %) is
a subset of Y; its closure in R is the set [0, %], and its closure in Y is the set [0, %] NY =
©, 31.

Some mathematicians use the term “neighborhood” differently. They say that A
is a neighborhood of x if A merely contains an open set containing x. We shall not
follow this practice.

Limit Points

There is yet another way of describing the closure of a set, a way that involves the
important concept of limit point, which we consider now.

If A is a subset of the topological space X and if x is a point of X, we say that x is a
limit point (or “cluster point,” or “point of accumulation”) of A if every neighborhood
of x intersects A in some point other than x itself. Said differently, x is a limit point
of A if it belongs to the closure of A — {x}. The point x may lie in A or not; for this
definition it does not matter.

EXAMPLE 8.  Consider the real line R. If A = (0, 1], then the point 0 is a limit point
of A and so is the point % In fact, every point of the interval [0, 1] is a limit point of A, but
no other point of R is a limit point of A.

If B={1/n|n € Z.}, then O is the only limit point of B. Every other point x of R has
a neighborhood that either does not intersect B at all, or it intersects B only in the point x
itself. If C = {0} U (1, 2), then the limit points of C are the points of the interval [1, 2]. If
Q is the set of rational numbers, every point of R is a limit point of Q. If Z, is the set of
positive integers, no point of R is a limit point of Z, . If R is the set of positive reals, then
every point of {0} U R is a limit point of R,..

Comparison of Examples 6 and 8 suggests a relationship between the closure of a
set and the limit points of a set. That relationship is given in the following theorem:

Theorem 17.6. Let A be a subset of the topological space X ; let A’ be the set of all
limit points of A. Then

A=AUA

Proof. Ifxisin A’, every neighborhood of x intersects A (in a point different from x).
Therefore, by Theorem 17.5, x belongs to A. Hence A’ C A. Since by definition
A C A, itfollowsthat AU A’ C A.

To demonstrate the reverse inclusion, we let x be a point of A and show that
x € AU A", If x happens to lie in A, it is trivial that x € A U A’; suppose that x
does not lie in A. Since x € A, we know that every neighborhood U of x intersects A;
because x ¢ A, the set U must intersect A in a point different from x. Then x € A’,

sothatx € AU A’, as desired. [ ]
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Corollary 17.7. A subset of a topological space is closed if and only if it contains all
its limit points.

Proof. The set A is closed if and only if A = A, and the latter holds if and only if
A’ C A ]

Hausdorff Spaces

One’s experience with open and closed sets and limit points in the real line and the
plane can be misleading when one considers more general topological spaces. For
example, in the spaces R and R?, each one-point set {xg} is closed. This fact is easily
proved; every point different from xo has a neighborhood not intersecting {xo}, so
that {xo} is its own closure. But this fact is not true for arbitrary topological spaces.
Consider the topology on the three-point set {a, b, ¢} indicated in Figure 17.3. In this
space, the one-point set {b} is not closed, for its complement is nor open.

(@2

Figure 17.3

Similarly, one’s experience with the properties of convergent sequences in R and
R? can be misleading when one deals with more general topological spaces. In an
arbitrary topological space, one says that a sequence xi, x2, ... of points of the space
X converges to the point x of X provided that, corresponding to each neighborhood U
of x, there is a positive integer N such that x, € U foralln > N. In R and R?, a
sequence cannot converge to more than one point, but in an arbitrary space, it can. In
the space indicated in Figure 17.3, for example, the sequence defined by setting x, = b
for all n converges not only to the point b, but also to the point a and to the point c!

Topologies in which one-point sets are not closed, or in which sequences can con-
verge to more than one point, are considered by many mathematicians to be somewhat
strange. They are not really very interesting, for they seldom occur in other branches
of mathematics. And the theorems that one can prove about topological spaces are
rather limited if such examples are allowed. Therefore, one often imposes an addi-
tional condition that will rule out examples like this one, bringing the class of spaces
under consideration closer to those to which one’s geometric intuition applies. The
condition was suggested by the mathematician Felix Hausdorff, so mathematicians
have come to call it by his name.

Definition. A topological space X is called a Hausdorff space if for each pair x|, x;
of distinct points of X, there exist neighborhoods U, and U, of x| and x,, respectively,
that are disjoint.
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Theorem 17.8. Every finite point set in a Hausdorff space X is closed.

Proof. 1t suffices to show that every one-point set {xg} is closed. If x is a point of X
different from xo, then x and x¢ have disjoint neighborhoods U and V, respectively.
Since U does not intersect {xp}, the point x cannot belong to the closure of the set {xp}.
As a result, the closure of the set {xq} is {xo} itself, so that it is closed. |

The condition that finite point sets be closed is in fact weaker than the Hausdorff
condition. For example, the real line R in the finite complement topology is not a
Hausdorff space, but it is a space in which finite point sets are closed. The condition
that finite point sets be closed has been given a name of its own: it is called the T} ax-
iom. (We shall explain the reason for this strange terminology in Chapter 4.) The
T} axiom will appear in this book in a few exercises, and in just one theorem, which is
the following:

Theorem 17.9. Let X be a space satisfying the T\ axiom; let A be a subset of X.
Then the point x is a limit point of A if and only if every neighborhood of x contains
infinitely many points of A.

Proof. If every neighborhood of x intersects A in infinitely many points, it certainly

intersects A in some point other than x itself, so that x is a limit point of A.
Conversely, suppose that x is a limit point of A, and suppose some neighbor-

hood U of x intersects A in only finitely many points. Then U also intersects A — {x}

in finitely many points; let {xj, ..., x,} be the points of U N (A — {x}). The set
X — {x1, ..., xm} is an open set of X, since the finite point set {x1, ..., x5} is closed;
then

UNnX—1{x1,....,xm})

is a neighborhood of x that intersects the set A — {x} not at all. This contradicts the
assumption that x is a limit point of A. [ ]

One reason for our lack of interest in the 77 axiom is the fact that many of the
interesting theorems of topology require not just that axiom, but the full strength of
the Hausdorff axiom. Furthermore, most of the spaces that are important to mathe-
maticians are Hausdorff spaces. The following two theorems give some substance to
these remarks.

Theorem 17.10. If X is a Hausdorff space, then a sequence of points of X converges
to at most one point of X.

Proof. Suppose that x, is a sequence of points of X that converges to x. If y # x,
let U and V be disjoint neighborhoods of x and y, respectively. Since U contains x,
for all but finitely many values of n, the set V cannot. Therefore, x, cannot converge
to y. ]
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If the sequence x, of points of the Hausdorff space X converges to the point x
of X, we often write x, — x, and we say that x is the limit of the sequence x,,.
The proof of the following result is left to the exercises.

Theorem 17.11. Every simply ordered set is a Hausdorff space in the order topology.
The product of two Hausdorff spaces is a Hausdorff space. A subspace of a Hausdorff
space is a Hausdorff space.

The Hausdorff condition is generally considered to be a very mild extra condition
to impose on a topological space. Indeed, in a first course in topology some mathe-
maticians go so far as to impose this condition at the outset, refusing to consider spaces
that are not Hausdorff spaces. We shall not go this far, but we shall certainly assume
the Hausdorff condition whenever it is needed in a proof without having any qualms
about limiting seriously the range of applications of the results.

The Hausdorff condition is one of a number of extra conditions one can impose on
a topological space. Each time one imposes such a condition, one can prove stronger
theorems, but one limits the class of spaces to which the theorems apply. Much of the
research that has been done in topology since its beginnings has centered on the prob-
lem of finding conditions that will be strong enough to enable one to prove interesting
theorems about spaces satisfying those conditions, and yet not so strong that they limit
severely the range of applications of the results.

We shall study a number of such conditions in the next two chapters. The Haus-
dorff condition and the T axiom are but two of a collection of conditions similar to one
another that are called collectively the separation axioms. Other conditions include the
countability axioms, and various compactness and connectedness conditions. Some of
these are quite stringent requirements, as you will see.

Exercises

1. Let C be a collection of subsets of the set X. Suppose that & and X are in C,
and that finite unions and arbitrary intersections of elements of C are in C. Show
that the collection

T={X-C|CeCl)

is a topology on X.
2. Show that if A is closed in Y and Y is closed in X, then A is closed in X.
3. Show that if A is closedin X and B isclosedin Y, then A x Bisclosedin X x Y.

4. Show that if U is open in X and A is closed in X, then U — A is open in X, and
A —Uisclosedin X.

5. Let X be an ordered set in the order topology. Show that (a, b) C [a, b]. Under
what conditions does equality hold?
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. Let A, B, and A, denote subsets of a space X. Prove the following:

(a) If A C B,then A C B.
(b) AUB=AUB.
(©) U A« D U Aq; give an example where equality fails.

. Criticize the following “proof” that UTO, clU Ag: if {A,) is a collection of
sets in X and if x € | Aq, then every neighborhood U of x intersects | J Aq.
Thus U must intersect some A, so that x must belong to the closure of some A,.
Therefore, x € |J Aq-

. Let A, B, and A, denote subsets of a space X. Determine whether the following

equations hold; if an equality fails, determine whether one of the inclusions D
or C holds.

. Let A C X and B C Y. Show that in the space X x Y,
Ax B=AxB.
Show that every order topology is Hausdorff.
Show that the product of two Hausdorff spaces is Hausdorff.

Show that a subspace of a Hausdorff space is Hausdorff.

Show that X is Hausdorff if and only if the diagonal A = {x x x | x € X} is
closed in X x X.

In the finite complement topology on R, to what point or points does the se-
quence x, = 1/n converge?

Show the T} axiom is equivalent to the condition that for each pair of points of X,
each has a neighborhood not containing the other.

Consider the five topologies on R given in Exercise 7 of §13.

(a) Determine the closure of the set K = {1/n | n € Z,} under each of these

topologies.

(b) Which of these topologies satisfy the Hausdorff axiom? the T axiom?

Consider the lower limit topology on R and the topology given by the basis C

of Exercise 8 of §13. Determine the closures of the intervals A = (0, V?2) and

B = (+/2, 3) in these two topologies.

Determine the closures of the following subsets of the ordered square:
A={(1/n) x0|neZi}
B={(1-1/n)x}|nezy},
C={xx0]|0<x <1},

D={xx%|0<x<1},

E={%xy|0<y<1}.
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19. If A C X, we define the boundary of A by the equation
BdA = AN (X — A).

(a) Show that Int A and Bd A are disjoint, and A =IntAUBdA.
(b) Show that Bd A = & & A is both open and closed.

(c) Show that U isopen & BdU = U — U.

(d) If U is open, is it true that U = Int(U)? Justify your answer.

20. Find the boundary and the interior of each of the following subsets of R:
(@ A={xxy|y=0}
(b) B={xxy|x>0andy # 0}
(c)y C=AUB
(d) D ={x x y | x is rational}
€ E={xxy|0<x*—y? <1}
() F={xxy|x#0andy <1/x}

*21. (Kuratowski) Consider the collection of all subsets A of the topological space X.
The operations of closure A — A and complementation A — X — A are func-
tions from this collection to itself.

(a) Show that starting with a given set A, one can form no more than 14 distinct
sets by applying these two operations successively.

(b) Find a subset A of R (in its usual topology) for which the maximum of 14 is
obtained.

§18 Continuous Functions

The concept of continuous function is basic to much of mathematics. Continuous
functions on the real line appear in the first pages of any calculus book, and continuous
functions in the plane and in space follow not far behind. More general kinds of
continuous functions arise as one goes further in mathematics. In this section, we shall
formulate a definition of continuity that will include all these as special cases, and we
shall study various properties of continuous functions. Many of these properties are
direct generalizations of things you learned about continuous functions in calculus and
analysis.

Continuity of a Function

Let X and Y be topological spaces. A function f : X — Y is said to be continuous if
for each open subset V of Y, the set f~!(V) is an open subset of X.

Recall that f~!(V) is the set of all points x of X for which f(x) € V; it is empty
if V does not intersect the image set f(X) of f.

Continuity of a function depends not only upon the function f itself, but also on
the topologies specified for its domain and range. If we wish to emphasize this fact,
we can say that f is continuous relative to specific topologies on X and Y.
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Let us note that if the topology of the range space Y is given by a basis B, then to
prove continuity of f it suffices to show that the inverse image of every basis element
is open: The arbitrary open set V of Y can be written as a union of basis elements

V=UBa.

ael

Then
o= e,

ael

so that f’1 (V) is open if each set f‘l(Ba) is open.

If the topology on Y is given by a subbasis §, to prove continuity of f it will even
suffice to show that the inverse image of each subbasis element is open: The arbitrary
basis element B for Y can be written as a finite intersection S; N --- N S, of subbasis
elements; it follows from the equation

By =S NN NS

that the inverse image of every basis element is open.

EXAMPLE 1.  Let us consider a function like those studied in analysis, a “real-valued
function of a real variable,”

f:R— R

In analysis, one defines continuity of f via the “e-§ definition,” a bugaboo over the years
for every student of mathematics. As one would expect, the €-8 definition and ours are
equivalent. To prove that our definition implies the -8 definition, for instance, we proceed
as follows:

Given x¢ in R, and given € > 0, the interval V = (f(xo) —¢€, f(xo) + €) is an open set
of the range space R. Therefore, f~!(V) is an open set in the domain space R. Because
f ~1(V) contains the point xo, it contains some basis element (a, b) about xg. We choose §
to be the smaller of the two numbers xg — a and b — xg. Then if |x — xp| < §, the point x
must be in (a, b), so that f(x) € V, and | f(x) — f(x0)| < €, as desired.

Proving that the €-8 definition implies our definition is no harder; we leave it to you.
We shall return to this example when we study metric spaces.

EXAMPLE 2. In calculus one considers the property of continuity for many kinds of
functions. For example, one studies functions of the following types:

f:R — R?  (curves in the plane)

f:R — R} (curves in space)

f: R’ — R (functions f(x, y) of two real variables)
f: R} — R (functions f(x, y, z) of three real variables)
f: R? — R? (vector fields v(x, y) in the plane).

Each of them has a notion of continuity defined for it. Our general definition of continuity
includes all these as special cases; this fact will be a consequence of general theorems we
shall prove concerning continuous functions on product spaces and on metric spaces.
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EXAMPLE 3. Let R denote the set of real numbers in its usual topology, and let R,
denote the same set in the lower limit topology. Let

fiR— Ry

be the identity function; f(x) = x for every real rumber x. Then f is not a continuous
function; the inverse image of the open set [a, b) of R, equals itself, which is not open
in R. On the other hand, the identity function

g:Re— R
is continuous, because the inverse image of (a, b) is itself, which is open in R,.

In analysis, one studies several different but equivalent ways of formulating the
definition of continuity. Some of these generalize to arbitrary spaces, and they are
considered in the theorems that follow. The familiar “e-§” definition and the “con-
vergent sequence definition” do not generalize to arbitrary spaces; they will be treated
when we study metric spaces.

Theorem 18.1. Let X and Y be topological spaces; let f : X — Y. Then the
following are equivalent:

(1) f is continuous.

(2) For every subset A of X, one has f(A) C f(A).

(3) For every closed set B of Y, the set f~'(B) is closed in X.

(4) For each x € X and each neighborhood V of f(x), there is a neighborhood U
of x such that f(U) C V.

If the condition in (4) holds for the point x of X, we say that f is continuous at
the point x.
Proof. 'We show that (1) = (2) = (3) = (1) and that (1) = (4) = (1).

(1) = (2). Assume that f is continuous. Let A be a subset of X. We show that if
x € A, then f(x) € f(A). Let V be a neighborhood of f(x). Then f~!(V) is an open
set of X containing x; it must intersect A in some point y. Then V intersects f(A) in
the point f(y), so that f(x) € f(A), as desired.

(2) = (3). Let Bbeclosedin Y and let A = f_l(B). We wish to prove that A
is closed in X; we show that A = A. By elementary set theory, we have f(A) =
f(f~Y(B)) C B. Therefore, if x € A,

f(x) e f(A) c f(A) Cc B=B,

so that x € f‘l(B) = A. Thus A C A, sothat A = A, as desired.
(3) = (1). Let V beanopensetof Y. Set B =Y — V. Then

A ®=rt-ffvmy=x- 1.

Now B is a closed setof Y. Then f~!(B) is closed in X by hypothesis, so that £ ~!(V)
is open in X, as desired.
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(1) = (4). Let x € X and let V be a neighborhood of f(x). Then the set
U = f~(V) is a neighborhood of x such that f(U) C V.

(4) = (1). Let V be an open set of Y; let x be a point of f"(V). Then f(x) e V,
so that by hypothesis there is a neighborhood U, of x such that f(Uy) C V. Then
UsCf ~1(v). It follows that f ~1(V) can be written as the union of the open sets U,,
so that it is open. |

Homeomorphisms

Let X and Y be topological spaces; let f : X — Y be a bijection. If both the function f
and the inverse function

f—l:Y—>X

are continuous, then f is called a homeomorphism.

The condition that f~! be continuous says that for each open set U of X, the
inverse image of U under the map f =l .y — X is openin Y. But the inverse
image of U under the map f =1 is the same as the image of U under the map f. See
Figure 18.1. So another way to define a homeomorphism is to say that it is a bijective
correspondence f : X — Y such that f(U) is open if and only if U is open.

Figure 18.1

This remark shows that a homeomorphism f : X — Y gives us a bijective cor-
respondence not only between X and Y but between the collections of open sets of X
and of Y. As a result, any property of X that is entirely expressed in terms of the topol-
ogy of X (that is, in terms of the open sets of X) yields, via the correspondence f, the
corresponding property for the space Y. Such a property of X is called a topological
property of X.

You may have studied in modern algebra the notion of an isomorphism between al-
gebraic objects such as groups or rings. An isomorphism is a bijective correspondence
that preserves the algebraic structure involved. The analogous concept in topology is
that of homeomorphism; it is a bijective correspondence that preserves the topological
structure involved.

Now suppose that f : X — Y is an injective continuous map, where X and Y
are topological spaces. Let Z be the image set f(X), considered as a subspace of Y
then the function f’ : X — Z obtained by restricting the range of f is bijective. If f’
happens to be a homeomorphism of X with Z, we say that themap f : X — Yisa
topological imbedding, or simply an imbedding, of X in Y.
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EXAMPLE 4. The function f : R — R given by f(x) = 3x + 1 is a homeomorphism.
See Figure 18.2. If we define g : R — R by the equation

1
=—-(y—1
g =306-D
then one can check easily that f(g(y)) = y and g(f(x)) = x for all real numbers x and y.

It follows that f is bijective and that g = f~!; the continuity of f and g is a familiar result
from calculus.

EXAMPLE 5.  The function F : (—1, 1) - R defined by

F =

o)== )
is a homeomorphism. See Figure 18.3. We have already noted in Example 9 of §3 that ¥
is a bijective order-preserving correspondence; its inverse is the function G defined by

2y

GOy = — 2 ___
O = a7

The fact that F is a homeomorphism can be proved in two ways. One way is to note that
because F is order preserving and bijective, F carries a basis element for the order topology
in (-1, 1) onto a basis element for the order topology in R and vice versa. As a result, F is
automatically a homeomorphism of (—1, 1) with R (both in the order topology). Since the
order topology on (—1, 1) and the usual (subspace) topology agree, F is a homeomorphism
of (—1, 1) with R.

X
1-x2

f(x) =3x+1 F(x) =

/

|
1
l
|
!
|
|
|
[
i
|
|
|
!
|

N,

Figure 18.2 Figure 18.3

A second way to show F a homeomorphism is to use the continuity of the algebraic
functions and the square-root function to show that both F and G are continuous. These
are familiar facts from calculus.

EXAMPLE 6. A bijective function f : X — Y can be continuous without being a home-
omorphism. One such function is the identity map g : R, — R considered in Example 3.
Another is the following: Let S! denote the unit circle,

Slz{xxy]x2+y2=1},
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considered as a subspace of the plane R?, and let
F:[0,1) — S

be the map defined by f(t) = (cos2m¢, sin2st). The fact that f is bijective and continu-
ous follows from familiar properties of the trigonometric functions. But the function f~!
is not continuous. The image under f of the open set U = [0, %) of the domain, for in-
stance, is not open in S!, for the point p = £(0) lies in no open set V of R? such that
VN S! ¢ f(U). See Figure 18.4.

f(U)
v f
>— . b
01 1
4
Figure 18.4

EXAMPLE 7. Consider the function
g:[0,1) — R?

obtained from the function f of the preceding example by expanding the range. The map g
is an example of a continuous injective map that is not an imbedding.

Constructing Continuous Functions

How does one go about constructing continuous functions from one topological space
to another? There are a number of methods used in analysis, of which some generalize
to arbitrary topological spaces and others do not. We study first some constructions
that do hold for general topological spaces, deferring consideration of the others until
later.

Theorem 18.2 (Rules for constructing continuous functions). Let X, Y, and Z be
topological spaces.
(a) (Constant function) If f : X — Y maps all of X into the single point yg of Y,
then f is continuous.
(b) (Inclusion) If A is a subspace of X, the inclusion function j : A —> X is contin-
uous.
(c) (Composites) If f : X — Y and g : Y — Z are continuous, then the map
go f: X — Z is continuous.
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(d) (Restricting the domain) If f : X — Y is continuous, and if A is a subspace
of X, then the restricted function f|A : A — Y is continuous.

(e) (Restricting or expanding the range) Let f : X — Y be continuous. If Z is a
subspace of Y containing the image set f(X), then the functiong : X — Z
obtained by restricting the range of f is continuous. If Z is a space having Y as
a subspace, then the function h : X — Z obtained by expanding the range of f
is continuous.

(f) (Local formulation of continuity) The map f : X — Y is continuous if X can be
written as the union of open sets U, such that f|U, is continuous for each c.

Proof. (a) Let f(x) = yo for every x in X. Let V be open in Y. The set f—l(V)
equals X or &, depending on whether V contains yg or not. In either case, it is open.
(b) If U is open in X, then j“l(U ) = U N A, which is open in A by definition of
the subspace topology.
(c) If U is open in Z, then g“(U) is open in Y and f“l(g_l(U)) is open in X.
But

e ) =@o HNW,

by elementary set theory.

(d) The function f|A equals the composite of the inclusion map j : A — X and
the map f : X — Y, both of which are continuous.

(e) Let f : X — Y be continuous. If f(X) C Z C Y, we show that the function
g : X — Z obtained from f is continuous. Let B be open in Z. Then B = Z N U for
some open set U of Y. Because Z contains the entire image set f(X),

iy =¢g71(B,

by elementary set theory. Since f~!(U) is open, so is g~ (B).

To show & : X — Z is continuous if Z has Y as a subspace, note that 4 is the
composite of the map f : X — Y and the inclusionmap j : ¥ — Z.

(f) By hypothesis, we can write X as a union of open sets Uy, such that f|U, is
continuous for each «r. Let V be an open set in Y. Then

T VNUy = (FlU) V),

because both expressions represent the set of those points x lying in U, for which
f(x) € V. Since f|Uy, is continuous, this set is open in Uy, and hence open in X. But

Moy = v nuw,
so that £f~1(V) is also open in X. ]

Theorem 18.3 (The pasting lemma). Let X = A U B, where A and B are closed
inX. Letf:A — Yandg: B — Y be continuous. If f(x) = g(x) for every
x € AN B, then f and g combine to give a continuous function h : X — Y, defined
by setting h(x) = f(x) ifx € A, and h(x) = g(x) ifx € B.
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Proof. Let C be a closed subset of Y. Now
o = riougT©),
by elementary set theory. Since f is continuous, f ~1(C) is closed in A and, therefore,

closed in X. Similarly, g~ 1(C) is closed in B and therefore closed in X. Their union
h~1(C) is thus closed in X. [ ]

This theorem also holds if A and B are open sets in X; this is just a special case of
the “local formulation of continuity” rule given in preceding theorem.

EXAMPLE 8.  Let us define a function 2 : R — R by setting

x forx <0
h(x) = =0
) [x/2 for x > 0.

Each of the “pieces” of this definition is a continuous function, and they agree on the
overlapping part of their domains, which is the one-point set {0}. Since their domains are
closed in R, the function A is continuous. One needs the “pieces” of the function to agree
on the oveflapping part of their domains in order to have a function at all. The equations

k(x) = x—2 forx <0,
x+2 forx=>0,

for instance, do not define a function. On the other hand, one needs some limitations on
the sets A and B to guarantee continuity. The equations

x—2 forx <0,
Ix)=
x+2 forx >0,

for instance, do define a function / mapping R into R, and both of the pieces are continuous.
But/ is not continuous; the inverse image of the open set (1, 3), for instance, is the nonopen

set [0, 1). See Figure 18.5.
h ‘/ k I
/ |

Figure 18.5

Y/
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Theorem 18.4 (Maps into products). Let f : A — X x Y be given by the equation
f(a) = (fila), fa(a)).
Then f is continuous if and only if the functions
Hh:A— X and fH,:A—Y

are continuous.

The maps f} and f, are called the coordinate functions of f.

Proof. Letm : X xY — Xandm : X x Y — Y be projections onto the first and
second factors, respectively. These maps are continuous. For 7, "W)=U x Y and
T, 1(V) = X x V, and these sets are open if U and V are open. Note that for each
acaA,

fi@) =m(f@) and fa(a) = m2(f(a)).

If the function f is continuous, then f) and f, are composites of continuous func-
tions and therefore continuous. Conversely, suppose that f; and f, are continuous. We
show that for each basis element U x V for the topology of X x Y, its inverse image
f~NU x V) is open. A pointa isin f~'(U x V) if and only if f(a) € U x V, that
is, if and only if f1(a) € U and f>(a) € V. Therefore,

U xvy=flann ;74w
Since both of the sets fl‘1 (U) and fz_l (V) are open, so is their intersection. [ ]

There is no useful criterion for the continuity of amap f : A x B — X whose
domain is a product space. One might ~onjecture that f is continuous if it is continuous
“in each variable separately,” but this conjecture is not true. (See Exercise 12.)

EXAMPLE 9. Incalculus, a parametrized curve in the plane is defined to be a continuous
map f : [a,b] — R2. It is often expressed in the form f(f) = (x(¢), y(1)); and one
frequently uses the fact that f is a continuous function of # if both x and y are. Similarly,
a vector field in the plane

v(x,y) = P(x, »i+ 0, y)j
=(P(x,y), Qx,y))

is said to be continuous if both P and Q are continuous functions, or equivalently, if v is
continuous as a map of R? into R%. Both of these statements are simply special cases of
the preceding theorem.

One way of forming continuous functions that is used a great deal in analysis is to
take sums, differences, products, or quotients of continuous real-valued functions. It
is a standard theorem that if f, g : X — R are continuous, then f + g, f — g, and
f - g are continuous, and f/g is continuous if g(x) # O for all x. We shall consider
this theorem in §21.
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Yet another method for constructing continuous functions that is familiar from
analysis is to take the limit of an infinite sequence of functions. There is a theorem to
the effect that if a sequence of continuous real-valued functions of a real variable con-
verges uniformly to a limit function, then the limit function is necessarily continuous.
This theorem is called the Uniform Limit Theorem. It is used, for instance, to demon-
strate the continuity of the trigonometric functions, when one defines these functions
rigorously using the infinite series definitions of the sine and cosine. This theorem
generalizes to a theorem about maps of an arbitrary topological space X into a metric
space Y. We shall prove it in §21.

Exercises

1. Prove that for functions f : R — R, the €-8 definition of continuity implies the
open set definition.

2. Suppose that f : X — Y is continuous. If x is a limit point of the subset A of X,
is it necessarily true that f(x) is a limit point of f(A)?

3. Let X and X’ denote a single set in the two topologies J~ and 7', respectively.
Leti : X’ — X be the identity function.
(a). Show that i is continuous < 7’ is finer than 7.
(b) Show that i is a homeomorphism < 7' = 7.

4. Given xg € X and yg € Y, show thatthemaps f : X - X xYandg:Y —
X x Y defined by

f)y=xxyy and g(y)=xoXxy

are imbeddings.

5. Show that the subspace (a, b) of R is homeomorphic with (0, 1) and the subspace
{a, b] of R is homeomorphic with [0, 1].

6. Find a function f : R — R that is continuous at precisely one point.

7. (a) Suppose that f : R — R s “continuous from the right,” that is,

lim f(x) = f(a),

X—=>da

for each a € R. Show that f is continuous when considered as a function
from R, to R.

(b) Can you conjecture what functions f : R — R are continuous when con-
sidered as maps from R to Rg? As maps from R, to R,? We shall return to
this question in Chapter 3.

8. Let Y be an ordered set in the order topology. Let f, g : X — Y be continuous.
(a) Show that the set {x | f(x) < g(x)}is closed in X.
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(b) Leth : X — Y be the function
h(x) = min{ f (x), g(x)}.

Show that A is continuous. [Hint: Use the pasting lemma.]

9. Let {A,} be a collection of subsets of X; let X = Uy Aa. Let f 1 X - ¥;

suppose that f|A,, is continuous for each «.

(a) Show that if the collection {A,} is finite and each set A, is closed, then fis
continuous.

(b) Find an example where the collection {A4} is countable and each A, is
closed, but f is not continuous.

(c) An indexed family of sets {A,} is said to be locally finite if each point x
of X has a neighborhood that intersects A, for only finitely many values of
«. Show that if the family {A,} is locally finite and each A, is closed, then
f is continuous.

10. Let f : A — Band g : C — D be continuous functions. Let us define a map
f xg:AxC — B x Dby the equation

(f x g)a xc)= f(a) x g(c).

Show that f x g is continuous.

~

11. Let F : X x Y — Z. We say that F is continuous in each variable separately if
foreach ygin Y, themaph : X — Z defined by A(x) = F(x x Yo) is continuous,
and for each xp in X, the map k : Y — Z defined by k(y) = F(xp x y) is
continuous. Show that if F is continuous, then F is continuous in each variable
separately.

12. Let F : R x R — R be defined by the equation

F(x x y) = xy/(x?+y?) ifxxy#0x0.
Y= 0 ifxxy=0x0.

(a) Show that F is continuous in each variable separately.
(b) Compute the function g : R — R defined by g(x) = F(x x x).
(c) Show that F is not continuous.

13. Let A C X;let f : A — Y be continuous; let ¥ be Hausdorff. Show that
if f may be extended to a continuous function g : A — Y, then g is uniquely
determined by f.

§19 The Product Topology

We now return, for the remainder of the chapter, to the consideration of various meth-
ods for imposing topologies on sets.
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Previously, we defined a topology on the product X x Y of two topological spaces.
In the present section, we generalize this definition to more general cartesian products.
So let us consider the cartesian products

Xix---xX, and X xXpx---,

where each X; is a topological space. There are two possible ways to proceed. One
way is to take as basis all sets of the form U; x --- x Uy in the first case, and of the
form Uy x U, x -- - in the second case, where U; is an open set of X; for each i. This
procedure does indeed define a topology on the cartesian product; we shall call it the
box topology.

Another way to proceed is to generalize the subbasis formulation of the definition,
given in §15. In this case, we take as a subbasis all sets of the form ni_l (U;), where i is
any index and U; is an open set of X;. We shall call this topology the product topology.

How do these topologies differ? Consider the typical basis element B for the
second topology It is a finite intersection of subbasis elements 7;” Yoy, say fori =
i1, ..., ix. Then a point x belongs to B if and only if m;(x) belongs toU; fori =
i1, ..., ix; there is no restriction on 7; (x) for other values of i.

It follows that these two topologies agree for the finite cartesian product and differ
for the infinite product. What is not clear is why we seem to prefer the second topology.
This is the question we shall explore in this section.

Before proceeding, however, we shall introduce a more general notion of cartesian
product. So far, we have defined the cartesian product of an indexed family of sets
only in the cases where the index set was the set {1, ..., n} or the set Z,. Now we
consider the case where the index set is completely arbitrary.

Definition. Let J be an index set. Given a set X, we define a J-fuple of elements
of X to be a function x : J — X. If ¢ is an element of J, we often denote the value
of x at & by x, rather than x(a); we call it the ath coordinate of x. And we often
denote the function x itself by the symbol

(xa)ot et

which is as close as we can come to a “tuple notation” for an arbitrary index set J. We
denote the set of all J-tuples of elements of X by X”.

Definition. Let {Ay}acs be an indexed family of sets; let X = |J,c; Aa. The
cartesian product of this indexed family, denoted by

14

is defined to be the set of all J-tuples (x4 )ocs Of elements of X such that x, € A, for
each @ € J. That is, it is the set of all functions

x:J - UA“

such that x(a) € A, foreacha € J.
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Occasionally we denote the product simply by [] Ay, and its general element
by (x4), if the index set is understood.

If all the sets A, are equal to one set X, then the cartesian product [, ; A, is just
the set X/ of all J-tuples of elements of X. We sometimes use “tuple notation” for
the elements of X, and sometimes we use functional notation, depending on which is
more convenient.

Definition. Let {X},cs be an indexed family of topological spaces. Let us take as
a basis for a topology on the product space

x.
ael

the collection of all sets of the form
n U(Y )

where U, is open in X,, for each o € J. The topology generated by this basis is called
the box topology.

This collection satisfies the first condition for a basis because [] X, is itself a basis
element; and it satisfies the second condition because the intersection of any two basis
elements is another basis element:

(T V) ([T Ve) = []Wa N Ve

aelJ aeJ ael

Now we generalize the subbasis formulation of the definition. Let

Jrﬂ:l_[Xa—>Xﬂ

acl

be the function assigning to each element of the product space its Sth coordinate,
g ((Xe)aes) = xg;
it is called the projection mapping associated with the index S.
Definition. Let Sg denote the collection
8g = {m5 ' (Up) | Up open in Xp},

and let S denote the union of these collections,
s={Jss

The topology generated by the subbasis § is called the product topology. In this topol-
0gy [lyes Xa is called a product space.
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To compare these topologies, we consider the basis B that § generates. The col-
lection B consists of all finite intersections of elements of §. If we intersect elements
belonging to the same one of the sets Sg, we do not get anything new, because

g (Up) Ny (V) = mz ! (Up N Vi)

the intersection of two elements of Sg, or of finitely many such elements, is again an
element of Sg. We get something new only when we intersect elements from different
sets Sg. The typical element of the basis B can thus be described as follows: Let 8y,
.+ +» Bn be a finite set of distinct indices from the index set J, and let Up, be an open
setin Xg, fori =1,...,n. Then

B =m;'(Up) Nrg' (Up) N+ Ny (Up,)

is the typical element of B.
Now a point X = (x,) is in B if and only if its B;th coordinate is in Ug,, its Both
coordinate is in Ug,, and so on. There is no restriction whatever on the ath coordinate

of x if « is not one of the indices By, . .., B,. As aresult, we can write B as the product
5= v
aeJ
where U, denotes the entire space X, if ¢ # By, ..., Bx.

All this is summarized in the following theorem:

Theorem 19.1 (Comparison of the box and product topologies). The box topol-
ogy on [| Xo has as basis all sets of the form [|U,, where U, is open in X, for
each o. The product topology on [| X, has as basis all sets of the form [] U,, where
U, is open in X, for each @ and Uy equals X, except for finitely many values of a.

Two things are immediately clear. First, for finite products [];_; Xo the two
topologies are precisely the same. Second, the box topology is in general finer than
the product topology.

What is not so clear is why we prefer the product topology to the box topology. The
answer will appear as we continue our study of topology. We shall find that a number
of important theorems about finite products will also hold for arbitrary products if we
use the product topology, but not if we use the box topology. As a result, the product
topology is extremely important in mathematics. The box topology is not so important;
we shall use it primarily for constructing counterexamples. Therefore, we make the
following convention:

Whenever we consider the product [| Xo, we shall assume it is given the
product topology unless we specifically state otherwise.

Some of the theorems we proved for the product X x Y hold for the product [ X,
no matter which topology we use. We list them here; most of the proofs are left to the
exercises.
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Theorem 19.2. Suppose the topology on each space X, is given by a basis By. The
collection of all sets of the form
1-_[ B(l >

ael

where By € By for each a, will serve as a basis for the box topology on [[,c; Xa-
The collection of all sets of the same form, where B, € By for finitely many
indices @ and By = X, for all the remaining indices, will serve as a basis for the

product topology [1,c; Xa.

EXAMPLE 1. Consider euclidean n-space R". A basis for R consists of all open intervals
in R; hence a basis for the topology of R” consists of all products of the form

(a1, b1) x (a2, b2) x -+ x (an, by).

Since R” is a finite product, the box and product topologies agree. Whenever we con-
sider R”, we will assume that it is given this topology, unless we specifically state other-
wise.

Theorem 19.3. Let A, be a subspace of X, for eacha € J. Then [[Aq is a
subspace of [] X if both products are given the box topology, or if both products are
given the product topology.

Theorem 19.4. If each space X, is a Hausdorff space, then [| Xy is a Hausdorff
space in both the box and product topologies.

Theorem 19.5. Let {X,} be an indexed family of spaces; let Ay C X, for eacha. If
[1 X« is given either the product or the box topology, then

4.~ T

Proof. Letx = (x,) be a point of [] Ag; we show that x € m LetU =[] U, be
a basis element for either the box or product topology that contains x. Since x, € Ag,
we can choose a point y, € Uy N Ay for each . Then y = (y,) belongs to both U
and [T A, . Since U is arbitrary, it follows that x belongs to the closure of [] Ag.
Conversely, suppose X = (xq) lies in the closure of [] Aq, in either topology. We
show that for any given index 8, we have xg € A g- Let Vg be an arbitrary open set
of Xz containing xg. Since 7 8 ! (Vp) is open in [ X, in either topology, it contains a
point y = (yo) of [] Aq. Then yg belongs to Vg N Ap. It follows that xg € Ag. B

So far, no reason has appeared for preferring the product to the box topology. It is
when we try to generalize our previous theorem about continuity of maps into product
spaces that a difference first arises. Here is a theorem that does not hold if [] Xy is
given the box topology:
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Theorem 19.6. Let f : A — [],.; X« be given by the equation

fa) = (fu(@))ees,

where fy : A — Xy for each a. Let [] Xy have the product topology. Then the
function f is continuous if and only if each function f, is continuous.

Proof. Let g be the projection of the product onto its Sth factor. The function 7g
is continuous, for if Ug is open in Xg, the set ”E ](Uﬂ) is a subbasis element for the
product topology on X,. Now suppose that f : A — [] X, is continuous. The
function fg equals the composite 75 o f; being the composite of two continuous
functions, it is continuous.

Conversely, suppose that each coordinate function f, is continuous. To prove
that f is continuous, it suffices to prove that the inverse image under f of each subbasis
element is open in A; we remarked on this fact when we defined continuous functions.
A typical subbasis element for the product topology on [] X, is a set of the form
NEI(Uﬂ), where 8 is some index and Ug is open in Xg. Now

g W)y = f57 Wp),
because fg = 7p o f. Since fg is continuous, this set is open in A, as desired. »
Why does this theorem fail if we use the box topology? Probably the most con-

vincing thing to do is to look at an example.

EXAMPLE 2.  Consider R®, the countably infinite product of R with itself. Recall that

where X,, = R for each n. Let us define a function f : R — R® by the equation
f@ =@ t1,...);

the nth coordinate function of f is the function f,(z) = ¢. Each of the coordinate functions
fo ¢ R — R is continuous; therefore, the function f is continuous if R® is given the
product topology. But f is not continuous if R® is given the box topology. Consider, for
example, the basis element

11 1
B=(—1,1)X(—5,5)X(—§, )X

1
3
for the box topology. We assert that f~!(B) is not open in R. If f~!(B) were open
in R, it would contain some interval (—3§, 8) about the point 0. This would mean that
f (=34, 8)) C B, so that, applying 7, to both sides of the inclusion,

fn((—=8,8)) = (—6,8) C (~1/n,1/n)

for all n, a contradiction.
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Exercises

VBN

10.

Prove Theorem 19.2.
Prove Theorem 19.3.

. Prove Theorem 19.4.
. Show that (X1 x --- x X,_1) x X, is homeomorphic with X; x --- x X,.
. One of the implications stated in Theorem 19.6 holds for the box topology.

Which one?

Letx;, X2, ... be a sequence of the points of the product space [T X« Show that
this sequence converges to the point x if and only if the sequence 1wy (X1), T4 (X2),

. converges t0 7y (X) for each a. Is this fact true if one uses the box topology
instead of the product topology?

- Let R be the subset of R“ consisting of all sequences that are “eventually zero,”

that is, all sequences (x, x2, .. .) such that x; # O for only finitely many values
of i. What is the closure of R* in R in the box and product topologies? Justify
your answer.

Given sequences (ay, az,...) and (b}, by, . ..) of real numbers with a; > 0 for
all i, define h : R” — R by the equation

h((x1,x2,...)) = (a1x1 + by, apx2 + by, ...).
Show that if R® is given the product topology, # is a homeomorphism of R® with
itself. What happens if R® is given the box topology?
Show that the choice axiom is equivalent to the statement that for any indexed

family {Ay}oes of nonempty sets, with J # 0, the cartesian product

[]4

ael
is not empty.
Let A be a set; let {X4}qes be an indexed family of spaces; and let { falaes be
an indexed family of functions f, : A - X,.
(a) Show there is a unique coarsest topology 7" on A relative to which each of

the functions f, is continuous.
(b) Let

Sg = {f5'(Up) | Up is open in Xg},
and let § = | J 8g. Show that § is a subbasis for 7.
(c) Show thatamap g : ¥ — A is continuous relative to 7 if and only if each

map fy o g is continuous.
(d) Let f : A —> J] X4 be defined by the equation

f@) = (fa(@))aey;

let Z denote the subspace f(A) of the product space [] X,. Show that the
image under f of each element of 7 is an open set of Z.
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§20 The Metric Topology

One of the most important and frequently used ways of imposing a topology on a set is
to define the topology in terms of a metric on the set. Topologies given in this way lie
at the heart of modern analysis, for example. In this section, we shall define the metric
topology and shall give a number of examples. In the next section, we shall consider
some of the properties that metric topologies satisfy.

Definition. A metric on a set X is a function
d:XxX—R

having the following properties:
(1) d(x, y) > Oforall x, y € X; equality holds if and only if x = y.
2) d(x,y)=d(y,x) forallx,y € X.
(3) (Tnangle inequality) d(x, y) + d(y, z) = d(x, z),forall x, y,z € X.

Given a metric d on X, the number d(x, y) is often called the distance between x
and y in the metric d. Given € > 0, consider the set

By(x,e) ={y | d(x,y) <€}

of all points y whose distance from x is less than €. It is called the €-ball centered
at x. Sometimes we omit the metric d from the notation and write this ball simply as
B(x, €), when no confusion will arise.

Definition. If d is a metric on the set X, then the collection of all ¢-balls B;(x, €), for
x € X and € > 0, is a basis for a topology on X, called the metric topology induced
by d.

The first condition for a basis is trivial, since x € B(x, €) for any ¢ > 0. Before
checking the second condition for a basis, we show that if y is a point of the basis
element B(x, €), then there is a basis element B(y, §) centered at y that is contained
in B(x, €). Define & to be the positive number € — d(x, y). Then B(y, §) C B{(x, €),
forif z € B(y, 8), thend(y, z) < € — d(x, y), from which we conclude that

d(x,z) <d(x,y)+d(y,2) <e.

See Figure 20.1.

Now to check the second condition for a basis, let B; and B, be two basis elements
and let y € BN B,. We have just shown that we can choose positive numbers §; and §,
so that B(y, 81) C Bj and B(y, §2) C B». Letting § be the smaller of §; and 8, we
conclude that B(y, §) C B N Bs.

Using what we have just proved, we can rephrase the definition of the metric topol-
ogy as follows:
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Figure 20.1

A set U is open in the metric topology induced by d if and only if for each
y € U, thereis a § > O such that By(y,8) C U.

Clearly this condition implies that U is open. Conversely, if U is open, it contains
a basis element B = By(x, €) containing y, and B in turn contains a basis element
By(y, 8) centered at y.

EXAMPLE 1. Given a set X, define
dix,y)=1 ifx #y,
dix,y)=0 ifx=y.
It is trivial to check that d is a metric. The topology it induces is the discrete topology; the

basis element B(x, 1), for example, consists of the point x alone.

EXAMPLE 2. The standard metric on the real numbers R is defined by the equation
d(x,y) = |x —y|.

It is easy to check that d is a metric. The topology it induces is the same as the order
topology: Each basis element (a, b) for the order topology is a basis element for the metric
topology; indeed,

(a, b) = B(x, ¢),

where x = (@ +b)/2and € = (b — a)/2. And conversely, each e-ball B(x, €) equals an
open interval: the interval (x — €, x + €).

Definition. If X is a topological space, X is said to be metrizable if there exists a
metric d on the set X that induces the topology of X. A metric space is a metrizable
space X together with a specific metric d that gives the topology of X.

Many of the spaces important for mathematics are metrizable, but some are not.
Metrizability is always a highly desirable attribute for a space to possess, for the exis-
tence of a metric gives one a valuable tool for proving theorems about the space.
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It is, therefore, a problem of fundamental importance in topology to find condi-
tions on a topological space that will guarantee it is metrizable. One of our goals in
Chapter 4 will be to find such conditions; they are expressed there in the famous the-
orem called Urysohn’s metrization theorem. Further metrization theorems appear in
Chapter 6. In the present section we shall content ourselves with proving merely that
R" and R® are metrizable.

Although the metrizability problem is an important problem in topology, the study
of metric spaces as such does not properly belong to topology as much as it does
to analysis. Metrizability of a space depends only on the topology of the space in
question, but properties that involve a specific metric for X in general do not. For
instance, one can make the following definition in a metric space:

Definition. Let X be a metric space with metric d. A subset A of X is said to be
bounded if there is some number M such that

dlay,a) <M

for every pair a;, ap of points of A. If A is bounded and nonempty, the diameter of A
is defined to be the number

diam A = sup{d(ay, a2) | a1, a2 € A}.

Boundedness of a set is not a topological property, for it depends on the particular
metric d that is used for X. For instance, if X is a metric space with metric d, then
there exists a metric d that gives the topology of X, relative to which every subset of X
is bounded. It is defined as follows:

Theorem 20.1. Let X be a metric space with metric d. Define d:XxX — Rby
the equation

d(x,y) = min{d(x, y), 1}.

Then d is a metric that induces the same topology as d.

The metric d is called the standard bounded metric corresponding to d.

Proof. Checking the first two conditions for a metric is trivial. Let us check the
triangle inequality:

d(x,2) < d(x, y) + c?(y, Z).

Now if either d(x, y) > 1 or d(y, z) > 1, then the right side of this inequality is at
least 1; since the left side is (by definition) at most 1, the inequality holds. It remains
to consider the case in which d(x, y) < 1 and d(y, z) < 1. In this case, we have

d(x,2) <d(x,y) +d(y,2) =d(x,y) +d(,2).

Since d(x, z) < d(x, z) by definition, the triangle inequality holds for d.
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Now we note that in any metric space, the collection of e-balls with € < 1 forms

a basis for the metric topology , for every basis element containing x contains such an
€-ball centered at x. It follows that d and d induce the same topology on X, because
the collections of e-balls with € < 1 under these two metrics are the same collection.
]

Now we consider some familiar spaces and show they are metrizable.

Definition. Givenx = (x1, ..., x,) in R”, we define the norm of x by the equation
Il = Gf + -+ xHV
and we define the euclidean metric d on R" by the equation
d,y) = Ix =yl = [(1 = yD? + - + (n — y) 212,
We define the square metric p by the equation
p(X,y) = max{lx; — yil, ..., |xx — ynl}.

The proof that d is a metric requires some work; it is probably already familiar to
you. If not, a proof is outlined in the exercises. We shall seldom have occasion to use
this metric on R”.

To show that p is a metric is easier. Only the triangle inequality is nontrivial. From
the triangle inequality for R it follows that for each positive integer i,

i — zil < lxi = yil + |yi — zil.
Then by definition of p,

|xi — zi| < p(x,y) + p(y, 2).

As a result
p(x,z) = max{|x; — zi|} < p(X,y) + p(y, z),

as desired.

On the real line R = R!, these two metrics coincide with the standard metric
for R. In the plane R?, the basis elements under d can be pictured as circular regions,
while the basis elements under p can be pictured as square regions.

We now show that each of these metrics induces the usual topology on R". We
need the following lemma:

Lemma 20.2. Letd andd’ be two metrics on the set X ; let T and T’ be the topologies
they induce, respectively. Then 7' is finer than T if and only if for each x in X and
each € > 0, there exists a§ > 0 such that

By (x,8) C By(x, €).
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Proof. Suppose that 7 is finer than 7. Given the basis element B, (x, €) for 7, there
pp

is by Lemma 13.3 a basis element B’ for the topology 7’ such that x € B’ C By(x, €).
Within B’ we can find a ball By (x, 8) centered at x.

Conversely, suppose the §-¢ condition holds. Given a basis element B for 7 con-
taining x, we can find within B a ball B;(x, €) centered at x. By the given condition,
there is a § such that By (x,8) C By(x, €). Then Lemma 13.3 applies to show 7/ is
finer than 7. [ ]

Theorem 20.3. The topologies on R" induced by the euclidean metric d and the
square metric p are the same as the product topology on R",

Proof. Letx = (x1,...,x5)andy = (y1, ..., y») be two points of R". It is simple
algebra to check that

p(x,y) <d(x,y) < V/nox,y).
The first inequality shows that
Bi(x, €) C By(x,¢€)

for all x and e, since if d(x,y) < €, then p(X,y) < € also. Similarly, the second
inequality shows that

B,(x,€/+/n) C By(x, €)

for all x and €. It follows from the preceding lemma that the two metric topologies are
the same.

Now we show that the product topology is the same as that given by the metric p.
First, let

B = (aj,by) x -+ X (an, bp)

be a basis element for the product topology, and let x = (x1, ..., x,;) be an element
of B. For each i, there is an ¢; such that

(x; — €, x;i +€) C (ai, b);

choose € = min{ey, ..., €,}. Then B,(X,€) C B, as you can readily check. As a
result, the p-topology is finer than the product topology.

Conversely, let B, (x, €) be a basis element for the p-topology. Given the element
y € B,(x, €), we need to find a basis element B for the product topology such that

Y € B C B,(x, €).
But this is trivial, for
By(x,€) = (x; —€,x1 +€) X -+ X (x4 —€,X, + €)

is itself a basis element for the product topology. [ ]
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Now we consider the infinite cartesian product R®. It is natural to try to generalize
the metrics d and p to this space. For instance, one can attempt to define a metric d
on R? by the equation

. 1/2
dx,y) = I:Z(xi - yx'){l .
i=1

But this equation does not always make sense, for the series in question need not
converge. (This equation does define a metric on a certain important subset of R,
however; see the exercises.)

Similarly, one can attempt to generalize the square metric p to R® by defining

p(X,y) = sup{|x, — ynl}.

Again, this formula does not always make sense. If however we replace the usual
metric d(x, y) = |x — y| on R by its bounded counterpart d(x, y) = min{|x — yi, 1},
then this definition does make sense; it gives a metric on R called the uniform metric.

The uniform metric can be defined more generally on the cartesian product R’ for
arbitrary J, as follows:

Definition. Given an index set J, and given points X = (xg)ges and Y = Vadaes
of R’, let us define a metric o on R’ by the equation

A(x,y) = sup{d(xq, yo) | @ € J},

where d is the standard bounded metric on R. It is easy to check that p is indeed a
metric; it is called the uniform metric on R’, and the topology it induces is called the
uniform topology.

The relation between this topology and the product and box topologies is the fol-
lowing:

Theorem 20.4. The uniform topology on R’ is finer than the product topology and
coarser than the box topology; these three topologies are all different if J is infinite.

Proof. Suppose that we are given a point X = (x¢)ees and a product topology basis
element [ ] U, about x. Let ey, ..., ay, be the indices for which U, # R. Then for
each i, choose ¢; > 0 so that the ¢;-ball centered at x, in the d metric is contained
in Uy, ; this we can do because Uy, is open in R. Let ¢ = min{eq, .. ., €n}; then the
e-ball centered at x in the § metric is contained in [1Uq. Forifzisa pomt of R’ such
that 5(x,z) < ¢, then d(x,, zo) < € for all a, so that z € [[ Uy. It follows that the
uniform topology is finer than the product topology.

On the other hand, let B be the ¢-ball centered at x in the g metric. Then the box
neighborhood

U=]]a - 3e xa+1e)
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of x is contained in B. Forif y € U, then d(xq, yo) < %e for all «, so that p(x,y) <
le

Showing these three topologies are different if J is infinite is a task we leave to
the exercises. =

In the case where J is infinite, we still have not determined whether R’ is metriz-
able in either the box or the product topology. It turns out that the only one of these
cases where R’ is metrizable is the case where J is countable and R” has the product
topology. As we shall see.

Theorem 20.5. Letd(a, b) = min{|a — b|, 1} be the standard bounded metric on R.
Ifx and y are two points of R®, define

D(x,y) =sup{(l(L;Xi—)].

Then D is a metric that induces the product topology on R®.

Proof.  The properties of a metric are satisfied trivially except for the triangle inequal-
ity, which is proved by noting that for all 7,

fi(xi., Zi) < J(xi., yi) + d_(yi‘» Zi)
i 1 l

< D(x,y) + D(y, 2),

so that
d(xi. z;
up [-—(f:—zl)} < D, y)+ D(y, z).

The fact that D gives the product topology requires a little more work. First, let U
be open in the metric topology and let x € U; we find an open set V in the product
topology such thatx € V C U. Choose an e-ball Bp(x, €) lying in U. Then choose N
large enough that 1/N < e. Finally, let V be the basis element for the product topology

V= —ex1+e)x--xany—€xy+e)xRxRx---.

We assert that V C Bp(x, €): Given any y in R?,

d(x;, yi) 1 i > N
i - N =
Therefore,
dxi, d(xn, 1
D(X,Y)Smax{ (xll yl),..., (XIijN)’_ﬁ}'

Ify is in V, this expression is less than €, so that V C Bp(X, €), as desired.
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Conversely, consider a basis element

v=[]u

ieZy

for the product topology, where U; is open in R fori = ay, ..., a, and U; = R for all
other indices i. Given x € U, we find an open set V of the metric topology such that
x € V C U. Choose an interval (x; — €;, x;i + €;) in R centered about x; and lying
in U; fori = «, ..., a,; choose each ¢; < 1. Then define

e =min{e; /i | i =ay,...,ay}.
We assert that
X € Bp(x,¢) C U.

Let y be a point of Bp (X, €). Then for all i,

dlxi yi
40 %) < px,y) <.
i
Now ifi = ay, ..., a,, then € < ¢;/i, so that J(xi,y,-) < € < 1; it follows that
|x; — yil < €;. Therefore, y € [] Ui, as desired. m

Exercises
1. (a) In R", define
dl(X,Y) =|x1 —y1l+ -+ |xn — ynl.

Show that d’ is a metric that induces the usual topology of R”. Sketch the
basis elements under d’ when n = 2.
(b) More generally, given p > 1, define

n 1/p
d'(x,y) = [Z |x; — yil”]
i=1

for x, y € R". Assume that d’ is a metric. Show that it induces the usual
topology on R”.
2. Show that R x R in the dictionary order topology is metrizable.
3. Let X be a metric space with metric d.
(a) Show thatd : X x X — R is continuous.
(b) Let X’ denote a space having the same underlying set as X. Show that if
d : X' x X’ - R is continuous, then the topology of X’ is finer than the
topology of X.
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One can summarize the result of this exercise as follows: If X has a metric d,
then the topology induced by d is the coarsest topology relative to which the
function d is continuous.

. Consider the product, uniform, and box topologies on R“.

(a) In which topologies are the following functions from R to R® continuous?
f@)y=@2,3,...),

gty =(t,t,¢,...),
h(t) = (8, 5t 51, ...).

(b) In which topologies do the following sequences converge?

wi=(,1,1,1,...), x=(,1,1,1,...),
w,=(0,2,2,2,...), x2=(0411..),

202
w3=(0,0,3,3,...), x3=(0,01,5...),

y1=(,0,0,0,...), z: =(1,1,0,0,...),
y2=(4,4,0,0,..), z=(1300..),
vi=G 4400, =G 300..,

. Let R* be the subset of R“ consisting of all sequences that are eventually zero.

What is the closure of R® in R® in the uniform topology? Justify your answer.

. Let o be the uniform metric on R®. Given x = (x, x2,...) € R® and given

O<e<l,let
U,e)=((x1—€,x1+€)x - X (X, —€,Xp+€) X .

(a) Show that U (x, €) is not equal to the e-ball Bs(x, €).
(b) Show that U (x, €) is not even open in the uniform topology.
(¢) Show that

B;(x.€) = | JU®K,$5).

d<e€

. Consider the map h : R® — R“ defined in Exercise 8 of §19; give R the uni-

form topology. Under what conditions on the numbers a; and b; is 4 continuous?
a homeomorphism?

. Let X be the subset of R consisting of all sequences x such that ) xi2 converges.

Then the formula

. 1/2
dx,y) = [Z(x,- - y,~>2]

i=1
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defines a metric on X. (See Exercise 10.) On X we have the three topologies it
inherits from the box, uniform, and product topologies on R“. We have also the
topology given by the metric d, which we call the £2-topology. (Read “little ell
two.”) -

(a) Show that on X, we have the inclusions

box topology O €2-topology O uniform topology.

(b) The set R* of all sequences that are eventually zero is contained in X. Show
that the four topologies that R* inherits as a subspace of X are all distinct.
(c) The set

H= []0,1/n]

n€Z+

is contained in X; it is called the Hilbert cube. Compare the four topologies
that H inherits as a subspace of X.

. Show that the euclidean metric 4 on R” is a metric, as follows: If x, y € R” and

¢ € R, define

X+y=(x1+Yy1,.-..,%X0n+ ¥n)
cx = (cx1,...,CxXp),
X-y=x1y1+- -+ Xp¥n.

(a) Showthatx - (y+2z)=(x-y)+ (x-2).

(b) Show that |x-y| < [Ix||llyll. [Hint: Ifx,y # 0,leta = 1/|x|| and b = 1/]y],
and use the fact that ||ax &+ by|| > 0.]

(c) Show that ||x + yil < |Ix|| + llyll. [Hint: Compute (x +y) - (x + y) and

- apply (b).]

(d) Verify that d is a metric.

Let X denote the subset of R consisting of all sequences (x1, x2, ... ) such that

> xiz. converges. (You may assume the standard facts about infinite series. In

case they are not familiar to you, we shall give them in Exercise 11 of the next

section.)

(a) Show thatifx,y € X, then }_ |x;y;| converges. [Hint: Use (b) of Exercise 9
to show that the partial sums are bounded.]

(b) Letc € R. Show thatif X, y € X, then so are x + y and cx.

(c) Show that

. 1/2
d(x,y) = [Z(xi — yi)z]
i=1

is a well-defined metric on X.
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*11. Show that if d is a metric for X, then

d'(x,y) =d(x,y)/(1 +d(x,y))

is a bounded metric that gives the topology of X. [Hint: If f(x) = x/(1+ x) for
x > 0, use the mean-value theorem to show that f(a + b) — f(b) < f(a).]

§21 The Metric Topology (continued)

In this section, we discuss the relation of the metric topology to the concepts we have
previously introduced.

Subspaces of metric spaces behave the way one would wish them to; if A is a
subspace of the topological space X and d is a metric for X, then the restriction of d
to A x A is a metric for the topology of A. This we leave to you to check.

About order topologies there is nothing to be said; some are metrizable (for in-
stance, Z4. and R), and others are not, as we shall see.

The Hausdorff axiom is satisfied by every metric topology. If x and y are distinct
points of the metric space (X, d), we let € = %d (x, y); then the triangle inequality
implies that By (x, €) and B;(y, €) are disjoint.

The product topology we have already considered in special cases; we have proved
that the products R” and R“ are metrizable. It is true in general that countable products
of metrizable spaces are metrizable; the proof follows a pattern similar to the proof
for R?, so we leave it to the exercises.

About continuous functions there is a good deal to be said. Consideration of this
topic will occupy the remainder of the section.

When we study continuous functions on metric spaces, we are about as close to
the study of calculus and analysis as we shall come in this book. There are two things
we want to do at this point.

First, we want to show that the familiar “e-§ definition” of continuity carries over
to general metric spaces, and so does the “convergent sequence definition” of continu-
ity.

Second, we want to consider two additional methods for constructing continuous
functions, besides those discussed in §18. One is the process of taking sums, differ-
ences, products, and quotients of continuous real-valued functions. The other is the
process of taking limits of uniformly convergent sequences of continuous functions.

Theorem 21.1. Let f : X — Y;let X and Y be metrizable with metrics dx and dy,
respectively. Then continuity of f is equivalent to the requirement that given x € X
and given € > 0, there exists 8 > 0 such that

dx(x,y) <8 =dy(f(x), f(y)) <e.

Proof. Suppose that f is continuous. Given x and €, consider the set

FUB(f (), €)),
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which is open in X and contains the point x. It contains some §-ball B(x, 8) centered
atx. If y is in this §-ball, then f(y) is in the e-ball centered at f(x), as desired.
Conversely, suppose that the €-§ condition is satisfied. Let V be open in Y; we
show that f~1(V) is open in X. Let x be a point of the set f~!(V). Since fx) €
V, there is an e-ball B(f(x), €) centered at f(x) and contained in V. By the e-
d condition, there is a §-ball B(x, §) centered at x such that f(B(x, 8)) C B(f(x), ¢).
Then B(x, 8) is a neighborhood of x contained in f~1(V), so that f~1(V) is open, as
desired. |

Now we turn to the convergent sequence definition of continuity. We begin by
considering the relation between convergent sequences and closures of sets. It is cer-
tainly believable, from one’s experience in analysis, that if x lies in the closure of a
subset A of the space X, then there should exist a sequence of points of A converging
to x. This is not true in general, but it is true for metrizable spaces.

Lemma 21.2 (The sequence lemma). Let X be a topological space; let A C X. If
there is a sequence of points of A converging to x, then x € A; the converse holds if X
is metrizable.

Proof. Suppose that x, — x, where x, € A. Then every neighborhood U of x
contains a point of A, so x € A by Theorem 17.5. Conversely, suppose that X is
metrizable and x € A. Let d be a metric for the topology of X. For each positive
integer n, take the neighborhood By (x, 1/n) of radius 1/n of x, and choose x, to be
a point of its intersection with A. We assert that the sequence x, converges to x: Any
open set U containing x contains an €-ball By (x, €) centered at x; if we choose N so
that 1/N < ¢, then U contains x; foralli > N. |

Theorem 21.3. Let f : X — Y. If the function f is continuous, then for every con-
vergent sequence x, — x in X, the sequence f(x,) converges to f(x). The converse
holds if X is metrizable.

Proof.  Assume that f is continuous. Given x,, — x, we wish to show that f(x,) —
f(x). Let V be a neighborhood of f(x). Then f “I(V)isa neighborhood of x, and so
there is an N such that x, € f~1(V) forn > N. Then fy) e Viorn>N.

To prove the converse, assume that the convergent sequence condition is satisfied.
Let A be a subset of X; we show that f(A) C f(A). If x € A, then there is a
sequence x, of points of A converging to x (by the preceding lemma). By assumption,
the sequence f(x,) converges to f(x). Since f(x,) € f(A), the preceding lemma
implies that f(x) € f(A). (Note that metrizability of Y is not needed.) Hence f (A) C
m, as desired. ]

Incidentally, in proving Lemma 21.2 and Theorem 21.3 we did not use the full strength
of the hypothesis that the space X is metrizable. All we really needed was the countable
collection By (x, 1/n) of balls about x. This fact leads us to make a new definition.

A space X is said to have a countable basis at the point x if there is a countable
collection {Up }nez, of neighborhoods of x such that any neighborhood U of x contains at
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least one of the sets U,. A space X that has a countable basis at each of its points is said to
satisfy the first countability axiom.

If X has a countable basis {U,} at x, then the proof of Lemma 21.2 goes through; one
simply replaces the ball B;(x, 1/n) throughout by the set

B, =UiNnUN---NU,.

The proof of Theorem 21.3 goes through unchanged.

A metrizable space always satisfies the first countability axiom, but the converse is not
true, as we shall see. Like the Hausdorff axiom, the first countability axiom is a requirement
that we sometimes impose on a topological space in order to prove stronger theorems about
the space. We shall study it in more detail in Chapter 4.

Now we consider additional methods for constructing continuous functions. We
need the following lemma:

Lemma 21.4.  The addition, subtraction, and multiplication operations are continu-
ous functions from R x R into R; and the quotient operation is a continuous function
fromR x (R — {0}) into R.

You have probably seen this lemma proved before; it is a standard “c-§ argument.”
If not, a proof is outlined in Exercise 12 below; you should have no trouble filling in
the details.

Theorem 21.5. If X is a topological space, and if f,g : X — R are continuous
functions, then f + g, f — g, and f - g are continuous. If g(x) # O for all x, then f/g
is continuous.

Proof Themaph: X — R x R defined by
h(x) = f(x) x g(x)

is continuous, by Theorem 18.4. The function f + g equals the composite of 4 and
the addition operation

+:RxR—> R;

therefore f + g is continuous. Similar arguments applyto f — g, f - g,and f/g. &

Finally, we come to the notion of uniform convergence.

Definition. Let f, : X — Y be a sequence of functions from the set X to the metric
space Y. Let d be the metric for Y. We say that the sequence ( f,,) converges uniformly
to the function f : X — Y if given € > 0, there exists an integer N such that

d(fu(x), f(x)) <€
foralln > N and all x in X.

Uniformity of convergence depends not only on the topology of Y but also on its
metric. We have the following theorem about uniformly convergent sequences:
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Theorem 21.6 (Uniform limit theorem). Let f, : X — Y be a sequence of contin-
uous functions from the topological space X to the metric space Y. If ( f,) converges
uniformly to f, then f is continuous.

Proof. Let V be open in Y; let xq be a point of f~1(V). We wish to find a neighbor-
hood U of xp such that f(U) C V.

Let yo = f(x0). First choose ¢ so that the e-ball B(yy, €) is contained in V. Then,
using uniform convergence, choose N so that foralln > N and all x € X,

d(fa(x), f(x)) < €/3.

Finally, using continuity of fy, choose a neighborhood U of x¢ such that fy carries U
into the € /3 ball in Y centered at fy(xp).

We claim that f carries U into B(yg, €) and hence into V, as desired. For this
purpose, note that if x € U, then

d(f(x), fn(x)) <€/3 (by choice of N),
d(fn(x), fn(x0)) < €/3  (by choice of U),
d(fn(xg), f(x0)) <€/3  (by choice of N).

Adding and using the triangle inequality, we see that d(f(x), f(x¢)) < €, as
desired. |

Let us remark that the notion of uniform convergence is related to the definition of
the uniform metric, which we gave in the preceding section. Consider, for example,
the space RX of all functions f : X — R, in the uniform metric 5. It is not difficult to
see that a sequence of functions f, : X — R converges uniformly to f if and only if
the sequence (f,) converges to f when they are considered as elements of the metric
space (RX , ). We leave the proof to the exercises.

We conclude the section with some examples of spaces that are not metrizable.

EXAMPLE 1. R% in the box topology is not metrizable.

We shall show that the sequence lemma does not hold for R®. Let A be the subset of
R® consisting of those points all of whose coordinates are positive:

A={(x1,x2,...) | xi >0foralli € Z,}.

Let 0 be the “origin” in R®, that is, the point (0, 0, . ..) each of whose coordinates is zero.
In the box topology, 0 belongs to A; for if

B = (a1,b1) x (a2, b2) x -+~
is any basis element containing 0, then B intersects A. For instance, the point
(3b1,3b2...)

belongs to B N A.
But we assert that there is no sequence of points of A converging to 0. For let (a,) be
a sequence of points of A, where

an = (xlanZns coey Xin, "')'
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Every coordinate x;, is positive, so we can construct a basis element B’ for the box topol-
ogy on R by setting

B' = (—x11,x11) X (—x22,%22) X -+ .

Then B’ contains the origin 0, but it contains no member of the sequence (a,); the
point a,, cannot belong to B’ because its nth coordinate x,, does not belong to the interval
(=Xnn, xnn). Hence the sequence (a,) cannot converge to 0 in the box topology.

EXAMPLE 2.  An uncountable product of R with itself is not metrizable.

Let J be an uncountable index set; we show that R’ does not satisfy the sequence
lemma (in the product topology).

Let A be the subset of R’ consisting of all points (xy) such that x, = 1 for all but
finitely many values of . Let 0 be the “origin” in R’, the point each of whose coordinates
is 0.

We assert that 0 belongs to the closure of A. Let [] U, be a basis element containing 0.
Then Uy # R for only finitely many values of a, say fora = oy, ..., ;. Let (x4) be the
point of A defined by letting x, = O fora = «;, ..., a, and x, = 1 for all other values of
o; then (xy) € A N]] Uy, as desired.

But there is no sequence of points of A converging to 0. For let a, be a sequence of
points of A. Given n, let J, denote the subset of J consisting of those indices & for which
the ath coordinate of a, is different from 1. The union of all the sets J, is a countable
union of finite sets and therefore countable. Because J itself is uncountable, there is an
index in J, say B, that does not lie in any of the sets J,. This means that for each of the
points a,, its Ath coordinate equals 1.

Now let Ug be the open interval (—1, 1) in R, and let U be the open set N;I(Uﬂ)

inR’. ThesetUis a neighborhood of 0 that contains none of the points a,; therefore, the
sequence a, cannot converge to 0.

Exercises

1.

Let A C X. If d is a metric for the topology of X, show that d|A x A is a metric
for the subspace topology on A.

. Let X and Y be metric spaces with metrics dx and dy, respectively. Let f :
X — Y have the property that for every pair of points xi, x; of X,

dy(f(x1), f(x2)) = dx (x1, x2).

Show that f is an imbedding. It is called an isometric imbedding of X in Y.

. Let X, be a metric space with metric d,,, forn € Z .
(a) Show that

p(x’ y) = maX{dl(X], yl)’ ---vdn(xm }’n)}

is a metric for the product space X; x - -+ x X,,.
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(b) Letd; = min{d;, 1}. Show that
D(x, y) = sup{d; (xi, yi)/ i}

is a metric for the product space [] X;.

Show that R, and the ordered square satisfy the first countability axiom. (This
result does not, of course, imply that they are metrizable.)

Theorem. Letx, — x and y, — y in the space R. Then
Xn + }’n -> X + yv
Xn—Yn—>X—Y),

XnYn > XY,

_and provided that each y, # 0 andy # 0,

Xn/Yn —> X[y.

[Hint: Apply Lemma 21.4; recall from the exercises of §19 that if x, — x and
Yn = y,thenx, x y, — x x y.]

. Define f, : [0, 1] — R by the equation f,(x) = x". Show that the sequence

(fn(x)) converges for each x € [0, 1], but that the sequence ( f,) does not con-
verge uniformly.

. Let X be a set, and let f, : X — R be a sequence of functions. Let p be

the uniform metric on the space RX. Show that the sequence (f,) converges
uniformly to the function f : X — R if and only if the sequence ( f,) converges
to f as elements of the metric space (RX, p).

. Let X be a topological space and let ¥ be a metric space. Let f, : X —» Y

be a sequence of continuous functions. Let x, be a sequence of points of X
converging to x. Show that if the sequence ( f,) converges uniformly to f, then
(fn(xn)) converges to f(x).
Let f,, : R > R be the function
1
nx - A/mP+1
See Figure 21.1. Let f : R — R be the zero function.
(a) Show that f,(x) = f(x) foreachx € R.
(b) Show that f,, does not converge uniformly to f. (This shows that the con-

verse of Theorem 21.6 does not hold; the limit function f may be continuous
even though the convergence is not uniform.)

Using the closed set formulation of continuity (Theorem 18.1), show that the

falx) =

following are closed subsets of R?:

A={xxy|xy=1},
S'=lxxyl?+y*=1),
Bz={xxy|x2+y2§1}.
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;|.. b

Figure 21.1

The set B2 is called the (closed) unit ball in R?.
11. Prove the following standard facts about infinite series:

(@)
(b)

©

(@

Show that if (s,) is a bounded sequence of real numbers and sy,
each n, then (s,) converges.
Let (a,) be a sequence of real numbers; define

n
Sp = E a;.
i=1

If s, — 5, we say that the infinite series

< $p+1 for

o0

D ai

i=1
converges to s also. Show that if ) a; converges to s and ) _ b; converges
to t, then ) (ca; + b;) converges to cs + 1.
Prove the comparison test for infinite series: If |a;| < b; for each i, and if
the series Y _ b; converges, then the series 3" a; converges. [Hint: Show that
the series Y |a;| and 3" c¢; converge, where ¢; = |a;| + a;.]
Given a sequence of functions f, : X — R, let

sn(x) =) fix).
i=l1

Prove the Weierstrass M-test for uniform convergence: If | f;(x)| < M; for
allx € X and all i, and if the series Y_ M; converges, then the sequence (sp)
converges uniformly to a function s. [Hint: Let r, = > {2, | M;. Show
that if k > n, then |sg(x) — sp(x)| < rp; conclude that s(x) — 5, (x)| < ra.]

12. Prove continuity of the algebraic operations on R, as follows: Use the metric
d(a, b) = |a — b| on R and the metric on R? given by the equation

p((x, y), (xo0, y0)) = max{lx — xo[, |y — yol}.



136

Topological Spaces and Continuous Functions Ch. 2

(a) Show that addition is continuous. [Hint: Given ¢, let § = € /2 and note that
d(x +y,x0+ yo) < |x —xol + |y — yol]

(b) Show that multiplication is continuous. [Hint: Given (xq, yg) and 0 < € <
1, let

36 = €/(Ixol + Iyol + 1)
and note that
d(xy, xoy0) < |xolly — yol + |yollx — xol + |x — xolly — yol.]
(c) Show that the operation of taking reciprocals is a continuous map from
R — {0} to R. [Hint: Show the inverse image of the interval (a, b) is open.

Consider five cases, according as a and b are positive, negative, or zero.]
(d) Show that the subtraction and quotient operations are continuous.

*§22 The Quotient Topology'

Unlike the topologies we have already considered in this chapter, the quotient topology
is not a natural generalization of something you have already studied in analysis. Nev-
ertheless, it is easy enough to motivate. One motivation comes from geometry, where
one often has occasion to use “cut-and-paste” techniques to construct such geometric
objects as surfaces. The rorus (surface of a doughnut), for example, can be constructed
by taking a rectangle and “pasting” its edges together appropriately, as in Figure 22.1.
And the sphere (surface of a ball) can be constructed by taking a disc and collapsing
its entire boundary to a single point; see Figure 22.2. Formalizing these constructions
involves the concept of quotient topology.

a

a

oy

Figure 22.1

TThis section will be used throughout Part II of the book. It also is referred to in a number of
exercises of Part L.
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Figure 22.2

Definition. Let X and Y be topological spaces; let p : X — Y be a surjective map.
The map p is said to be a quotient map provided a subset U of Y is open in Y if and
only if p~!(U) is open in X.

This condition is stronger than continuity; some mathematicians call it “strong
continuity.” An equivalent condition is to require that a subset A of ¥ be closed in Y
if and only if p~'(A) is closed in X. Equivalence of the two conditions follows from
equation

iy -By=x- 1B

Another way of describing a quotient map is as follows: We say that a subset C
of X is saturated (with respect to the surjective map p : X — Y) if C contains every
set p~'({y}) that it intersects. Thus C is saturated if it equals the complete inverse
image of a subset of Y. To say that p is a quotient map is equivalent to saying that p is
continuous and p maps saturated open sets of X to open sets of Y (or saturated closed
sets of X to closed sets of ¥).

Two special kinds of quotient maps are the open maps and the closed maps. Recall
that a map f : X — Y is said to be an open map if for each open set U of X, the
set f(U)isopeninY. It is said to be a closed map if for each closed set A of X, the
set f(A) is closed in Y. It follows immediately from the definition thatif p : X — Y
is a surjective continuous map that is either open or closed, then p is a quotient map.
There are quotient maps that are neither open nor closed. (See Exercise 3.)

EXAMPLE 1. Let X be the subspace [0, 11U [2, 3] of R, and let Y be the subspace [0, 2]
of R. The map p : X — Y defined by

X forx € [0, 1],
plx) =
x—1 forxe(2,3]
is readily seen to be surjective, continuous, and closed. Therefore it is a quotient map. It is
not, however, an open map; the image of the open set [0, 1] of X isnotopeninY.
Note that if A is the subspace [0, 1) U [2,3] of X, then the map ¢ : A — Y obtained
by restricting p is continuous and surjective, but it is not a quotient map. For the set [2. 3]
is open in A and is saturated with respect to g. but its image is not openin Y.
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ExAMPLE 2. Letn :RxR — Rbe projection onto the first coordinate; then 7, is
continuous and surjective. Furthermore, ; is an open map. For if U x V is a nonempty
basis element for R x R, then 7, (U x V) = U is open in R; it follows that 7 carries open
sets of R x R to open sets of R. However, 7 is not a closed map. The subset

C={xxylxy=1}

of R x R is closed, but 1 (C) = R — {0}, which is not closed in R.

Note that if A is the subspace of R x R that is the union of C and the origin {0}, then
the map g : A — R obtained by restricting 7, is continuous and surjective, but it is not a
quotient map. For the one-point set {0} is open in A and is saturated with respect to g, but
its image is not open in R.

Now we show how the notion of quotient map can be used to construct a topology
on a set.

Definition. If X is a space and A is a set and if p 1 X — Ais asurjective map, then
there exists exactly one topology 7 on A relative to which p is a quotient map; it is
called the quotient topology induced by p.

The topology T is of course defined by letting it consist of those subsets U of A
such that p~1(U) is open in X. It iseasy to check that 7 is a topology. The sets @
and A are open because p~!(&) = @ and p~'(A) = X. The other two conditions
follow from the equations

P U= p~ W),

aect ael
n n
p (U= r'W.
i=1 i=1
EXAMPLE 3.  Let p be the map of the real line R onto the three-point set A = {a, b, ¢}
defined by
a ifx >0,
px)y=3b ifx <0,
c ifx=0.

You can check that the quotient topology on A induced by p is the one indicated in Fig-
ure 22.3.

Qe

O O

Figure 22.3

There is a special situation in which the quotient topology occurs particularly fre-
quently. It is the following:
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Definition. Let X be a topological space, and let X* be a partition of X into disjoint
subsets whose union is X. Let p : X — X* be the surjective map that carries each
point of X to the element of X* containing it. In the quotient topology induced by p,
the space X* is called a quotient space of X.

Given X*, there is an equivalence relation on X of which the elements of X* are
the equivalence classes. One can think of X* as having been obtained by “identifying”
each pair of equivalent points. For this reason, the quotient space X* is often called an
identification space, or a decomposition space, of the space X.

We can describe the topology of X* in another way. A subset U of X* is a col-
lection of equivalence classes, and the set p~(U) is just the union of the equivalence
classes belonging to U. Thus the typical open set of X* is a collection of equivalence
classes whose union is an open set of X.

EXAMPLE 4. Let X be the closed unit ball
xxyla?+y <1}

in R2, and let X* be the partition of X consisting of all the one-point sets {x x y} for
which x2 + y? < 1, along with the set St ={x x y} | x2 + y2 = 1}. Typical saturated
open sets in X are pictured by the shaded regions in Figure 22.4. One can show that X *is
homeomorphic with the subspace of R3 called the unit 2-sphere, defined by

2= {(x,y,0) | ¥*+y*+ 22 =1}

/P(U )
P
—_—
p(V)
Figure 22.4

EXAMPLE 5. Let X be the rectangle [0, 1]1x [0, 1]. Define a partition X* of X as follows:
It consists of all the one-point sets {x x y} where 0 < x < 1 and 0 < y < 1, the following
types of two-point sets:

{x x0,x x1} where0<x <1,

{Oxy,Ixy} whereO<y<l,
and the four-point set
{0x0,0x1,1x0,1x1}.

Typical saturated open sets in X are pictured by the shaded regions in Figure 22.5; each is
an open set of X that equals a union of elements of X*.
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The image of each of these sets under P is an open set of X*, as indicated in Fig-
ure 22.6. This description of X* is Just the mathematical way of saying what we expressed
in pictures when we pasted the edges of a rectangle together to form a torus.

x X1
k' 1xy w
V
¢ Oxy XXy
R\
xx0
Figure 22.5

p(w)

Figure 22.6

Now we explore the relationship between the notions of quotient map and quo-
tient space and the concepts introduced previously. It is interesting to note that this
relationship is not as simple as one might wish.

We have already noted that subspaces do not behave well; if P:X > Yisa
quotient map and A is a subspace of X, then the map g : A — p(A) obtained by
restricting p need not be a quotient map. One has, however, the following theorem:

Theorem 22.1. Let P : X — Y be a quotient map; let A be a subspace of X that is
saturated with respect to p; letg : A — p(A) be the map obtained by restricting p.
(1) If A is either open or closed in X » then q is a quotient map.

*(2) If p is either an open map or a closed map, then q is a quotient map.

Proof.  Step 1. We verify first the following two equations:

a'Vy=p~ (V) if V C p(A):
pUNA)=pU)Np(A) ifUcCX.



§22 The Quotient Topology 141

To check the first equation, we note that since V C p(A) and A is saturated, p‘l(V)
is contained in A. It follows that both p~!(V) and ¢~ (V) equal all points of A that
are mapped by p into V. To check the second equation, we note that for any two
subsets U and A of X, we have the inclusion

p(UNA) C pU)N p(A).

To prove the reverse inclusion, suppose y = p(u) = p(a), foru € U and a € A.
Since A is saturated, A contains the set p‘1 (p(a)), so that in particular A contains u.
Then y = p(u), where u € U N A.

Step 2. Now suppose A is open or p is open. Given the subset V of p(A), we
assume that ¢ ~1 (V) is open in A and show that V is open in p(A).

Suppose first that A is open. Since g7!(V) is open in A and A is open in X, the
set g~ (V) is open in X. Since ¢~!(V) = p~1(V), the latter set is open in X, so that
V is open in Y because p is a quotient map. In particular, V is open in p(A).

Now suppose p is open. Since q“(V) = p‘l(V) and q‘l(V) is open in A, we
have p‘l(V) = U N A for some set U open in X. Now p(p_l(V)) = V because p is
surjective; then

V =p(p~'(V)) = p(UN A) = p(U) N p(A).

The set p(U) is open in Y because p is an open map; hence V is open in p(A).

Step 3. The proof when A or p is closed is obtained by replacing the word “open”
by the word “closed” throughout Step 2. [ ]

Now we consider other concepts introduced previously. Composites of maps be-
have nicely; it is easy to check that the composite of two quotient maps is a quotient
map; this fact follows from the equation

p HgT W) = (g o p)~ ).

On the other hand, products of maps do not behave well; the cartesian product of
two quotient maps need not be a quotient map. See Example 7 following. One needs
further conditions on either the maps or the spaces in order for this statement to be
true. One such, a condition on the spaces, is called local compactness; we shall study
it later. Another, a condition on the maps, is the condition that both the maps p and ¢
be open maps. In that case, it is easy to see that p x ¢ is also an open map, so it is a
quotient map.

Finally, the Hausdorff condition does not behave well; even if X is Hausdorff,
there is no reason that the quotient space X* needs to be Hausdorff. There is a simple
condition for X* to satisfy the 7 axiom; one simply requires that each element of the
partition X* be a closed subset of X. Conditions that will ensure X* is Hausdorff are
harder to find. This is one of the more delicate questions concerning quotient spaces;
we shall return to it several times later in the book.

Perhaps the most important result in the study of quotient spaces has to do with the
problem of constructing continuous functions on a quotient space. We consider that
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problem now. When we studied product spaces, we had a criterion for determining
whetheramap f : Z — [] X, into a product space was continuous. Its counterpart in
the theory of quotient spaces is a criterion for determining when a map f : X* — Z
out of a quotient space is continuous. One has the following theorem:

Theorem 22.2. Let p : X — Y be a quotient map. Let Z be a space and let
g : X — Z be a map that is constant on each set p~'({y}), fory € Y. Then g induces
amap f : Y — Z suchthat f o p = g. The induced map f is continuous if and only
if g is continuous; f is a quotient map if and only if g is a quotient map.

X
AN
p
Yoo -7

Proof. Foreachy € Y, the set g(p~!({y})) is a one-point set in Z (since g is constant
on p~L({y})). If we let f (¥) denote this point, then we have definedamap f : Y — Z
such that for each x € X, f(p(x)) = g(x). If f is continuous, then g = f o p is
continuous. Conversely, suppose g is continuous. Given an open set V of Z, g~1(V)
is open in X. But g=1(V) = p~}(f~1(V)); because p is a quotient map, it follows
that f~1(V)is open in Y. Hence f is continuous.

If f is a quotient map, then g is the composite of two quotient maps and is thus a
quotient map. Conversely, suppose that g is a quotient map. Since g is surjective, so
is f. Let V be a subset of Z; we show that V is open in Z if f~1(V) is openin Y.
Now the set p~I( vy is open in X because p is continuous. Since this set equals
g~ 1(V), the latter is open in X. Then because g is a quotient map, V is openin Z. B

Corollary 22.3. Letg : X — Z be a surjective continuous map. Let X* be the
following collection of subsets of X :

X*={g'Uzh Iz € 2).

Give X* the quotient topology.
(a). The map g induces a bijective continuous map f : X* — Z, which is a homeo-
morphism if and only if g is a quotient map.

(b) If Z is Hausdorff, so is X*.

Proof. By the preceding theorem, g induces a continuous map f : X* — Z; it is
clear that f is bijective. Suppose that f is a homeomorphism. Then both f and the
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projection map p : X — X* are quotient maps, so that their composite ¢ is a quotient
map. Conversely, suppose that g is a quotient map. Then it follows from the preceding
theorem that f is a quotient map. Being bijective, f is thus a homeomorphism.
Suppose Z is Hausdorff. Given distinct points of X*, their images under f are
distinct and thus possess disjoint neighborhoods U and V. Then f “1(U)and f~1(V)
are disjoint neighborhoods of the two given points of X*. [ ]

EXAMPLE 6. Let X be the subspace of RR? that is the union of the line segments [0, 1] x
{n}, for n € Z,, and let Z be the subspace of R? consisting of all points of the form
x x (x/n) for x € [0,1] and n € Z4. Then X is the union of countably many disjoint
line segments, and Z is the union of countably many line segments having an end point in
common. See Figure 22.7.

Define amap g : X — Z by the equation g(x x n) = x x (x/n); then g is surjective
and continuous. The quotient space X* whose elements are the sets g~ 1({z}) is simply the
space obtained from X by identifying the subset {0} x Z to a point. The map g induces a
bijective continuous map f : X* — Z. But f is not a homeomorphism.

To verify this fact, it suffices to show that g is not a quotient map. Consider the
sequence of points x, = (1/n) x n of X. The set A = {xn} is a closed subset of X because
it has no limit points. Also, it is saturated with respect to g. On the other hand, the set g(A)
is not closed in Z, for it consists of the points z, = (1/n) x (l/nz); this set has the origin
as a limit point.

_..——-—
X, g
X3
. 4
x2 .
Py X . 2
X.

Figure 22.7

EXAMPLE 7.  The product of two quotient maps need not be a quotient map.

We give an example that involves non-Hausdorff spaces in the exercises. Here is an-
other involving spaces that are nicer.

Let X = R and let X* be the quotient space obtained from X by identifying the
subset Z to a point b; let p : X — X* be the quotient map. Let Q be the subspace of R
consisting of the rational numbers; let i : Q — Q be the identity map. We show that

pxi: XxQ—->X*xQ

is not a quotient map.

Foreachn,letc, = V2 /n, and consider the straight lines in R? with slopes 1 and —1,
respectively, through the point n x ¢,. Let Uy consist of all points of X x Q that lie above
both of these lines or beneath both of them, and also between the vertical linesx =n—1/4
and x = n + 1/4. Then U, is open in X x Q; it contains the set {n} x Q because c, is not
rational. See Figure 22.8. -
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Let U be the union of the sets U,; then U is open in X x Q. It is saturated with respect
to p x i because it contains the entire set Z+ x {q} for each q € Q. We assume that
U’ = (p x i)(U) is open in X* x @ and derive a contradiction.

Because U contains, in particular, the set Z x 0, the set U’ contains the point b x 0.
Hence U’ contains an open set of the form W x I5, where W is a neighborhood of b in X*
and /s consists of all rational numbers y with |y| < &. Then

p W)y x Is c U.

Choose n large enough that ¢, < &. Then since p~1 (W) is open in X and contains Z.,
we can choose € < 1/4 so that the interval (n — ¢, n + ¢€) is contained in p~Y(W). Then
U contains the subset V = (n — e, n +€) x I5 of X x Q. But the figure makes clear that
there are many points x x y of V that do not lie in U! (One such is the point x x y, where
xX=n+ %e and y is a rational number with |y — ¢,| < %e.)

u
(R QR A I
(R ~— I
o ~J I I |
—
(R ~ (.
N7 - Lo
B N 3 |1
7 I\ nxe, \ | 7/
‘1 N\ r \*/
I + I 24
lna] 1 ; 7 lpad
o | o
Iy Lo
[ I
oy Ly |
o N N
|4
Figure 22.8

Exercises

1. Check the details of Example 3.

2. (a) Let p: X — Y be a continuous map. Show that if there is a continuous map
f Y — X such that po f equals the identity map of Y, then P is a quotient
map.

(b) If A C X, aretraction of X onto A is a continuous mapr : X — A such
that r(a) = a for each a € A. Show that a retraction is a quotient map.
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3. Let ; : R x R — R be projection on the first coordinate. Let A be the subspace

of R x R consisting of all points x x y for which either x > 0 or y = 0 (or both);
let ¢ : A — R be obtained by restricting 1. Show that g is a quotient map that
is neither open nor closed.

(a) Define an equivalence relation on the plane X = R? as follows:
X0 X Yo ~ X1 X ¥ ifx0+y§=x1+y12.
Let X* be the corresponding quotient space. It is homeomorphic to a familiar
space; what is it? [Hint: Set g(x x ) = x + y2.]
(b) Repeat (a) for the equivalence relation

xoxyo~x3xy if x§+y§=xf+yf.

. Let p : X — Y be an open map. Show that if A is open in X, then the map

q : A — p(A) obtained by restricting p is an open map.

6. Recall that Ry denotes the real line in the K-topology. (See §13.) Let Y be

the quotient space obtained from Rg by collapsing the set K to a point; let

p : Rg — Y be the quotient map.

(a) Show that Y satisfies the T axiom, but is not Hausdorff.

(b) Show that p x p : Ry x Ry — Y x Y is not a quotient map. [Hint: The
diagonal is not closed in ¥ x Y, but its inverse image is closed in Rx x Rg.]

*Supplementary Exercises: Topological Groups

In these exercises we consider topological groups and some of their properties. The
quotient topology gets its name from the special case that arises when one forms the
quotient of a topological group by a subgroup.

A topological group G is a group that is also a topological space satisfying the

T; axiom, such that the map of G x G into G sending x x y into x - y, and the
map of G into G sending x into x !, are continuous maps. Throughout the following
exercises, let G denote a topological group.

1.

Let H denote a group that is also a topological space satisfying the 7} axiom.
Show that H is a topological group if and only if the map of H x H into H
sending x x y into x - y~! is continuous.

Show that the following are topological groups:

(@ Z,+)

®) ®R,+)

(C) (R+’ )

(d) (S1, ), where we take S! to be the space of all complex numbers z for which
|zl = 1.
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(e) The general linear group GL(n), under the operation of matrix multiplica-
tion. (GL(n) is the set of all nonsingular n by n matrices, topologized by
considering it as a subset of euclidean space of dimension »? in the obvious
way.)

3. Let H be a subspace of G. Show that if H is also a subgroup of G, then both H
and H are topological groups.

4. Let a be an element of G. Show that the maps fy, g4 : G — G defined by
fax)=a-x and g, (x)=x-«

are homeomorphisms of G. Conclude that G is a homogeneous space. (This
means that for every pair x, y of points of G, there exists a homeomorphism
of G onto itself that carries x to y.)

5. Let H be a subgroup of G. If x € G, define xH = {x - h | h € H}; this set is
called a left coset of H in G. Let G/H denote the collection of left cosets of H
in G; it is a partition of G. Give G/H the quotient topology.

(a) Show thatif @ € G, the map f, of the preceding exercise induces a home-
omorphism of G/H carrying xH to (o - x)H. Conclude that G/H is a
homogeneous space.

(b) Show that if H is a closed set in the topology of G, then one-point sets are
closedin G/H.

(c) Show that the quotient map p : G — G/H is open.

(d) Show thatif H is closed in the topology of G and is a normal subgroup of G,
then G/H is a topological group.

6. The integers Z are a normal subgroup of (R, +). The quotient R/Z is a familiar
topological group; what is it?
7. If A and B are subsets of G, let A - B denote the set of all points a - b fora € A

and b € B. Let A™! denote the set of all points a™!, fora € A.

(a) A neighborhood V of the identity element e is said to be symmetric if V =
V=1 If U is a neighborhood of e, show there is a symmetric neighborhood
Vofesuchthat V-V C U. [Hint: If W is a neighborhood of e, then
W - W~ is symmetric.]

(b) Show that G is Hausdorff. In fact, show that if x # y, there is a neighbor-
hood V of e such that V - x and V - y are disjoint.

(c) Show that G satisfies the following separation axiom, which is called the
regularity axiom: Given a closed set A and a point x not in A, there ex-
ist disjoint open sets containing A and x, respectively. [Hint: There is a
neighborhood V of e such that V - x and V - A are disjoint.]

(d) Let H be a subgroup of G that is closed in the topology of G;let p : G —
G/H be the quotient map. Show that G/H satisfies the regularity axiom.
[Hint: Examine the proof of (c) when A is saturated.]



Chapter 3

Connectedness
and Compactness

In the study of calculus, there are three basic theorems about continuous functions,
and on these theorems the rest of calculus depends. They are the following:

Intermediate value theorem. If f : [a, b] —> R is continuous and if r is a real
number between f(a) and f(b), then there exists an element ¢ € [a, b] such that
fley=r.

Maximum value theorem. If f : [a, b] —> R is continuous, then there exists an
element ¢ € [a, b] such that f(x) < f(c) forevery x € [a, b].

Uniform continuity theorem. If f : [a, b] — R is continuous, then given ¢ > 0,
there exists § > 0 such that | f(x;) — f(x2)| < € for every pair of numbers x|, x2
of [a, b] for which |x; — x2| < 8.

These theorems are used in a number of places. The intermediate value theorem is
used for instance in constructing inverse functions, such as /x and arcsin x; and the
maximum value theorem is used for proving the mean value theorem for derivatives,
upon which the two fundamental theorems of calculus depend. The uniform continuity
theorem is used, among other things, for proving that every continuous function is
integrable.

We have spoken of these three theorems as theorems about continuous functions.
But they can also be considered as theorems about the closed interval [a, b] of real
numbers. The theorems depend not only on the continuity of f but also on properties
of the topological space [a, b].

The property of the space [a, #] on which the intermediate value theorem depends

147
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is the property called connectedness, and the property on which the other two depend
is the property called compactness. In this chapter, we shall define these properties for
arbitrary topological spaces, and shall prove the appropriate generalized versions of
these theorems.

As the three quoted theorems are fundamental for the theory of calculus, so are the
notions of connectedness and compactness fundamental in higher analysis, geometry,
and topology—indeed, in almost any subject for which the notion of topological space
itself is relevant.

§23 Connected Spaces

The definition of connectedness for a topological space is a quite natural one. One says
that a space can be “separated” if it can be broken up into two “globs”—disjoint open
sets. Otherwise, one says that it is connected. From this simple idea much follows.

Definition. Let X be a topological space. A separation of X is a pair U, V of disjoint
nonempty open subsets of X whose union is X. The space X is said to be connected
if there does not exist a separation of X.

Connectedness is obviously a topological property, since it is formulated entirely
in terms of the collection of open sets of X. Said differently, if X is connected, so is
any space homeomorphic to X.

Another way of formulating the definition of connectedness is the following:

A space X is connected if and only if the only subsets of X that are both
open and closed in X are the empty set and X itself.

For if A is a nonempty proper subset of X that is both open and closed in X, then the
sets U = A and V = X — A constitute a separation of X, for they are open, disjoint,
and nonempty, and their union is X. Conversely, if U and V forn a separation of X,
then U is nonempty and different from X, and it is both open and closed in X.

For a subspace Y of a topological space X, there is another useful way of formu-
lating the definition of connectedness:

Lemma 23.1. IfY is asubspace of X, a separation of Y is a pair of disjoint nonempty
sets A and B whose union is Y, neither of which contains a limit point of the other.
The space Y is connected if there exists no separation of Y .

Proof. Suppose first that A and B form a separation of Y. Then A is both open and
closed in Y. The closure of A in Y is the set A N'Y (where A as usual denotes the
closure of A in X). Since Aisclosedin Y, A = ANY;orto say the same thing,
AN B = . Since A is the union of A and its limit points, B contains no limit points
of A. A similar argument shows that A contains no limit points of B.

Conversely, suppose that A and B are disjoint nonempty sets whose union is Y,
neither of which contains a limit point of the other. Then ANB = @and AN B = &;
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therefore, we conclude that ANY = A and BNY = B. Thus both A and B are closed
inY,andsince A=Y — Band B =Y — A, they are open in Y as well. [ ]

EXAMPLE 1. Let X denote a two-point space in the indiscrete topology. Obviously there
is no separation of X, so X is connected.

EXAMPLE 2. Let Y denote the subspace [—1, 0) U (0, 1] of the real line R. Each of the
sets [—1, 0) and (0, 1] is nonempty and open in Y (although not in R); therefore, they form
a separation of Y. Alternatively, note that neither of these sets contains a limit point of the
other. (They do have a limit point 0 in common, but that does not matter.)

EXAMPLE 3. Let X be the subspace [—1, 1] of the real line. The sets [—1, 0] and (0, 1]
are disjoint and nonempty, but they do not form a separation of X, because the first set is
not open in X. Alternatively, note that the first set contains a limit point, 0, of the second.
Indeed, there exists no separation of the space [—1, 1]. We shall prove this fact shortly.

EXAMPLE 4.  The rationals Q are not connected. Indeed, the only connected subspaces
of Q are the one-point sets: If ¥ is a subspace of (Q containing two points p and ¢, one can
choose an irrational number a lying between p and q, and write Y as the union of the open
sets

YN(-o00,a) and Y N(a,+oc).
EXAMPLE 5.  Consider the following subset of the plane R?:
X={xxy|ly=0U{xxy|x>0andy = 1/x}.

Then X is not connected; indeed, the two indicated sets form a separation of X because
neither contains a limit point of the other. See Figure 23.1.

Figure 23.1

We have given several examples of spaces that are not connected. How can one
construct spaces that are connected? We shall now prove several theorems that tell
how to form new connected spaces from given ones. In the next section we shall apply
these theorems to show that some specific spaces, such as intervals in R, and balls and
cubes in R"”, are connected. First, a lemma:

Lemma 23.2. If the sets C and D form a separation of X, and if Y is a connected
subspace of X, then Y lies entirely within either C or D.

Proof. Since C and D are both openin X, thesets CNY and DN Y are openin Y.
These two sets are disjoint and their union is Y; if they were both nonempty, they
would constitute a separation of Y. Therefore, one of them is empty. Hence Y must
lie entirely in C or in D. [ ]
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Theorem 23.3. The union of a collection of connected subspaces of X that have a
point in common is connected.

Proof. Let {A,} be a collection of connected subspaces of a space X; let p be a point
of [ Ag. We prove that the space ¥ = [ J A, is connected. Suppose that Y = C U D
is a separation of Y. The point p is in one of the sets C or D; suppose p € C.
Since A, is connected, it must lie entirely in either C or D, and it cannot lie in D
because it contains the point p of C. Hence A, C C for every «, so that | J A, C C,
contradicting the fact that D is nonempty. [ |

Theorem 23.4. Let A be a connected subspaceof X. If A C B C A, then B is also
connected.

Said differently: If B is formed by adjoining to the connected subspace A some or
all of its limit points, then B is connected.

Proof. Let A be connected and let A ¢ B C A. Suppose that B = CU D is a
separation of B. By Lemma 23.2, the set A must lie entirely in C or in D; suppose
that A ¢ C. Then A C C: since C and D are disjoint, B cannot intersect D. This
contradicts the fact that D is a nonempty subset of B. [ ]

Theorem 23.5. The image of a connected space under a continuous map is con-
nected.

Proof. Let f : X — Y be a continuous map; let X be connected. We wish to
prove the image space Z = f(X) is connected. Since the map obtained from f by
restricting its range to the space Z is also continuous, it suffices to consider the case
of a continuous surjective map

g:X—Z.

Suppose that Z = A U B is a separation of Z into two disjoint nonempty sets open
in Z. Then g‘1 (A) and g‘l (B) are disjoint sets whose union is X; they are open in X
because g is continuous, and nonempty because g is surjective. Therefore, they form
a separation of X, contradicting the assumption that X is connected. |

Theorem 23.6. A finite cartesian product of connected spaces is connected.

Proof. 'We prove the theorem first for the product of two connected spaces X and Y.
This proof is easy to visualize. Choose a “base point” a x b in the product X x Y.
Note that the “horizontal slice” X x b is connected, being homeomorphic with X, and
each “vertical slice” x x Y is connected, being homeomorphic with ¥. As a result,
each “T-shaped” space

T, =(Xxb)UKxxY)

is connected, being the union of two connected spaces that have the point x x b in
common. See Figure 23.2. Now form the union |, .y 7 of all these T-shaped spaces.
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This union is connected because it is the union of a collection of connected spaces that
have the point a x b in common. Since this union equals X x Y, the space X x Y is

connected.
Y xxXY
axb
b ® XX b
& X
X a
Figure 23.2

The proof for any finite product of connected spaces follows by induction, using

the fact (easily proved) that X; x - - - x X, is homeomorphic with (Xj x - - - x Xp_1) X

Xn.

It is natural to ask whether this theorem extends to arbitrary products of connected

spaces. The answer depends on which topology is used for the product, as the follow-
ing examples show.

EXAMPLE 6.  Consider the cartesian product R in the box topology. We can write R%
as the union of the set A consisting of all bounded sequences of real numbers, and the set B
of all unbounded sequences. These sets are disjoint, and each is open in the box topology.
For if a is a point of R, the open set

U=(@a—-l,aa+1)x{a—-la+l)x--.
consists entirely of bounded sequences if a is bounded, and of unbounded sequences if a if

unbounded. Thus, even though R is connected (as we shall prove in the next section), R
is not connected in the box topology.

EXAMPLE 7. Now consider R in the product topology. Assuming that R is con-
nected, we show that R® is connected. Let R" denote the subspace of R* consisting of
all sequences X = (x1,x2,...) such that x; = O fori > n. The space R" is clearly

homeomorphic to R”, so that it is connected, by the preceding theorem. It follows that the
space R that is the union of the spaces R” is connected, for these spaces have the point
0= (0,0,...) in common. We show that the closure of R* equals all of R*, from which
it follows that R® is connected as well.

Leta = (ay,a2,...) be a point of R®. Let U = [TU: be a basis element for the
product topology that contains a. We show that U intersects R> . There is an integer N
such that U; = R for i > N. Then the point

x=(a(,...,a,,0,0,...)

of R® belongs to U, since a; € U, foralli,and 0 € U; fori > N.
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The argument just given generalizes to show that an arbitrary product of connected

spaces is connected in the product topology. Since we shall not need this result, we
leave the proof to the exercises.

Exercises

1.

%

10.

11.

12.

Let 7 and 7’ be two topologies on X. If 7/ O 7, what does connectedness
of X in one topology imply about connectedness in the other?

. Let {A,} be a sequence of connected subspaces of X, such that A, N A,41 # @

for all n. Show that [_J A, is connected.

. Let {A,} be a collection of connected subspaces of X; let A be a connected

subspace of X. Show thatif ANA, # @ for all «, then AU(| Ay) is connected.
Show that if X is an infinite set, it is connected in the finite complement topology.

. A space is totally disconnected if its only connected subspaces are one-point

sets. Show that if X has the discrete topology, then X is totally disconnected.
Does the converse hold?

. Let A C X. Show that if C is a connected subspace of X that intersects both A

and X — A, then C intersects Bd A.
Is the space R; connected? Justify your answer.
Determine whether or not R“ is connected in the uniform topology.

. Let A be a proper subset of X, and let B be a proper subset of Y. If X and Y are

connected, show that
(X xY)—(AxB)

is connected.
Let {X,}oecs be an indexed family of connected spaces; let X be the product

space
X = ]_[ Xg.

ael

Leta = (a,) be a fixed point of X.

(a) Given any finite subset K of J, let Xx denote the subspace of X consisting
of all points X = (x,) such that x, = a4 for « ¢ K. Show that Xk is
connected.

(b) Show that the union Y of the spaces X ¢ is connected.

(c) Show that X equals the closure of Y; conclude that X is connected.

Let p : X — Y be a quotient map. Show that if each set p‘1 ({y}) is connected,
and if Y is connected, then X is connected.

Let Y C X;let X and Y be connected. Show that if A and B form a separation
of X —Y,thenY U A and Y U B are connected.
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§24 Connected Subspaces of the Real Line

The theorems of the preceding section show us how to construct new connected spaces
out of given ones. But where can we find some connected spaces to start with? The
best place to begin is the real line. We shall prove that R is connected, and so are the
intervals and rays in R.

One application is the intermediate value theorem of calculus, suitably general-
ized. Another is the result that such familiar spaces as balls and spheres in euclidean
space are connected; the proof involves a new notion, called path connectedness,
which we also discuss.

The fact that intervals and rays in R are connected may be familiar to you from
analysis. We prove it again here, in generalized form. It turns out that this fact does
not depend on the algebraic properties of R, but only on its order properties. To make
this clear, we shall prove the theorem for an arbitrary ordered set that has the order
properties of R. Such a set is called a linear continuum.

Definition. A simply ordered set L having more than one element is called a linear
continuum if the following hold:

(1) L has the least upper bound property.
(2) If x < y, there exists z such that x < z < y.

Theorem 24.1. If L is a linear continuum in the order topology, then L is connected,
and so are intervals and rays in L.

Proof. Recall that a subspace Y of L is said to be convex if for every pair of points
a, b of Y with a < b, the entire interval [a, b] of points of L lies in Y. We prove that
if Y is a convex subspace of L, then Y is connected.

So suppose that Y is the union of the disjoint nonempty sets A and B, each of
which is open in Y. Choose a € A and b € B; suppose for convenience that a < b.
The interval [a, b] of points of L is contained in Y. Hence [a, b] is the union of the
disjoint sets

Ag=AN[a,b] and Bg= BN]la,bd],

each of which is open in [a, b] in the subspace topology, which is the same as the order
topology. The sets Ag and By are nonempty because a € Ag and b € By. Thus, Ag
and By constitute a separation of [a, b].

Let ¢ = sup Ag. We show that ¢ belongs neither to Ag nor to By, which contradicts
the fact that [a, b] is the union of Ag and By.

Case 1. Suppose that c € By. Then ¢ # a, soeitherc = bora < ¢ < b. In
either case, it follows from the fact that By is open in [a, b] that there is some interval
of the form (d, ¢] contained in By. If ¢ = b, we have a contradiction at once, ford is a
smaller upper bound on Ag than c. If ¢ < b, we note that (c, b] does not intersect Ay
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(because ¢ is an upper bound on Ag). Then
(d,b] = (d, c]lU (c, b]

does not intersect Ag. Again, d is a smaller upper bound on Ag than ¢, contrary to
construction. See Figure 24.1.

d c c e

C V4 3 E . ) 3
L \ J z

a b a b

d ¢ c e
%] —f+—7
a a z b
Figure 24.1 Figure 24.2

Case 2. Suppose that ¢ € Ag. Then ¢ # b, soeitherc = aora < ¢ < b.
Because Ay is open in [a, b], there must be some interval of the form [c, ¢) contained
in Ap. See Figure 24.2. Because of order property (2) of the linear continuum L, we
can choose a point z of L such that ¢ < z < e. Then z € Ay, contrary to the fact that
¢ is an upper bound for Agp. |

Corollary 24.2. The real line R is connected and so are intervals and rays in R.

As an application, we_prove the intermediate value theorem of calculus, suitably
generalized.

Theorem 24.3 (Intermediate value theorem). Let f : X — Y be a continuous
map, where X is a connected space and Y is an ordered set in the order topology. If a
and b are two points of X and if r is a point of Y lying between f(a) and f(b), then
there exists a point ¢ of X such that f(c) =r.

The intermediate value theorem of calculus is the special case of this theorem that
occurs when we take X to be a closed interval in R and Y to be R.

Proof. Assume the hypotheses of the theorem. The sets
A= f(X)N(-o00,r) and B = f(X)N(r,+00)

are disjoint, and they are nonempty because one contains f(a) and the other con-
tains f(b). Eachis open in f(X), being the intersection of an open ray in Y with f(X).
If there were no point ¢ of X such that f(c) = r, then f(X) would be the union of the
sets A and B. Then A and B would constitute a separation of f(X), contradicting the
fact that the image of a connected space under a continuous map is connected. [ |
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ExAMPLE 1. One example of a linear continuum different from R is the ordered square.
We check the least upper bound property. (The second property of a linear continuum is
trivial to check.) Let A be asubsetof I x I;letmy : I x I — I be projection on the first
coordinate; let b = supm;(A). If b € m(A), then A intersects the subset b x [ of I x [.
Because b x [ has the order type of I, the set A N (b x I') will have a least upper bound
b x ¢, which will be the least upper bound of A. See Figure 24.3. If b ¢ n;(A), thenb x 0
is the least upper bound of A; no element of the form b’ x ¢ with ¥’ < b can be an upper
bound for A, for then 4’ would be an upper bound for 7 (A).

rbXC

\bxl

n,(A)x 0 n,(A) X 0

bx0

m

N

Figure 24.3

EXAMPLE 2. If X is a well-ordered set, then X x [0, 1) is a linear continuum in the
dictionary order; this we leave to you to check. This set can be thought of as having been
constructed by “fitting in” a set of the order type of (0, 1) immediately following each
element of X.

Connectedness of intervals in R gives rise to an especially useful criterion for
showing that a space X is connected; namely, the condition that every pair of points
of X can be joined by a path in X:

Definition. Given points x and y of the space X, a path in X from x to y is a
continuous map f : [a, b] — X of some closed interval in the real line into X, such
that f(a) = x and f(b) = y. A space X is said to be path connected if every pair of
points of X can be joined by a path in X.

It is easy to see that a path-connected space X is connected. Suppose X = AU B
is a separation of X. Let f : [a,b] — X be any path in X. Being the continuous
image of a connected set, the set f([a, b]) is connected, so that it lies entirely in either
A or B. Therefore, there is no path in X joining a point of A to a point of B, contrary
to the assumption that X is path connected.

The converse does not hold; a connected space need not be path connected. See
Examples 6 and 7 following.
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EXAMPLE 3. Define the unit ball B" in R" by the equation
B" = {x| x|l <1},
where
Xl = HCer, - xdll = GF 4 - + 2DV,

The unit ball is path connected; given any two points x and y of B”, the straight-line path
f 1[0, 1] — R” defined by

f@O=0-0x+1ry
lies in B". For if x and y are in B” and ¢ is in [0, 1],

IO = A =dDix) +1liyll < 1.

A similar argument shows that every open ball By(x, €) and every closed ball By(x, €)
in R” is path connected.

EXAMPLE 4.  Define punctured euclidean space to be the space R" — {0}, where 0 is
the origin in R”. If n > 1, this space is path connected: Given x and y different from 0,
we can join X and y by the straight-line path between them if that path does not go through
the origin. Otherwise, we can choose a point z not on the line joining x and y, and take the
broken-line path from x to z, and then from z to y.

EXAMPLE 5.  Define the unit sphere S"~! in R” by the equation
§"h = (x| Ixll = 1).

If n > 1, it is path connected. For the map g : R” — {0} — $"~! defined by g(x) = x/||x||
is continuous and surjective; and it is easy to show that the continuous image of a path-
connected space is path connected.

EXAMPLE 6.  The ordered square 12 is connected but not path connected.

Being a linear continuum, the ordered square is connected. Let p = 0x Oand g =
1x1. We suppose there is a path f : [a, b] — 102 joining p and q and derive a contradiction.
The image set f([a, b]) must contain every point x x y of 13, by the intermediate value
theorem. Therefore, for each x € I, the set

Uy = £ 1(x x 0, 1)

is a nonempty subset of [a, b]; by continuity, it is open in [a, b]. See Figure 24.4. Choose,
for each x € I, a rational number g, belonging to U,. Since the sets U, are disjoint, the
map x — gy is an injective mapping of I into QQ. This contradicts the fact that the interval /
is uncountable (which we shall prove later).

EXAMPLE 7. Let S denote the following subset of the plane.
S={xxsin(l/x)|0<x <1}

Because S is the imagg of the connected set (0, 1] under a continuous map, S is connected.
Therefore, its closure S in R? is also connected. The set S is a classical example in topology
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y - N~ xx (0, 1)
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a b
P
Figure 24.4

called the topologist’s sine curve. 1t is illustrated in Figure 24.5; it equals the union of §
and the vertical interval 0 x [~1, 1]. We show that S is not path connected.

Suppose there is a path f : [a,c] — S beginning at the origin and ending at a point
of S. The set of those ¢ for which f(t) € 0x[—1, 1]is closed, so it has a largest element b.
Then f : [b,c] — S is a path that maps b into the vertical interval 0 x [—1, 1] and maps
the other points of [b, c] to points of S.

Replace {b, c] by {0, 1] for convenience; let f(t) = (x(#), y(t})). Then x(0) = 0,
while x(¢) > 0 and y(¢) = sin(1/x(t)) for t > 0. We show there is a sequence of points
t, — Osuchthat y(t,) = (—1)". Then the sequence y(t,) does not converge, contradicting
continuity of f.

To find #,, we proceed as follows: Given n, choose « with 0 < u < x(1/n) such that
sin(1/u) = (—1)". Then use the intermediate value theorem to find ¢, with0 < 1, < 1/n
such that x(¢,) = u.

("7}

Figure 24.5

Exercises

1. (a) Show that no two of the spaces (0, 1), (0, 1], and [0, 1] are homeomorphic.
[Hint: What happens if you remove a point from each of these spaces?)]
(b) Suppose that there exist imbeddings f : X — Y and g : Y — X. Show by
means of an example that X and Y need not be homeomorphic.
(¢) Show R” and R are not homeomorphic if n > 1.
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10.

11.

*12.
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. Let f : S — R be a continuous map. Show there exists a point x of S! such

that f(x) = f(—x).

. Let f : X — X be continuous. Show that if X = [0, 1], there is a point x such

that f(x) = x. The point x is called a fixed point of f. What happens if X
equals [0, 1) or (0, 1)?

. Let X be an ordered set in the order topology. Show that if X is connected, then

X 1s a linear continuum.

. Consider the following sets in the dictionary order. Which are linear continua?

(@) Z4 x [0, 1)
(®) [0,1) x Zy
(© [0,1) x[0,1]
(d) [0,1] x [0, 1)

. Show that if X is a well-ordered set, then X x [0, 1) in the dictionary order is a

linear continuum.

. (a) Let X and Y be ordered sets in the order topology. Show thatif f : X — Y

is order preserving and surjective, then f is a homeomorphism.

(b) Let X = ¥ = R, Given a positive integer n, show that the function f(x) =
x™ is order preserving and surjective. Conclude that its inverse, the nth root
function, is continuous.

(c) Let X be the subspace (—o0, —1) U [0, o) of R. Show that the function
f : X — R defined by setting f(x) = x+1ifx < —1,and f(x) = x if
x > 0, is order preserving and surjective. Is f a homeomorphism? Compare
with (a).

. (a) Is a product of path-connected spaces necessarily path connected?

(b) If A C X and A is path connected, is A necessarily path connected?

{(¢) If f : X — Y is continuous and X is path connected, is f(X) necessarily
path connected?

(d) If {Aq} is a collection of path-connected subspaces of X and if (| Ay # &,
is | J A4 necessarily path connected?

. Assume that R is uncountable. Show that if A is a countable subset of R?, then

R? — A is path connected. [Hint: How many lines are there passing through a
given point of R?7]

Show that if U is an open connected subspace of R?, then U is path connected.
[Hint: Show that given xo € U, the set of points that can be joined to x¢ by a
path in U is both open and closed in U ]

If A is a connected subspace of X, does it follow that Int A and Bd A are con-
nected? Does the converse hold? Justify your answers.

Recall that Sg denotes the minimal uncountable well-ordered set. Let L denote
the ordered set Sq x [0, 1) in the dictionary order, with its smallest element
deleted. The set L is a classical example in topology called the long line.
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Theorem. The long line is path connected and locally homeomorphic to R, but

it cannot be imbedded in R.

(a) Let X be an ordered set; leta < b < ¢ be points of X. Show that [a, ¢) has
the order type of [0, 1) if and only if both [a, b) and [b, ¢) have the order
type of [0, I).

(b) Let X be an ordered set. Let xo < x; < --- be an increasing sequence of
points of X; suppose b = sup{x;}. Show that [xo, b) has the order type of
[0, 1) if and only if each interval [x;, x;+1) has the order type of [0, 1).

(c) Let ag denote the smallest element of Sg;. For each element a of S, different
from ag, show that the interval [ag x 0,a x 0) of Sq x [0, 1) has the order
type of [0, 1). [Hint: Proceed by transfinite induction. Either a has an
immediate predecessor in Sq, or there is an increasing sequence a; in Sq
with a = sup{a;}.]

(d) Show that L is path connected.

(e) Show that every point of L has a neighborhood homeomorphic with an open
interval in R.

(f) Show that L cannot be imbedded in R, or indeed in R" for any n. [Hint:
Any subspace of R” has a countable basis for its topology.]

*§25 Components and Local Connectedness’

Given an arbitrary space X, there is a natural way to break it up into pieces that are
connected (or path connected). We consider that process now.

Definition. Given X, define an equivalence relation on X by setting x ~ y if there
is a connected subspace of X containing both x and y. The equivalence classes are
called the components (or the “connected components”) of X.

Symmetry and reflexivity of the relation are obvious. Transitivity follows by not-
ing that if A is a connected subspace containing x and y, and if B is a connected
subspace containing y and z, then A U B is a subspace containing x and z that is
connected because A and B have the point y in common.

The components of X can also be described as follows:

Theorem 25.1. The components of X are connected disjoint subspaces of X whose
union is X, such that each nonempty connected subspace of X intersects only one of
them.

Proof. Being equivalence classes, the components of X are disjoint and their union
is X. Each connected subspace A of X intersects only one of them. For if A intersects
the components C; and C; of X, say in points x; and x», respectively, then x; ~ x3
by definition; this cannot happen unless C; = C».

T This section will be assumed in Part II of the book.
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To show the component C is connected, choose a point xg of C. For each point x
of C, we know that xo ~ x, so there is a connected subspace A, containing xo and x.
By the result just proved, A, C C. Therefore,

c=_Ja-

xeC

Since the subspaces A, are connected and have the point xg in common, their union is
connected. a

Definition. We define another equivalence relation on the space X by defining x ~ y
if there is a path in X from x to y. The equivalence classes are called the path compo-
nents of X.

Let us show this is an equivalence relation. First we note that if there exists a path
f :la,b] - X from x to y whose domain is the interval [a, b], then there is also
a path g from x to y having the closed interval [c, d] as its domain. (This follows
from the fact that any two closed intervals in R are homeomorphic.) Now the fact that
x ~ x for each x in X follows from the existence of the constant path f : [a, b] - X
defined by the equation f(¢) = x for all t. Symmetry follows from the fact that if
f :10,1] - X is a path from x to y, then the “reverse path” g : [0, 1] — X defined
by g(t) = f(1 —t) is a path from y to x. Finally, transitivity is proved as follows: Let
f 0,11 — X be a path from x to y, and let g : [1,2] — X be a path from y to z.
We can “paste f and g together” to get a path h : [0, 2] — X from x to z; the path &
will be continuous by the “pasting lemma,” Theorem 18.3.

One has the following theorem, whose proof is similar to that of the theorem pre-
ceding:

Theorem 25.2.  The path components of X are path-connected disjoint subspaces
of X whose union is X, such that each nonempty path-connected subspace of X inter-
sects only one of them.

Note that each component of a space X is closed in X, since the closure of a
connected subspace of X is connected. If X has only finitely many components, then
each component is also open in X, since its complement is a finite union of closed sets.
But in general the components of X need not be open in X.

One can say even less about the path components of X, for they need be neither
open nor closed in X. Consider the following examples:

EXAMPLE 1.  If Q is the subspace of R consisting of the rational numbers, then each
component of Q consists of a single point. None of the components of Q are open in Q.

EXAMPLE 2.  The “topologist’s sine curve” S of the preceding section is a space that has
a single component (since it is connected) and two path components. One path component
is the curve S and the other is the vertical interval V = 0 x [—1, 1]. Note that S is open
in § but not closed, while V is closed but not open.

If one forms a space from § by deleting all points of V having rational second co-
ordinate, one obtains a space that has only one component but uncountably many path
components.
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Connectedness is a useful property for a space to possess. But for some purposes,
it is more important that the space satisfy a connectedness condition locally. Roughly
speaking, local connectedness means that each point has “arbitrarily small” neighbor-
hoods that are connected. More precisely, one has the following definition:

Definition. A space X is said to be locally connected at x if for every neighbor-
hood U of x, there is a connected neighborhood V of x contained in U. If X is locally
connected at each of its points, it is said simply to be locally connected. Similarly, a
space X is said to be locally path connected at x if for every neighborhood U of x,
there is a path-connected neighborhood V of x contained in U. If X is locally path
connected at each of its points, then it is said to be locally path connected.

EXAMPLE 3.  Each interval and each ray in the real line is both connected and locally
connected. The subspace [—1, 0) U (G, 1] of R is not connected, but it is locally connected.
The topologist’s sine curve is connected but not locally connected. The rationals Q are
neither connected nor locally connected.

Theorem 25.3. A space X is locally connected if and only if for every open set U
of X, each component of U is open in X.

Proof. Suppose that X is locally connected; let U be an open set in X; let C be a
component of U. If x is a point of C, we can choose a connected neighborhood V of x
such that V C U. Since V is connected, it must lie entirely in the component C of U.
Therefore, C is open in X.

Conversely, suppose that components of open sets in X are open. Given a point x
of X and a neighborhood U of x, let C be the component of U containing x. Now C
is connected; since it is open in X by hypothesis, X is locally connected at x. |

A similar proof holds for the following theorem:

Theorem 25.4. A space X is locally path connected if and only if for every open
set U of X, each path component of U is open in X.

The relation between path components and components is given in the following
theorem:

Theorem 25.5. If X is a topological space, each path component of X lies in a
component of X. If X is locally path connected, then the components and the path
components of X are the same.

Proof. Let C be a component of X; let x be a point of C; let P be the path component
of X containing x. Since P is connected, P C C. We wish to show that if X is locally
path connected, P = C. Suppose that P C C. Let Q denote the union of all the path
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components of X that are different from P and intersect C; each of them necessarily
lies in C, so that

C=PuUQ.

Because X is locally path connected, each path component of X is open in X. There-
fore, P (which is a path component) and Q (which is a union of path components)
are open in X, so they constitute a separation of C. This contradicts the fact that C is

connected. ]
Exercises
1. What are the components and path components of R,? What are the continuous

maps f : R = R,?

. (a) What are the components and path components of R (in the product topol-

ogy)?
(b) Consider R® in the uniform topology. Show that x and y lie in the same
component of R? if and only if the sequence

X—-y=(x1~y,x2—y2,...)

is bounded. [Hint: It suffices to consider the case where y = 0.]

(c) Give R® the box topology. Show that x and y lie in the same component
of R” if and only if the sequence x —y is “eventually zero.” [Hint: If x —y is
not eventually zero, show there is homeomorphism A of R“ with itself such
that h(x) is bounded and A(y) is unbounded.]

. Show that the ordered square is locally connected but not locally path connected.

What are the path components of this space?

. Let X be locally path connected. Show that every connected open set in X is

path connected.

. Let X denote the rational points of the interval [0, 1] x 0 of R. Let T denote the

union of all line segments joining the point p = 0 x 1 to points of X.

(a) Show that T is path connected, but is locally connected only at the point p.

(b) Find a subset of R? that is path connected but is locally connected at none
of its points.

. A space X is said to be weakly locally connected at x if for every neighbor-

hood U of x, there is a connected subspace of X contained in U that contains
a neighborhood of x. Show that if X is weakly locally connected at each of its
points, then X is locally connected. [Hint: Show that components of open sets
are open.]

. Consider the “infinite broom” X pictured in Figure 25.1. Show that X is not lo-

cally connected at p, but is weakly locally connected at p. [Hint: Any connected
neighborhood of p must contain all the points a;.]
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Figure 25.1

8. Let p : X — Y be a quotient map. Show that if X is locally connected, then Y

is locally connected. [Hint: If C is a component of the open set U of Y, show
that p~1(C) is a union of components of p~(U).]

9. Let G be atopological group; let C be the component of G containing the identity

element e. Show that C is a normal subgroup of G. [Hint: If x € G, then xC is
the component of G containing x.]

10. Let X be a space. Let us define x ~ y if there is no separation X = AU B of X

into disjoint open sets such that x € A and y € B.

(a) Show this relation is an equivalence relation. The equivalence classes are
called the quasicomponents of X .

(b) Show that each component of X lies in a quasicomponent of X, and that
the components and quasicomponents of X are the same if X is locally con-
nected.

(¢) Let K denote the set {1/n | n € Z+} and let —K denote the set {—1/n | n €
Z4 }. Determine the components, path components, and quasicomponents of
the following subspaces of R?:

A=(K x[0,1DU{0x0}U{0x 1}.
B =AU ([0, 1] x {0O}).
C=(Kx[0,1DU(—K x[-1,0DU (0, 1] x =K)U ([—1,0] x K).

§26 Compact Spaces

The notion of compactness is not nearly so natural as that of connectedness. From the
beginnings of topology, it was clear that the closed interval [a, b] of the real line had
a certain property that was crucial for proving such theorems as the maximum value
theorem and the uniform continuity theorem. But for a long time, it was not clear
how this property should be formulated for an arbitrary topological space. It used to
be thought that the crucial property of [a, b] was the fact that every infinite subset
of [a, b] has a limit point, and this property was the one dignified with the name of
compactness. Later, mathematicians realized that this formulation does not lie at the
heart of the matter, but rather that a stronger formulation, in terms of open coverings
of the space, is more central. The latter formulation is what we now call compactness.
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It is not as natural or intuitive as the former; some familiarity with it is needed before
its usefulness becomes apparent.

Definition. A collection A4 of subsets of a space X is said to cover X, or to be a
covering of X, if the union of the elements of A is equal to X. It is called an open
covering of X if its elements are open subsets of X.

Definition. A space X is said to be compact if every open covering 4 of X contains
a finite subcollection that also covers X.

EXAMPLE I. The real line R is not compact, for the covering of R by open intervals
A={nn+2)|neZ}

contains no finite subcollection that covers R.

ExXAMPLE 2. The following subspace of R is compact:
X=0}u(l/n|neZyl.

Given an open covering # of X, there is an element U of A containing 0. The set U
contains all but finitely many of the points 1/n; choose, for each point of X not in U, an
element of A containing it. The collection consisting of these elements of .4, along with
the element U, is a finite subcollection of + that covers X.

ExXAMPLE 3. Any space X containing only finitely many points is necessarily compact,
because in this case every open covering of X is finite.

EXAMPLE 4. The interval (0, 1] is not compact; the open covering
A={(1/n,1]|{neZi}

contains no finite subcollection covering (0, 1]. Nor is the interval (0, I) compact; the
same argument applies. On the other hand, the interval [0, 1] is compact; you are probably
already familiar with this fact from analysis. In any case, we shall prove it shortly.

In general, it takes some effort to decide whether a given space is compact or
not. First we shall prove some general theorems that show us how to construct new
compact spaces out of existing ones. Then in the next section we shall show certain
specific spaces are compact. These spaces include all closed intervals in the real line,
and all closed and bounded subsets of R”".

Let us first prove some facts about subspaces. If Y is a subspace of X, a collec-
tion 4 of subsets of X is said to cover Y if the union of its elements contains Y.

Lemma 26.1. LetY be a subspace of X. Then Y is compact if and only if every
covering of Y by sets open in X contains a finite subcollection covering Y .
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Proof.  Suppose that Y is compact and A = {A,}qey is a covering of Y by sets open
in X. Then the collection

{AsNY | e T}
is a covering of Y by sets open in Y; hence a finite subcollection
{Ag, NY, ..., Aq, NY}

covers Y. Then {Aq,, ..., Ag,} is a subcollection of » that covers Y.

Conversely, suppose the given condition holds; we wish to prove Y compact. Let
A’ = {AL} be a covering of Y by sets open in Y. For each «, choose a set A, open
in X such that

Al =AgNY.
The collection A = {A,} is a covering of Y by sets open in X. By hypothesis, some
finite subcollection {Aq,, . .., Aq,} covers Y. Then {A,. ..., A;, } is a subcollection
of A’ that covers Y. n

Theorem 26.2. Every closed subspace of a compact space is compact.

Proof. LetY be a closed subspace of the compact space X. Given a covering 4 of Y
by sets open in X, let us form an open covering B of X by adjoining to A the single
open set X — Y, that is,

B=AU[X-TY).

Some finite subcollection of B covers X. If this subcollection contains the set X — Y,
discard X — Y; otherwise, leave the subcollection alone. The resulting collection is a
finite subcollection of ~ that covers Y. [ |

Theorem 26.3. Every compact subspace of a Hausdorff space is closed.

Proof. Let Y be a compact subspace of the Hausdorff space X. We shall prove that
X — Y is open, so that Y is closed.

Let xo be a point of X — Y. We show there is a neighborhood of x that is disjoint
from Y. For each point y of Y, let us choose disjoint neighborhoods Uy, and Vy, of the
points xp and y, respectively (using the Hausdorff condition). The collection {V), | y €
Y} is a covering of Y by sets open in X therefore, finitely many of them Vy,, ..., V,
cover Y. The open set

V= V)’l UUV}’n
contains Y, and it is disjoint from the open set
U=UyN---NU,,

formed by taking the intersection of the corresponding neighborhoods of xg. For if z
is apoint of V, then z € V), for some i, hence z ¢ Uy, and so z ¢ U. See Figure 26.1.
Then U is a neighborhood of xg disjoint from Y, as desired. ]
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Figure 26.1

The statement we proved in the course of the preceding proof will be useful to us
later, so we repeat it here for reference purposes:

Lemma 26.4. IfY is a compact subspace of the Hausdorff space X and xg isnotinY,
then there exist disjoint open sets U and V of X containing xg and Y, respectively.

EXAMPLE 5. Once we prove that the interval [a, b] in R is compact, it follows from
Theorem 26.2 that any closed subspace of [a, 5] is compact. On the other hand, it follows
from Theorem 26.3 that the intervals (a, b] and (a, b) in R cannot be compact (which we
knew already) because they are not closed in the Hausdorff space R.

EXAMPLE 6.  One needs the Hausdorff condition in the hypothesis of Theorem 26.3.
Consider, for example, the finite complement topology on the real line. The only proper
subsets of R that are closed in this topology are the finite sets. But every subset of R is
compact in this topology, as you can check.

Theorem 26.5. The image of a compact space under a continuous map is compact.

Proof. Let f : X — Y be continuous; let X be compact. Let »A be a covering of the
set f(X) by sets open in Y. The collection

(F(A) | A € A)

is a collection of sets covering X; these sets are open in X because f is continuous.
Hence finitely many of them, say

FHAD, ..., (A,

cover X. Then the sets A1, ..., A, cover f(X). ]
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One important use of the preceding theorem is as a tool for verifying that a map is
a homeomorphism:

Theorem 26.6. Let f : X — Y be a bijective continuous function. If X is compact
and Y is Hausdorff, then f is a homeomorphism.

Proof.  'We shall prove that images of closed sets of X under f are closed in Y; this
will prove continuity of the map f~!. If A is closed in X, then A is compact, by
Theorem 26.2. Therefore, by the theorem just proved, f(A) is compact. Since Y is
Hausdorff, f(A) is closed in Y, by Theorem 26.3. [ ]

Theorem 26.7. The product of finitely many compact spaces is compact.

Proof. We shall prove that the product of two compact spaces is compact; the theo-
rem follows by induction for any finite product.

Step 1. Suppose that we are given spaces X and Y, with Y compact. Suppose that
xo is a point of X, and N is an open set of X x Y containing the “slice” xo x Y of
X x Y. We prove the following:

There is a neighborhood W of xo in X such that N contains the entire set
W xY.
The set W x Y is often called a fube about xg x Y.
First let us cover xg x Y by basis elements U x V (for the topology of X x Y)
lying in N. The space xp x Y is compact, being homeomorphic to Y. Therefore, we
can cover xg X Y by finitely many such basis elements

Uy x Vi,...,Up X V.

(We assume that each of the basis elements U; x V; actually intersects xg x Y, since
otherwise that basis element would be superfluous; we could discard it from the finite
collection and still have a covering of xo x Y.) Define

wW=UnNn---NU,.

The set W is open, and it contains xg because each set U; x V; intersects xg x Y.

We assert that the sets U; x V;, which were chosen to cover the slice xg x Y,
actually cover the tube W x Y. Let x x y be a point of W x Y. Consider the point
xo x y of the slice xg x Y having the same y-coordinate as this point. Now xg x y
belongs to U; x V; for some i, so that y € V;. Butx € Uj for every j (because x € W).
Therefore, we have x x y € U; x V;, as desired.

Since all the sets U; x V; lie in N, and since they cover W x Y, the tube W x Y
lies in N also. See Figure 26.2.

Step 2. Now we prove the theorem. Let X and Y be compact spaces. Let A
be an open covering of X x Y. Given xg € X, the slice xg x Y is compact and
may therefore be covered by finitely many elements Ay, ..., A, of 4. Their union
N = A;U-.-UA,, is an open set containing xp X Y; by Step 1, the open set N contains
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atube W x Y about xg x Y, where W is openin X. Then W x Y is covered by finitely
many elements Ay, ..., A, of A.

Thus, for each x in X, we can choose a neighborhood W, of x such that the tube
W, x Y can be covered by finitely many elements of 4. The collection of all the
neighborhoods W, is an open covering of X; therefore by compactness of X, there
exists a finite subcollection

(Wi, ..., Wi}
covering X. The union of the tubes
W] XY,...,WkXY

is all of X x Y; since each may be covered by finitely many elements of 4, so may
X x Y be covered. a

The statement proved in Step 1 of the preceding proof will be useful to us later, so
we repeat it here as a lemma, for reference purposes:

Lemma 26.8 (The tube lemma). Consider the product space X x Y, where Y is
compact. If N is.an open set of X x Y containing the slicexo x Y of X x Y, then N
contains some tube W x Y about xg x Y, where W is a neighborhood of xq in X.

EXAMPLE 7. The tube lemma is certainly not true if ¥ is not compact. For example, let
Y be the y-axis in RZ, and let

N ={x x y; x| < 1/ + D).

Then N is an open set containing the set O x R, but it contains no tube about 0 x R. It is
illustrated in Figure 26.3.
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Figure 26.3

There is an obvious question to ask at this point. Is the product of infinitely many
compact spaces compact? One would hope that the answer is “yes,” and in fact it is.
The result is important (and difficult) enough to be called by the name of the man who
proved it; it is called the Tychonoff theorem.

In proving the fact that a cartesian product of connected spaces is connected, one
proves it first for finite products and derives the general case from that. In proving
that cartesian products of compact spaces are compact, however, there is no way to
go directly from finite products to infinite ones. The infinite case demands a new
approach, and the proof is a difficult one. Because of its difficulty, and also to avoid
losing the main thread of our discussion in this chapter, we have decided to postpone it
until later. However, you can study it now if you wish; the section in which it is proved
(837) can be studied immediately after this section without causing any disruption in
continuity.

There is one final criterion for a space to be compact, a criterion that is formulated
in terms of closed sets rather than open sets. It does not look very natural nor very
useful at first glance, but it in fact proves to be useful on a number of occasions. First
we make a definition.

Definition. A collection C of subsets of X is said to have the finite intersection
property if for every finite subcollection

{Cy,...,Cp}
of C, the intersection C; N - - - N C, is nonempty.
Theorem 26.9. Let X be a topological space. Then X is compact if and only if

for every collection C of closed sets in X having the finite intersection property, the
intersection { | C of all the elements of C is nonempty.
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Proof. Given a collection A of subsets of X, let
C={X—-A|AcA

be the collection of their complements. Then the following statements hold:
(1) A is acollection of open sets if and only if € is a collection of closed sets.

(2) The collection A covers X if and only if the intersection ﬂCGO C of all the
elements of C is empty.

(3) The finite subcollection {A,, ..., A,} of A covers X if and only if the intersec-
tion of the corresponding elements C; = X — A; of C is empty.
The first statement is trivial, while the second and third follow from DeMorgan’s law:

X —(J A0 =X - 4a).

aet ae)

The proof of the theorem now proceeds in two easy steps: taking the contrapositive
(of the theorem), and then the complement (of the sets)!

The statement that X is compact is equivalent to saying: “Given any collection A
of open subsets of X, if A covers X, then some finite subcollection of A covers X.”
This statement is equivalent to its contrapositive, which is the following: “Given any
collection 4 of open sets, if no finite subcollection of A covers X, then A does not
cover X Letting C be, as earlier, the collection {X — A | A € A} and applying
(1)~(3), we see that this statement is in turn equivalent to the following: “Given any
collection € of closed sets, if every finite intersection of elements of C is nonempty,
then the intersection of all the elements of C is nonempty.” This is just the condition
of our theorem. u

A special case of this theorem occurs when we have a nested sequence C, O C; D
-++ D Cy D Cphyq D ... of closed sets in a compact space X. If each of the sets C, is
nonempty, then the collection € = {Cy},¢z, automatically has the finite intersection
property. Then the intersection
ne

neZy
is nonempty.
We shall use the closed set criterion for compactness in the next section to prove
the uncountability of the set of real numbers, in Chapter 5 when we prove the Ty-
chonoff theorem, and again in Chapter § when we prove the Baire category theorem.

Exercises

1. (a) Let 7 and 7' be two topologies on the set X; suppose that 7/ D 7. What
does compactness of X under one of these topologies imply about compact-
ness under the other?

(b) Show that if X is compact Hausdorff under both 7 and 7', then either 7
and 7 are equal or they are not comparable.
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. (a) Show that in the finite complement topology on R, every subspace is com-

pact.
(b) If R has the topology consisting of all sets A such that R — A is either
countable or all of R, is [0, 1] a compact subspace?

. Show that a finite union of compact subspaces of X is compact.
. Show that every compact subspace of a metric space is bounded in that metric

and is closed. Find a metric space in which not every closed bounded subspace
1s compact.

. Let A and B be disjoint compact subspaces of the Hausdorff space X. Show that

there exist disjoint open sets U and V containing A and B, respectively.

. Show that if f : X — Y is continuous, where X is compact and Y is Hausdorff,

then f is a closed map (that is, f carries closed sets to closed sets).

. Show that if Y is compact, then the projection 7y : X X ¥ — X is a closed map.
. Theorem. Let f:X — Y;letY be compact Hausdorff. Then f is continuous

if and only if the graph of f,
Gy =1lxx f(x)]xe€X),

isclosedin X x Y. [Hint: If Gy is closed and V is a neighborhood of f(xp),
then the intersection of Gy and X x (¥ — V) is closed. Apply Exercise 7.]
Generalize the tube lemma as follows:

Theorem. Let A and B be subspaces of X and Y, respectively; let N be an open
set in X x Y containing A x B. If A and B are compact, then there exist open
setsU and V in X and Y, respectively, such that

AxBCUXxXV CN.

(a) Prove the following partial converse to the uniform limit theorem:
Theorem. Let f, : X — R be a sequence of continuous functions, with
Ja(x) > f(x) foreachx € X. If f is continuous, and if the sequence f, is
monotone increasing, and if X is compact, then the convergence is uniform.
[We say that f,, is monotone increasing if f,(x) < fu4+1(x) for all n and x.]

(b) Give examples to show that this theorem fails if you delete the requirement
that X be compact, or if you delete the requirement that the sequence be
monotone. [Hint: See the exercises of §21.]

Theorem. Let X be a compact Hausdorff space. Let 4 be a collection of closed
connected subsets of X that is simply ordered by proper inclusion. Then

Y = ﬂA
AcA

is connected. [Hint: If C U D is a separation of Y, choose disjoint open sets U
and V of X containing C and D, respectively, and show that

(ea-@wuvy

A€A
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is not empty.]

12. Let p : X — Y be a closed continuous surjective map such that p~1({y}) is
compact, for each y € Y. (Such a map is called a perfect map.) Show that if Y
is compact, then X is compact. [Hint: If U is an open set containing p~ ' ({y})),
there is a neighborhood W of y such that p~!(W) is contained in U]

13. Let G be a topological group.

(a) Let A and B be subspaces of G. If A is closed and B is compact, show A - B
is closed. [Hint: If c is notin A - B, find a neighborhood W of ¢ such that
W - B~ is disjoint from A.]

(b) Let H be a subgroup of G; let p : G — G/H be the quotient map. If H is
compact, show that p is a closed map.

(c) Let H be a compact subgroup of G. Show that if G/H is compact, then G
is compact.

§27 Compact Subspaces of the Real Line

The theorems of the preceding section enable us to construct new compact spaces from
existing ones, but in order to get very far we have to find some compact spaces to start
with. The natural place to begin is the real line; we shall prove that every closed inter-
val in R is compact. Applications include the extreme value theorem and the uniform
continuity theorem of calculus, suitably generalized. We also give a characterization
of all compact subspaces of R”, and a proof of the uncountability of the set of real
numbers.

It turns out that in order to prove every closed interval in R is compact, we need
only one of the order properties of the real line—the least upper bound property. We
shall prove the theorem using only this hypothesis; then it will apply not only to the
real line, but to well-ordered sets and other ordered sets as well.

Theorem 27.1. Let X be a simply ordered set having the least upper bound property.
In the order topology, each closed interval in X is compact.

Proof. Step 1. Given a < b, let A be a covering of [a, b] by sets open in [a, b] in the
subspace topology (which is the same as the order topology). We wish to prove the
existence of a finite subcollection of 4 covering [a, b]. First we prove the following:
If x is a point of [a, b] different from b, then there is a point y > x of [a, b] such that
the interval [x, y] can be covered by at most two elements of 4.

If x has an immediate successor in X, let y be this immediate successor. Then
[x, y] consists of the two points x and y, so that it can be covered by at most two
elements of A. If x has no immediate successor in X, choose an element A of A
containing x. Because x # b and A is open, A contains an interval of the form [x, ¢),
for some c in [a, b]. Choose a point y in (x. ¢); then the interval [x, y] is covered by
the single element A of A.
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Step 2. Let C be the set of all points y > a of [a, b] such that the interval [a, y]
can be covered by finitely many elements of A. Applying Step 1 to the case x = q,
we see that there exists at least one such y, so C is not empty. Let ¢ be the least upper
bound of the set C;thena < ¢ < b.

Step 3. We show that ¢ belongs to C; that is, we show that the interval [a, ¢] can
be covered by finitely many elements of 4. Choose an element A of A containing c;
since A is open, it contains an interval of the form (d, c] for some d in [a, b]. If ¢ is
not in C, there must be a point z of C lying in the interval (d, c), because otherwise d
would be a smaller upper bound on C than ¢. See Figure 27.1. Since z is in C, the
interval [a, z] can be covered by finitely many, say n, elements of A. Now [z, c] lies
in the single element A of A, hence [a, c] = [a, z] U [z, c] can be covered by n + 1
elements of 4. Thus c is in C, contrary to assumption.

z yory

S W

a d c a c b

Figure 27.1 Figure 27.2

Step 4. Finally, we show that ¢ = b, and our theorem is proved. Suppose that
¢ < b. Applying Step 1 to the case x = ¢, we conclude that there exists a point y > ¢
of [a, b] such that the interval [c, y] can be covered by finitely many elements of A.
See Figure 27.2. We proved in Step 3 that ¢ is in C, so [a, c] can be covered by finitely
many elements of A. Therefore, the interval

la,y] =la,c]Ulc, y]
can also be covered by finitely many elements of 4. This means that y is in C, con-
tradicting the fact that ¢ is an upper bound on C. [ ]
Corollary 27.2. Every closed interval in R is compact.
Now we characterize the compact subspaces of R":
Theorem 27.3. A subspace A of R" is compact if and only if it is closed and is
bounded in the euclidean metric d or the square metric p.

Proof. 1t will suffice to consider only the metric p; the inequalities

p(x,y) <d(x,y) < /np(x,y)

imply that A is bounded under 4 if and only if it is bounded under p.
Suppose that A is compact. Then, by Theorem 26.3, it is closed. Consider the
collection of open sets

{Bo(0,m) | meZ,},
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whose union is all of R”. Some finite subcollection covers A. It follows that A C
B, (0, M) for some M. Therefore, for any two points x and y of A, we have p(x, y) <
2M. Thus A is bounded under p.

Conversely, suppose that A is closed and bounded under p; suppose that p(x, y) <
N for every pair x, y of points of A. Choose a point xg of A, and let p(xp,0) = b.
The triangle inequality implies that p(x,0) < N + b foreveryxin A. If P = N + b,
then A is a subset of the cube [— P, P]", which is compact. Being closed, A is also
compact. |

Students often remember this theorem as stating that the collection of compact
sets in a metric space equals the collection of closed and bounded sets. This statement
is clearly ridiculous as it stands, because the question as to which sets are bounded
depends for its answer on the metric, whereas which sets are compact depends only on
the topology of the space.

EXAMPLE 1. The unit sphere $"~! and the closed unit ball B" in R" are compact
because they are closed and bounded. The set

A={xx(1/x)|0<x <1}
is closed in R?, but it is not compact because it is not bounded. The set
S={xx(sin(1/x)) |0 < x <1}
is bounded in R, but it is not compact because it is not closed.

Now we prove the extreme value theorem of calculus, in suitably generalized form.

Theorem 27.4 (Extreme value theorem). Let f : X — Y be continuous, where Y
is an ordered set in the order topology. If X is compact, then there exist points ¢ and d
in X such that f(c) < f(x) < f(d) forevery x € X.

The extreme value theorem of calculus is the special case of this theorem that
occurs when we take X to be a closed interval in R and Y to be R.

Proof. Since f is continuous and X is compact, the set A = f(X) is compact. We

show that A has a largest element M and a smallest element m. Then since m and M

belong to A, we must have m = f(c) and M = f(d) for some points ¢ and 4 of X.
If A has no largest element, then the collection

{(—=00,a) | a € A}
forms an open covering of A. Since A is compact, some finite subcollection
{(-m7 al)a ceey (_m’ an)}

covers A. If g; is the largest of the elements ay, . . . a,, then g; belongs to none of these
sets, contrary to the fact that they cover A. .
A similar argument shows that A has a smallest element. |
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Now we prove the uniform continuity theorem of calculus. In the process, we
are led to introduce a new notion that will prove to be surprisingly useful, that of a
Lebesgue number for an open covering of a metric space. First, a preliminary notion:

Definition. Let (X, d) be a metric space; let A be a nonempty subset of X. For each
x € X, we define the distance from x to A by the equation

d(x, A) = inf{d(x,a) | a € A}.

It i1s easy to show that for fixed A, the function d(x, A) is a continuous function
of x: Given x, y € X, one has the inequalities

d(x,A) <d(x,a) <d(x,y)+d(y,a),
for each a € A. It follows that
d(x,A) —d(x,y) < infd(y,a) = d(y, A),
so that
d(x,A) —d(y, A) <d(x, ).

The same inequality holds with x and y interchanged; continuity of the function
d(x, A) follows.

Now we introduce the notion of Lebesgue number. Recall that the diameter of a
bounded subset A of a metric space (X, d) is the number

sup{d(ay, a2) | a1, a; € A}.

Lemma 27.5 (The Lebesgue number lemma). Let A be an open covering of the
metric space (X, d). If X is compact, there is a § > O such that for each subset of X
having diameter less than &, there exists an element of A containing it.

The number § is called a Lebesgue number for the covering A.

Proof. Let A be an open covering of X. If X itself is an element of A, then any
positive number is a Lebesgue number for 4. So assume X is not an element of +4.

Choose a finite subcollection {A1, ..., A,} of A that covers X. For each i, set
C; = X — A;, and define f : X — R by letting f(x) be the average of the numbers
d(x, C;). That is, ‘

1 n
fO)= =3 dx, Co.
i=1

We show that f(x) > Oforall x. Given x € X, choosei sothat x € A;. Then choose ¢
so the e-neighborhood of x lies in 4;. Then d(x, C;) > €, sothat f(x) > €/n.
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Since f is continuous, it has a minimum value §; we show that § is our required
Lebesgue number. Let B be a subset of X of diameter less than §. Choose a point xg
of B; then B lies in the 3-neighborhood of x¢. Now

where d(xo, Cy,) is the largest of the numbers d(xo, C;). Then the §-neighborhood
of xg is contained in the element A,, = X — C,, of the covering #A. [ ]

Definition. A function f from the metric space (X, dx) to the metric space (Y, dy)
is said to be uniformly continuous if given ¢ > 0, there is a § > Q such that for every
pair of points xg, x1 of X,

dx(x0, x1) < 8 == dy(f(x0), f(x1)) < €.

Theorem 27.6 (Uniform continuity theorem). Let f : X — Y be a continuous
map of the compact metric space (X, dx) to the metric space (Y,dy). Then f is
uniformly continuous.

Proof. Given € > (), take the open covering of Y by balls B(y, €/2) of radius €/2.
Let + be the open covering of X by the inverse images of these balls under f. Choose é
to be a Lebesgue number for the covering »4. Then if x; and x, are two points of X
such that dx (x1, x2) < §, the two-point set {x1, x2} has diameter less than §, so that
its image { f (x1), f(x2)} lies in some ball B(y, €/2). Then dy(f(x1), f(x2)) < €, as
desired. n

Finally, we prove that the real numbers are uncountable. The interesting thing
about this proof is that it involves no algebra at all—no decimal or binary expansions
of real numbers or the like—just the order properties of R.

Definition. If X is a space, a point x of X is said to be an isolated point of X if the
one-point set {x} is open in X.

Theorem 27.7. Let X be a nonempty compact Hausdorff space. If X has no isolated
points, then X is uncountable.

Proof. Step 1. We show first that given any nonempty open set U of X and any
point x of X, there exists a nonempty open set V contained in U such that x ¢ V.

Choose a point y of U different from x; this is possible if x is in U because x is not
an isolated point of X and it is possible if x is not in U simply because U is nonempty.
Now choose disjoint open sets W; and W, about x and y, respectively. Then the set
V = W3 N U is the desired open set; it is contained in U, it is nonempty because it
contains y, and its closure does not contain x. See Figure 27.3.

Step 2. We show that given f : Z, -> X, the function f is not surjective. It
follows that X is uncountable.
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X or x

Figure 27.3

Let x, = f(n). Apply Step 1 to the nonempty open set U = X to choose a

nonempty open set Vi C X such that V; does not contain x;. In general, given V-t
open and nonempty, choose V, to be a nonempty open set such that V, C V,_; and V,
does not contain x,. Consider the nested sequence

VioVv -

of nonempty closed sets of X. Because X is compact, there is a point x € () V,, by
Theorem 26.9. Now x cannot equal x, for any #, since x belongs to V,, and x,, does

not.

Corollary 27.8. Every closed interval in R is uncountable.

Exercises

1.

2.

Prove that if X is an ordered set in which every closed interval is compact, then X
has the least upper bound property.

Let X be a metric space with metric d; let A C X be nonempty.
(a) Show that d(x, A) = 0if and only if x € A.

(b) Show that if A is compact, d(x, A) = d(x, a) for some a € A.
(c) Define the e-neighborhood of A in X to be the set

U(A,e) ={x | d(x, A) < €}.

Show that U (A, €) equals the union of the open balls B;(a. €) for a € A.
(d) Assume that A is compact; let U be an open set containing A. Show that
some e-neighborhood of A is contained in U.
(e) Show the result in (d) need not hold if A is closed but not compact.

Recall that Rg denotes R in the K -topology.
(a) Show that [0, 1] is not compact as a subspace of Rg.
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(b) Show that Ry is connected. [Hint: (—o0, 0) and (0, oo) inherit their usual
topologies as subspaces of Ry .]
(c) Show that Ry is not path connected.
4. Show that a connected metric space having more than one point is uncountable.
5. Let X be a compact Hausdorff space; let { A, } be a countable collection of closed
sets of X. Show that if each set A, has empty interior in X, then the union |_J A,
has empty interior in X. [Hint: Imitate the proof of Theorem 27.7.]
This is a special case of the Baire category theorem, which we shall study in
Chapter 8.
6. Let Ap be the closed interval [0, 1] in R. Let A be the set obtained from Ag by
deleting its “middle third” (%, %). Let A; be the set obtained from A; by deleting
its “middle thirds” (%, %) and (%, %). In general, define A, by the equation

X 1+3k 243k
AnzAn—l“U( 3 3n )
k=0

The intersection

C= () 4n

HEZ+

is called the Cantor set; it is a subspace of [0, 1].

{a) Show that C is totally disconnected.

(b) Show that C is compact.

(c) Show that each set A, is a union of finitely many disjoint closed intervals of
length 1/3"; and show that the end points of these intervals lie in C.

(d) Show that C has no isolated points.

(e) Conclude that C is uncountable.

§28 Limit Point Compactness

As indicated when we first mentioned compact sets, there are other formulations of
the notion of compactness that are frequently useful. In this section we introduce
one of them. Weaker in general than compactness, it coincides with compactness for
metrizable spaces.

Definition. A space X is said to be limit point compact if every infinite subset of X
has a limit point.

In some ways this property is more natural and intuitive than that of compactness.
In the early days of topology, it was given the name “compactness,” while the open
covering formulation was called “bicompactness.” Later, the word “compact” was
shifted to apply to the open covering definition, leaving this one to search for a new
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name. It still has not found a name on which everyone agrees. On historical grounds,
some call it “Fréchet compactness”; others call it the “Bolzano-Weierstrass property.”
We have invented the term “limit point compactness.” It seems as good a term as any;
at least it describes what the property is about.

Theorem 28.1. Compactness implies limit point compactness, but not conversely.

Proof. Let X be a compact space. Given a subset A of X, we wish to prove that if A
is infinite, then A has a limit point. We prove the contrapositive—if A has no limit
point, then A must be finite.

So suppose A has no limit point. Then A contains all its limit points, so that A is
closed. Furthermore, for each a € A we can choose a neighborhood U, of a such that
U, intersects A in the point a alone. The space X is covered by the open set X — A
and the open sets {/;; being compact, it can be covered by finitely many of these sets.
Since X — A does not intersect A, and each set U, contains only one point of A, the
set A must be finite. a

EXAMPLE 1. Let Y consist of two points; give Y the topology consisting of Y and
the empty set. Then the space X = Z, x Y is limit point compact, for every nonempty
subset of X has a limit point. It is not compact, for the covering of X by the open sets
U, = {n} x Y has no finite subcollection covering X.

EXAMPLE 2.  Here is a less trivial example. Consider the minimal uncountable well-
ordered set Sg, in the order topology. The space S is not compact, since it has no largest
element. However, it is limit point compact: Let A be an infinite subset of Sg. Choose a
subset B of A that is countably infinite. Being countable, the set B has an upper bound b
in Sq; then B is a subset of the interval [ag, b] of Sg, where gq is the smallest element
of Sg;. Since Sq has the least upper bound property, the interval [ag, b] is compact. By the
preceding theorem, B has a limit point x in [ag, b]. The point x is also a limit point of A.
Thus Sg, is limit point compact.

We now show these two versions of compactness coincide for metrizable spaces;
for this purpose, we introduce yet another version of compactness called sequential
compactness. This result will be used in Chapter 7.

Definition. Let X be a topological space. If (x,) is a sequence of points of X, and if
ny <) <-:--- < Nj <---

is an increasing sequence of positive integers, then the sequence (y;) defined by setting
yi = Xp,; is called a subsequence of the sequence (x,). The space X is said to be
sequentially compact if every sequence of points of X has a convergent subsequence.

*Theorem 28.2. Let X be a metrizable space. Then the following are equivalent:
(1) X is compact.
(2) X is limit point compact.
(3) X is sequentially compact.
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Proof. 'We have already proved that (1) = (2). To show that (2) = (3), assume
that X is limit point compact. Given a sequence (x,) of points of X, consider the set
A = {x, | n € Z;}. If the set A is finite, then there is a point x such that x = x,, for
infinitely many values of n. In this case, the sequence (x,) has a subsequence that is
constant, and therefore converges trivially. On the other hand, if A is infinite, then A
has a limit point x. We define a subsequence of (x,) converging to x as follows: First
choose n1 so that

Xn, € B(x, 1).

Then suppose that the positive integer n; _; is given. Because the ball B(x, 1/i) inter-
sects A in infinitely many points, we can choose an index n; > n;_; such that

Xn, € B(x,1/i).

Then the subsequence x, xp,, ... converges to x.

Finally, we show that (3) = (1). This is the hardest part of the proof.

First, we show that if X is sequentially compact, then the Lebesgue number lemma
holds for X. (This would follow from compactness, but compactness is what we are
trying to prove!) Let -4 be an open covering of X. We assume that there is no § > 0
such that each set of diameter less than § has an element of 4 containing it, and derive
a contradiction.

Our assumption implies in particular that for each positive integer n, there exists a
set of diameter less than 1/ that is not contained in any element of A; let C,, be such a
set. Choose a point x, € C,, for each n. By hypothesis, some subsequence (x,,) of the
sequence (x,) converges, say to the point a. Now a belongs to some element A of the
collection »; because A is open, we may choose an € > () such that B(a,¢) C A. If i
is large enough that 1/n; < €/2, then the set C,, lies in the € /2-neighborhood of xp, ; if
i is also chosen large enough that d(x,,, a) < €/2, then C,, lies in the €-neighborhood
of a. But this means that C,; C A, contrary to hypothesis.

Second, we show that if X is sequentially compact, then given € > 0, there exists
a finite covering of X by open e-balls. Once again, we proceed by contradiction.
Assume that there exists an € > 0 such that X cannot be covered by finitely many
e-balls. Construct a sequence of points x, of X as follows: First, choose x; to be any
point of X. Noting that the ball B(xj, €) is not all of X (otherwise X could be covered
by a single e-ball), choose x; to be a point of X not in B(x, €). In general, given
X1, ..., Xn, choose x,4) to be a point not in the union

B(x1,€)U---UB(xy, €),

using the fact that these balls do not cover X. Note that by construction d (x,, 41, x;) >
efori =1, ..., n. Therefore, the sequence (x,) can have no convergent subsequence;
in fact, any ball of radius €/2 can contain x, for at most one value of n.

Finally, we show that if X is sequentially compact, then X is compact. Let A be
an open covering of X. Because X is sequentially compact, the open covering A has
a Lebesgue number 8. Let € = §/3; use sequential compactness of X to find a finite
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covering of X by open e-balls. Each of these balls has diameter at most 28/3, so it

lies

in an element of A. Choosing one such element of A for each of these e-balls, we

obtain a finite subcollection of A that covers X. [ ]

EXAMPLE 3. Recall that Sg denotes the minimal uncountable well-ordered set Sq with
the point  adjoined. (In the order topology, €2 is a limit point of Sg, which is why we
introduced the notation Sg for S U {2}, back in §10.) It is easy to see that the space Sa
is not metrizable, for it does not satisfy the sequence lemma: The point £ is a limit point
of Sq; but it is not the limit of a sequence of points of Sq, for any sequence of points of S
has an upper bound in Sg. The space Sg, on the other hand, does satisfy the sequence
lemma, as you can readily check. Nevertheless, S is not metrizable, for it is limit point
compact but not compact.

Exercises

1

2.

. Give [0, 1]¢ the uniform topology. Find an infinite subset of this space that has

no limit point.

Show that [0, 1] is not limit point compact as a subspace of Ry.

3. Let X be limit point compact.

(a) If f : X — Y iscontinuous, does it follow that f(X) is limit point compact?

(b) If A is a closed subset of X, does it follow that A is limit point compact?

(c) If X is a subspace of the Hausdorff space Z, does it follow that X is closed
in Z?

We comment that it is not in general true that the product of two limit point com-

pact spaces is limit point compact, even if the Hausdorff condition is assumed.

But the examples are fairly sophisticated. See [S-S], Example 112.

4. A space X is said to be countably compact if every countable open covering

of X contains a finite subcollection that covers X. Show that for a T} space X,
countable compactness is equivalent to limit point compactness. [Hint: If no
finite subcollection of U, covers X, choose x, ¢ U; U - .- U Uy, for each n.]

5. Show that X is countably compact if and only if every nested sequence C; D

C2 D -+ - of closed nonempty sets of X has a nonempty intersection.
Let (X, d) be a metric space. If f : X — X satisfies the condition

d(f(x), f(y) =d(x,y)

forall x, y € X, then f is called an isometry of X. Show that if f is an isometry
and X is compact, then f is bijective and hence a homeomorphism. [Hins: If
a ¢ f(X), choose € so that the e-neighborhood of a is disjoint from f(X). Set
x1 = a,and x,4+1 = f(x,) in general. Show that d(x,, x,,) > € forn # m.]

Let (X, d) be a metric space. If f satisfies the condition

d(f(x), f(y)) <d(x,y)
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for all x,y € X with x # y, then f is called a shrinking map. If there is a
number « < 1 such that

d(f(x), f(y)) <ad(x,y)

forall x, y € X, then f is called a contraction. A fixed point of f is a point x

such that f(x) = x.

(a) If f is a contraction and X is compact, show f has a unique fixed point.
[Hint: Define f! = f and f"*! = f o f". Consider the intersection A of

. thesets A, = f"(X).]

(b) Show more generally that if f is a shrinking map and X is compact, then f
has a unique fixed point. [Hint: Let A be as before. Given x € A, choose x,
sothatx = f n+1(x,). If a is the limit of some subsequence of the sequence
yn = f"(x,), show thata € A and f(a) = x. Conclude that A = f(A), so
that dilam A = 0.]

(¢) Let X = [0,1]. Show that f(x) = x — x2/2 maps X into X and is a
shrinking map that is not a contraction. [Hint: Use the mean-value theorem
of calculus.]

(d) The result in (a) holds if X is a complete metric space, such as R; see the
exercises of §43. The result in (b) does not: Show that the map f : R —
R given by f(x) = {x + (x2 + 1)!/2]/2 is a shrinking map that is not a
contraction and has no fixed point.

§29 Local Compactness

In this section we study the notion of local compactness, and we prove the basic the-
orem that any locally compact Hausdorff space can be imbedded in a certain compact
Hausdorff space that is called its one-point compactification.

Definition. A space X is said to be locally compact at x if there is some compact
subspace C of X that contains a neighborhood of x. If X is locally compact at each of
its points, X is said simply to be locally compact.

Note that a compact space is automatically locally compact.

EXAMPLE 1. The real line R is locally compact. The point x lies in some interval (a, b),
which in turn is contained in the compact subspace [a, b]. The subspace Q of rational
numbers is not locally compact, as you can check.

EXAMPLE 2.  The space R" is locally compact; the point x lies in some basis element
(ai, by) x---x(ay, by), which in turn lies in the compact subspace [ay, by] % - - - X [a,, bp].
The space R® is not locally compact; none of its basis elements are contained in compact
subspaces. For if :

B=1(a;.by) x ---x(@@.b) xRx - xRx-...



§29 Local Compactness 183

were contained in a compact subspace, then its closure
B=1[a;,b1] x - X [@n, bp] X R x - -

would be compact, which it is not.

EXAMPLE 3. Every simply ordered set X having the least upper bound property is
locally compact: Given a basis element for X, it is contained in a closed interval in X,
which is compact.

Two of the most well-behaved classes of spaces to deal with in mathematics are the
metrizable spaces and the compact Hausdorff spaces. Such spaces have many useful
properties, which one can use in proving theorems and making constructions and the
like. If a given space is not of one of these types, the next best thing one can hope for is
that it is a subspace of one of these spaces. Of course, a subspace of a metrizable space
is itself metrizable, so one does not get any new spaces in this way. But a subspace of a
compact Hausdorff space need not be compact. Thus arises the question: Under what
conditions is a space homeomorphic with a subspace of a compact Hausdorff space?
We give one answer here. We shall return to this question in Chapter 5 when we study
compactifications in general.

Theorem 29.1. Let X be a space. Then X is locally compact Hausdorff if and only
if there exists a space Y satisfying the following conditions:

(1) X is a subspace of Y.

(2) The setY — X consists of a single point.

(3) Y is a compact Hausdorff space.
IfY and Y’ are two spaces satisfying these conditions, then there is a homeomorphism
of Y with Y’ that equals the identity map on X.

Proof. Step 1. We first verify uniqueness. Let Y and Y’ be two spaces satisfying
these conditions. Define & : ¥ — Y’ by letting 2 map the single point p of ¥ — X to
the point g of Y’ — X, and letting 4 equal the identity on X. We show that if U is open
in Y, then h(U) is open in Y'. Symmetry then implies that 4 is a homeomorphism.

First, consider the case where U does not contain p. Then A(U) = U. Since U is
open in Y and is contained in X, it is open in X. Because X is open in Y’, the set U is
also open in Y’, as desired.

Second, suppose that U contains p. Since C = Y — U is closed in Y, it is compact
as a subspace of Y. Because C is contained in X, it is a compact subspace of X.
Then because X is a subspace of Y’, the space C is also a compact subspace of Y'.
Because Y’ is Hausdorff, C is closed in Y’, so that /(U) = Y’ — C is open in V', as
desired.

Step 2. Now we suppose X is locally compact Hausdortf and construct the space Y.
Step 1 gives us an idea how to proceed. Let us take some object that is not a point
of X, denote it by the symbol co for convenience, and adjoin it to X, forming the set
Y = X U {o0}. Topologize Y by defining the collection of open sets of Y to consist
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of (1) all sets U that are open in X, and (2) all sets of the form ¥ — C, where C is a
compact subspace of X.

We need to check that this collection is, in fact, a topology on Y. The empty set is
a set of type (1), and the space Y is a set of type (2). Checking that the intersection of
two open sets is open involves three cases:

U nNnU; is of type (1).
(Y—-C)NY —Cr)=Y —(CLUCy) is of type (2).
UunY-cp=u,nX—-<Cy) isoftype(l),

because C is closed in X. Similarly, one checks that the union of any collection of
open sets is open:

JUa=v is of type (1).
Uy -cp=r-(cp=r-c is of type (2).
UouvJr -cpy=vu@r -0 =y -(-v,

which is of type (2) because C — U is a closed subspace of C and therefore compact.

Now we show that X is a subspace of Y. Given any open set of Y, we show its
intersection with X is open in X. If U is of type (1), then U N X = U; if ¥ — C is of
type (2), then (Y — C) N X = X — C; both of these sets are open in X. Conversely,
any set open in X is a set of type (1) and therefore open in Y by definition.

To show that Y is compact, let A be an open covering of Y. The collection 4 must
contain an open set of type (2), say ¥ — C, since none of the open sets of type (1) con-
tain the point co. Take all the members of 4 different from ¥ — C and intersect them
with X; they form a collection of open sets of X covering C. Because C is compact,
finitely many of them cover C; the corresponding finite collection of elements of 4
will, along with the element Y — C, cover all of Y.

To show that Y is Hausdorff, let x and y be two points of Y. If both of them lie
in X, there are disjoint sets U and V open in X containing them, respectively. On the
other hand, if x € X and y = 00, we can choose a compact set C in X containing
a neighborhood U of x. Then U and Y — C are disjoint neighborhoods of x and oo,
respectively, in Y.

Step 3. Finally, we prove the converse. Suppose a space Y satisfying conditions
(1)—(3) exists. Then X is Hausdorff because it is a subspace of the Hausdorff space Y.
Given x € X, we show X is locally compact at x. Choose disjoint open sets U and V
of Y containing x and the single point of ¥ — X, respectively. Thentheset C =Y —V
is closed in Y, so it is a compact subspace of Y. Since C lies in X, it is also compact
as a subspace of X; it contains the neighborhood U of x. [ ]

If X itself should happen to be compact, then the space Y of the preceding theorem
is not very interesting, for it is obtained from X by adjoining a single isolated point.
However, if X is not compact, then the point of ¥ — X is a limit point of X, so that
X=Y.



§29 Local Compactness 185

Definition. If Y is a compact Hausdorff space and X is a proper subspace of Y whose
closure equals Y, then Y is said to be a compactification of X. If Y — X equals a single
point, then Y is called the one-point compactification of X.

We have shown that X has a one-point compactification Y if and only if X is
a locally compact Hausdorff space that is not itself compact. We speak of Y as “the”
one-point compactification because Y is uniquely determined up to a homeomorphism.

EXAMPLE 4.  The one-point compactification of the real line R is homeomorphic with
the circle, as you may readily check. Similarly, the one-point compactification of R? is
homeomorphic to the sphere 2. If R? is looked at as the space C of complex numbers,
then C U {00} is called the Riemann sphere, or the extended complex plane.

In some ways our definition of local compactness is not very satisfying. Usually
one says that a space X satisfies a given property “locally” if every x € X has “arbi-
trarily small” neighborhoods having the given property. Our definition of local com-
pactness has nothing to do with “arbitrarily small” neighborhoods, so there is some
question whether we should call it local compactness at all.

Here is another formulation of local compactness, one more truly “local” in nature;
it is equivalent to our definition when X is Hausdorff.

Theorem 29.2. Let X be a Hausdorff space. Then X is locally compact if and only
if given x in X, and given a neighborhood U of x, there is a neighborhood V of x such
that V is compactand V C U.

Proof  Clearly this new formulation implies local compactness; the set C = V is the
desired compact set containing a neighborhood of x. To prove the converse, suppose X
is locally compact; let x be a point of X and let U be a neighborhood of x. Take the
one-point compactification Y of X, and let C be the set Y — U. Then C is closed
in Y, so that C is a compact subspace of Y. Apply Lemma 26.4 to choose disjoint
open sets V and W containing x and C, respectively. Then the closure V of V in Y is
compact; furthermore, Vis disjoint from C, so that V C U, as desired. [ ]

Corollary 29.3. Let X be locally compact Hausdorff; let A be a subspace of X. If A
is closed in X or open in X, then A is locally compact.

Proof. Suppose that A is closed in X. Given x € A, let C be a compact subspace
of X containing the neighborhood U of x in X. Then C N A is closed in C and thus
compact, and it contains the neighborhood U N A of x in A. (We have not used the
Hausdorff condition here.)

Suppose now that A is open in X. Given x € A, we apply the preceding theorem
to choose a neighborhood V of x in X such that V is compact and V C A. Then
C = V is a compact subspace of A containing the neighborhood V of x in A. a

Corollary 29.4. A space X is homeomorphic to an open subspace of a compact
Hausdorff space if and only if X is locally compact Hausdorff.

Proof.  This follows from Theorem 29.1 and Corollary 29.3. [ |
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Exercises

1. Show that the rationals Q are not locally compact.

. Let {X4} be an indexed family of nonempty spaces.

(a) Show that if [] X is locally compact, then each X, is locally compact and
X« 1s compact for all but finitely many values of «.
(b) Prove the converse, assuming the Tychonoff theorem.

. Let X be a locally compact space. If f : X — Y is continuous, does it follow

that f(X) is locally compact? What if f is both continuous and open? Justify
your answer.

4. Show that [0, 1]® is not locally compact in the uniform topology.

10.

*11.

LI f @ Xy — X3 is a homeomorphism of locally compact Hausdorff spaces,

show f extends to a homeomorphism of their one-point compactifications.

. Show that the one-point compactification of R is homeomorphic with the cir-

cle s'.

. Show that the one-point compactification of Sg is homeomorphic with Sg.

. Show that the one-point compactification of Z, is homeomorphic with the sub-

space (0} U {1/n | ne€Z;}of R.

. Show that if G is a locally compact topological group and H is a subgroup, then

G/ H is locally compact.
Show that if X is a Hausdorff space that is locally compact at the point x, then

for each neighborhood U of x, there is a neighborhood V of x such that V is
compactand V C U.

Prove the following:

(a) Lemma. Ifp : X — Y is a quotient map and if Z is a locally compact
Hausdorff space, then the map

m=pXiz: XxZ—>YxZ2Z

is a quotient map.
[Hint: 1f m~!(A) is open and contains x x y, choose open sets U; and V
with V compact, such that x x y € Uy x V and U x VC 7~ Y(A). Given
U; xV C 7w~ 1(A), use the tube lemma to choose an open set U; ;| containing
p~Y(p(U;)) suchthat U; .y x V C 7~ 1(A). Let U = {J U;; show that U x V
is a saturated neighborhood of x x y that is contained in al (A).]
An entirely different proof of this result will be outlined in the exercises
of §46.

(b) Theorem. Letp: A — Bandq : C — D be quotient maps. If B and C
are locally compact Hausdorff spaces, then p x q : AX C - B x Disa
quotient map.
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*Supplementary Exercises: Nets

We have already seen that sequences are “adequate” to detect limit points, continuous
functions, and compact sets in metrizable spaces. There is a generalization of the
notion of sequence, called a net, that will do the same thing for an arbitrary topological
space. We give the relevant definitions here, and leave the proofs as exercises. Recall
that a relation < on a set A is called a partial order relation if the following conditions
hold:

(1) @ < a forall a.

2) Ifa < Band B < a, thena = B.

3) fa<xpBand B <y, thena < y.
Now we make the following definition:

A directed set J is a set with a partial order < such that for each pair «, 8 of
elements of J, there exists an element y of J having the property that @ < y and
p=y.

1. Show that the following are directed sets:

(a) Any simply ordered set, under the relation <.

(b) The collection of all subsets of a set S, partially ordered by inclusion (that
is,A<Bif AC B).

(c) A collection A of subsets of S that is closed under finite intersections, par-
tially ordered by reverse inclusion (thatis A < Bif A D B).

(d) The collection of all closed subsets of a space X, partially ordered by inclu-
sion.

2. A subset K of J is said to be cofinal in J if for each @ € J, there exists 8 € K
such that @ < S. Show that if J is a directed set and K is cofinal in J, then K is
a directed set.

3. Let X be a topological space. A net in X is a function f from a directed set J
into X. If « € J, we usually denote f () by x4. We denote the net f itself by
the symbol (x4 )qes, O merely by (x,) if the index set is understood.

The net (x,) is said to converge to the point x of X (written x, — x) if for
each neighborhood U of x, there exists « € J such that

ajﬂ:>Xﬁ€U.

Show that these definitions reduce to familiar ones when J = Z...
4. Suppose that

(Xxg)acsy —> xin X and (Ya)aeg —> yinY.

Show that (xo X ¥o) — x X yin X x Y.
5. Show that if X is Hausdorff, a net in X converges to at most one point.
6. Theorem. Let A € X. Then x € A if and only if there is a net of points of A
converging to x. .
[Hint: To prove the implication =, take as index set the collection of all neigh-
borhoods of x, partially ordered by reverse inclusion.]



188

10.

11.

12.

Connectedness and Compactness Ch. 3

. Theorem. Letf : X — Y. Then f is continuous if and only if for every con-

vergent net (x,) in X, converging to x, say, the net (f (x4)) converges to f(x).

. Let f:J — Xbeanetin X; let f(a) = xo. If K is a directed set and

g : K — J is a function such that

) i=xj=g80) =80,

(ii) g(K)iscofinalin J,
then the composite function f o g : K — X is called a subnet of (x,). Show
that if the net (x,) converges to x, so does any subnet.

. Let (xy)acs be anetin X. We say that x is an accumulation point of the net (x4)

if for each neighborhood U of x, the set of those « for which x4 € U is cofinal
inJ.
Lemma. The net (x,) has the point x as an accumulation point if and only if
some subnet of (xo) converges to x.

[Hint: To prove the implication =, let K be the set of all pairs (o, U) where
a € J and U is a neighborhood of x containing x,. Define (¢, U) < (8, V) if
a < fand V C U. Show that X is a directed set and use it to define the subnet.]

Theorem. X is compact if and only if every net in X has a convergent subnet.
[Hint: To prove the implication =, let By = {xg | @ < B} and show that
{By} has the finite intersection property. To prove <, let 4 be a collection of
closed sets having the finite intersection property, and let B be the collection of
all finite intersections of elements of A, partially ordered by reverse inclusion.]

Corollary. Let G be a topological group; let A and B be subsets of G. If A is
closed in G and B is compact, then A - B is closed in G.
[Hint: First give a proof using sequences, assuming that G is metrizable.]

Check that the preceding exercises remain correct if condition (2) is omitted from
the definition of directed ser. Many mathematicians use the term “directed set”
in this more general sense.



Chapter 4

Countability and Separation
Axioms

The concepts we are going to introduce now, unlike compactness and connectedness,
do not arise naturally from the study of calculus and analysis. They arise instead from a
deeper study of topology itself. Such problems as imbedding a given space in a metric
space or in a compact Hausdorff space are basically problems of topology rather than
analysis. These particular problems have solutions that involve the countability and
separation axioms.

We have already introduced the first countability axiom; it arose in connection with
our study of convergent sequences in §21. We have also studied one of the separation
axioms—the Hausdorff axiom, and mentioned another—the 77 axiom. In this chapter
we shall introduce other, and stronger, axioms like these and explore some of their
consequences. Our basic goal is to prove the Urysohn metrization theorem. It says
that if a topological space X satisfies a certain countability axiom (the second) and a
certain separation axiom (the regularity axiom), then X can be imbedded in a metric
space and is thus metrizable.

Another imbedding theorem, important to geometers, appears in the last section
of the chapter. Given a space that is a compact manifold (the higher-dimensional
analogue of a surface), we show that it can be imbedded in some finite-dimensional
euclidean space.

189
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§30 The Countability Axioms

Recall the definition we gave in §21.

Definition. A space X is said to have a countable basis at x if there is a countable
collection B of neighborhoods of x such that each neighborhood of x contains at least
one of the elements of B. A space that has a countable basis at each of its points is
said to satisfy the first countability axiom, or to be first-countable.

We have already noted that every metrizable space satisfies this axiom; see §21.

The most useful fact concerning spaces that satisfy this axiom is the fact that in
such a space, convergent sequences are adequate to detect limit points of sets and to
check continuity of functions. We have noted this before; now we state it formally as
a theorem:

Theorem 30.1. Let X be a topological space.
(a) Let A be a subset of X. If there is a sequence of points of A converging to x,
then x € A; the converse holds if X is first-countable.

(b) Let f : X — Y. If f is continuous, then for every convergent sequence x, — x
in X, the sequence f(x,) converges to f(x). The converse holds if X is first-
countable.

The proof is a direct generalization of the proof given in §21 under the hypothesis
of metrizability, so it will not be repeated here.
Of much greater importance than the first countability axiom is the following:

Definition. If a space X has a countable basis for its topology, then X is said to
satisfy the second countability axiom, or to be second-countable.

Obviously, the second axiom implies the first: if B is a countable basis for the
topology of X, then the subset of 8B consisting of those basis elements containing the
point x is a countable basis at x. The second axiom is, in fact, much stronger than the
first; it is so strong that not even every metric space satisfies it.

Why then is this second axiom interesting? Well, for one thing, many familiar
spaces do satisfy it. For another, it is a crucial hypothesis used in proving such theo-
rems as the Urysohn metrization theorem, as we shall see.

EXAMPLE 1.  The real line R has a countable basis—the collection of all open inter-
vals (a, b) with rational end points. Likewise, R" has a countable basis—the collection of
all products of intervals having rational end points. Even R® has a countable basis—the
collection of all products ]_[,,EZ+ U,, where U, is an open interval with rational end points
for finitely many values of n, and U,, = R for all other values of n.

EXAMPLE 2.  In the uniform topology, R® satisfies the first countability axiom (being
metrizable). However, it does not satisfy the second. To verify this fact, we first show that
if X is a space having a countable basis B, then any discrete subspace A of X must be
countable. Choose, for each a € A, a basis element B, that intersects A in the point a
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alone. If a and b are distinct points of A, the sets B, and B, are different, since the first
contains a and the second does not. It follows that the map a — B, is an injection of A
into B, so A must be countable.

Now we note that the subspace A of R consisting of all sequences of 0’s and 1’s is
uncountable; and it has the discrete topology because p(a, b)) = 1 for any two distinct
points @ and b of A. Therefore, in the uniform topology R® does not have a countable
basis.

Both countability axioms are well behaved with respect to the operations of taking
subspaces or countable products:

Theorem 30.2. A subspace of a first-countable space is first-countable, and a count-
able product of first-countable spaces is first-countable. A subspace of a second-
countable space is second-countable, and a countable product of second-countable
spaces is second-countable.

Proof. Consider the second countability axiom. If 8B is a countable basis for X, then
{BN A | B € B} is a countable basis for the subspace A of X. If B; is a countable
basis for the space X;, then the collection of all products [ U;, where U; € B; for
finitely many values of i and U; = X; for all other values of i, is a countable basis for
[1X:.

The proof for the first countability axiom is similar. [ ]

Two consequences of the second countability axiom that will be useful to us later
are given in the following theorem. First, a definition:

Definition. A subset A of a space X is said to be dense in X if A = X.

Theorem 30.3. Suppose that X has a countable basis. Then:
(a) Every open covering of X contains a countable subcollection covering X .
(b) There exists a countable subset of X that is dense in X .

Proof. Let { B} be a countable basis for X.

(a) Let 4 be an open covering of X. For each positive integer n for which it is pos-
sible, choose an element A, of A containing the basis element B,,. The collection .4’
of the sets A, is countable, since it is indexed with a subset J of the positive integers.
Furthermore, it covers X: Given a point x € X, we can choose an element A of A
containing x. Since A is open, there is a basis element B, such that x € B, C A.
Because B, lies in an element of #A, the index n belongs to the set J, so A, is defined;
since A, contains B, it contains x. Thus .4’ is a countable subcollection of 4 that
covers X.

(b) From each nonempty basis element B, choose a point x,,. Let D be the set
consisting of the points x,,. Then D is dense in X: Given any point x of X, every basis
element containing x intersects D, so x belongs to D. n
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The two properties listed in Theorem 30.3 are sometimes taken as alternative
countability axioms. A space for which every open covering contains a countable
subcovering is called a Lindeldf space. A space having a countable dense subset is
often said to be separable (an unfortunate choice of terminology).! Weaker in general
than the second countability axiom, each of these properties is equivalent to the second
countability axiom when the space is metrizable (see Exercise 5). They are less impor-
tant than the second countability axiom, but you should be aware of their existence, for
they are sometimes useful. It is often easier, for instance, to show that a space X has a
countable dense subset than it is to show that X has a countable basis. If the space is
metrizable (as it usually is in analysis), it follows that X is second-countable as well.

We shall not use these properties to prove any theorems, but one of them—the
Lindelof condition—will be useful in dealing with some examples. They are not as
well behaved as one might wish under the operations of taking subspaces and cartesian
products, as we shall see in the examples and exercises that follow.

EXAMPLE 3.  The space Ry satisfies all the countability axioms but the second.

Given x € Ry, the set of all basis elements of the form [x, x + 1/n) is a countable
basis at x. And it is easy to see that the rational numbers are dense in R,.

To see that R, has no countable basis, let B be a basis for R,. Choose for each x, an
element B, of B such thatx € B, C [x,x+1). If x # y, then B, # B,, since x = inf B,
and y = inf B,,. Therefore, B must be uncountable.

To show that R, is Lindelof requires more work. It will suffice to show that every open
covering of R, by basis elements contains a countable subcollection covering R,. (You can
check this.) So let

A = {[aq, ba)}ees

be a covering of R by basis elements for the lower limit topology. We wish to find a
countable subcollection that covers R.
Let C be the set

C = U(aa,ba),

ael

which is a subset of R. We show the set R — C is countable.

Let x be a point of R — C. We know that x belongs to no open interval (ay, by);
therefore x = ag for some index B. Choose such a § and then choose g, to be a rational
number belonging to the interval (ag, bg). Because (ag, bg) is contained in C, so is the
interval (ag, gx) = (x, gx). It follows that if x and y are two points of R — C withx < y,
then g: < g,. (For otherwise, we would have x < ¥ < g, < gx, so that y would lie in the
interval (x, q;) and hence in C.) Therefore the map x — ¢, of R — C into Q is injective,
so that R — C is countable.

Now we show that some countable subcollection of A covers R . To begin, choose for
each element of R — C an element of A containing it; one obtains a countable subcollec-
tion A’ of A that covers R — C. Now take the set C and topologize it as a subspace of R;
in this topology, C satisfies the second countability axiom. Now C is covered by the sets
(ag, ba), which are open in R and hence open in C. Then some countable subcollection

This is a good example of how a word can be overused. We have already defined what we mean
by a separation of a space; and we shall discuss the separation axioms shortly.
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covers C. Suppose this subcollection consists of the elements (aq, by) fora = aj, an, .. ..
- Then the collection

A" = {[ag, be) | =y, a2, ...}

is a countable subcollection of 4 that covers the set C, and A’ U A" is a countable subcol-
lection of # that covers Ry.

EXAMPLE 4.  The product of two Lindeldf spaces need not be Lindeldf. Although the
space R, is Lindelof, we shall show that the product space Ry x Ry = R% is not. The space
R% is an extremely useful example in topology called the Sorgenfrey plane.

The space R% has as basis all sets of the form [a, b) X [c, d). To show it is not Lindelof,
consider the subspace

L={xx(—x)|xeRgl}.

It is easy to check that L is closed in R%. Let us cover R% by the open set R% — L and by
all basis elements of the form

[a, b) x [—a, d).

Each of these open sets intersects L in at most one point. Since L is uncountable, no
countable subcollection covers R%. See Figure 30.1.

[a'b) X ['_ a:d)

Figure 30.1

EXAMPLE 5. A subspace of a Lindeldf space need not be Lindeldf. The ordered square I 3
is compact; therefore it is Lindelof, trivially. However, the subspace A = I x (0, 1) is not
Lindelof. For A is the union of the disjoint sets U, = {x} x (0, 1), each of which is open
in A. This collection of sets is uncountable, and no proper subcollection covers A.
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Exercises
1. (a) A G; setin aspace X is a set A that equals a countable intersection of open

© &

10.

11.

12.

13.

14.
15.

sets of X. Show that in a first-countable 7 space, every one-point set is a
G set.
(b) There is a familiar space in which every one-point set is a G set, which
nevertheless does not satisfy the first countability axiom. What is it?
The terminology here comes from the German. The “G” stands for “Gebiet,”
which means “open set,” and the “6” for “Durchschnitt,” which means “intersec-
tion.”

. Show that if X has a countable basis {B,}, then every basis C for X contains

a countable basis for X. [Hint: For every pair of indices n, m for which it is
possible, choose C,, ,, € C suchthat B, C C, ,n C By.]

Let X have a countable basis; let A be an uncountable subset of X. Show that
uncountably many points of A are limit points of A.

Show that every compact metrizable space X has a countable basis. [Hint:
Let A, be a finite covering of X by 1/n-balls.]

. (a) Show that every metrizable space with a countable dense subset has a count-

able basis.
(b) Show that every metrizable Lindelof space has a countable basis.

. Show that R, and I? are not metrizable.

. Which of our four countability axioms does Sg, satisfy? What about Sg?

Which of our four countability axioms does R® in the uniform topology satisfy?

. Let A be a closed subspace of X. Show that if X is Lindeldf, then A is Lindel&f.

Show by example that if X has a countable dense subset, A need not have a
countable dense subset.

Show that if X is a countable product of spaces having countable dense subsets,
then X has a countable dense subset.

Let f : X — Y be continuous. Show that if X is Lindelof, or if X has a
countable dense subset, then f(X) satisfies the same condition.

Let f : X — Y be a continuous open map. Show that if X satisfies the first or
the second countability axiom, then f(X) satisfies the same axiom.

Show that if X has a countable dense subset, every collection of disjoint open
sets in X is countable.

Show that if X is Lindelof and Y is compact, then X x Y is Lindelof.

Give R/ the uniform metric, where I = [0, 1]. Let (I, R) be the subspace con-
sisting of continuous functions. Show that C(7, R) has a countable dense subset,
and therefore a countable basis. [Hint: Consider those continuous functions
whose graphs consist of finitely many line segments with rational end points.]
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16. (a) Show that the product space R/, where I = [0, 1], has a countable dense
subset.
(b) Show thatif J has cardinality greater than & (Z.), then the product space R
does not have a countable dense subset. [Hint: If D is dense in R/, define
f 1 J = P(D) by the equation f(a) = DN n;l((a, b)), where (a, b) is a
fixed interval in R.]
*17. Give R” the box topology. Let Q°° denote the subspace consisting of sequences
of rationals that end in an infinite string of 0’s. Which of our four countability
axioms does this space satisfy?

*18. Let G be a first-countable topological group. Show that if G has a countable
dense subset, or is Lindelof, then G has a countable basis. [Hint: Let {B,} be a
countable basis at e. If D is a countable dense subset of G, show the sets d B,,,
ford € D, form a basis for G. If G is Lindelof, choose for each n a countable set
C,, such that the sets ¢ B,, for ¢ € C,, cover G. Show that as n rahges over Z,
these sets form a basis for G.]

§31 The Separation Axioms

In this section, we introduce three separation axioms and explore some of their prop-
erties. One you have already seen—the Hausdorff axiom. The others are similar but
stronger. As always when we introduce new concepts, we shall examine the relation-
ship between these axioms and the concepts introduced earlier in the book.

Recall that a space X is said to be Hausdor{f if for each pair x, y of distinct points
of X, there exist disjoint open sets containing x and y, respectively.

Definition. Suppose that one-point sets are closed in X. Then X is said to be reg-
ular if for each pair consisting of a point x and a closed set B disjoint from x, there
exist disjoint open sets containing x and B, respectively. The space X is said to be
normal if for each pair A, B of disjoint closed sets of X, there exist disjoint open sets
containing A and B, respectively.

It is clear that a regular space is Hausdorff, and that a normal space is regular.
(We need to include the condition that one-point sets be closed as part of the definition
of regularity and normality in order for this to be the case. A two-point space in the
indiscrete topology satisfies the other part of the definitions of regularity and normality,
even though it is not Hausdorff.) For examples showing the regularity axiom stronger
than the Hausdorff axiom, and normality stronger than regularity, see Examples 1
and 3.

These axioms are called separation axioms for the reason that they involve “sepa-
rating” certain kinds of sets from one another by disjoint open sets. We have used the
word “separation” before, of course, when we studied connected spaces. But in that
case, we were trying to find disjoint open sets whose union was the entire space.
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The present situation is quite different because the open sets need not satisfy this
condition.

Ga 2 ey

Hausdorff Regular Normal

Figure 31.1

The three separation axioms are illustrated in Figure 31.1.
There are other ways to formulate the separation axioms. One formulation that is
sometimes useful is given in the following lemma:

Lemma 31.1. Let X be a topological space. Let one-point sets in X be closed.

(a) X is regular if and only if given a point x of X and a neighborhood U of x,
there is a neighborhood V of x such that V c U.

(b) X is normal if and only if given a closed set A and an open set U containing A,
there is an open set V containing A such that V c U.

Proof. (a) Suppose that X is regular, and suppose that the point x and the neighbor-
hood U of x are given. Let B = X — U, then B is a closed set. By hypothesis, there
exist disjoint open sets V and W containing x and B, respectively. The set V is disjoint
from B, since if y € B, the set W is a neighborhood of y disjoint from V. Therefore,
V C U, as desired.

To prove the converse, suppose the point x and the closed set B not containing x
are given. Let U = X — B. By hypothesis, there is a neighborhood V of x such
that V C U. The open sets V and X — V are disjoint open sets containing x and B,
respectively. Thus X is regular.

(b) This proof uses exactly the same argument; one just replaces the point x by the
set A throughout. [ ]

Now we relate the separation axioms with the concepts previously introduced.

Theorem 31.2. (a) A subspace of a Hausdorff space is Hausdorff; a product of Haus-
dorff spaces is Hausdorff.

(b) A subspace of a regular space is regular; a product of regular spaces is regular.
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Proof. (a) This result was an exercise in §17. We provide a proof here. Let X be
Hausdorff. Let x and y be two points of the subspace Y of X. If U and V are disjoint
neighborhoods in X of x and y, respectively, then U N'Y and V N Y are disjoint
neighborhoods of x and y in Y.

Let {X,} be a family of Hausdorff spaces. Let x = (x,) and y = (y,) be distinct
points of the product space [] X,. Because x # y, there is some index 8 such that
xg # yp. Choose disjoint open sets U and V in X g containing xg and yg, respectively.

Then the sets g ') and g L) are disjoint open sets in [ | X, containing x and y,
respectively.

(b) Let Y be a subspace of the regular space X. Then one-point sets are closed
in Y. Let x be a point of Y and let B be a closed subset of ¥ disjoint from x. Now
BNY = B, where B denotes the closure of B in X. Therefore, x ¢ B, so, using
regularity of X, we can choose disjoint open sets U and V of X containing x and B,
respectively. Then U NY and V N Y are disjoint open sets in ¥ containing x and B,
respectively.

Let {X,} be a family of regular spaces; let X = [| Xq. By (), X is Hausdorff, so
that one-point sets are closed in X. We use the preceding lemma to prove regularity
of X. Let x = (x,) be a point of X and let U be a neighborhood of x in X. Choose a
basis element [ | U, about x contained in U. Choose, for each «, a neighborhood V,
of x, in X, such that V, C U,; if it happens that U, = X,, choose V, = X,. Then
V =[] Vq is a neighborhood of x in X. Since V = [] V,, by Theorem 19.5, it follows
atonce that V C [[ U, C U, so that X is regular. ]

There is no analogous theorem for normal spaces, as we shall see shortly, in this
section and the next.

EXAMPLE 1. The space R is Hausdor(f but not regular. Recall that Ry denotes the reals
in the topology having as basis all open intervals (a, b) and all sets of the form (a, b) — K
where K = {1/n | n € Z4}. This space is Hausdorff, because any two distinct points have
disjoint open intervals containing them.

But it is not regular. The set K is closed in Rk, and it does not contain the point 0.
Suppose that there exist disjoint open sets U and V containing 0 and K, respectively.
Choose a basis element containing 0 and lying in U. It must be a basis element of the form
(a, b) — K, since each basis element of the form (a, b) containing 0 intersects K. Choose n
large enough that 1/n € (a, b). Then choose a basis element about 1/n contained in V;
it must be a basis element of the form (c, d). Finally, choose z so that z < 1/n and
z > max{c, 1/(n + 1)}. Then z belongs to both U and V, so they are not disjoint. See
Figure 31.2.
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Figure 31.2
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EXAMPLE 2. The space Rg is normal. It is immediate that one-point sets are closed
in Ry, since the topology of Ry is finer than that of R. To check normality, suppose that A
and B are disjoint closed sets in R,. For each point a of A choose a basis element [a, x,) not
intersecting B; and for each point b of B choose a basis element [b, x;) not intersecting A.
The open sets

U= U[a,xa) and V= U[b,xb)

acA beB

are disjoint open sets about A and B, respectively.

EXAMPLE 3.  The Sorgenfrey plane ]R% is not normal.

The space Ry is regular (in fact, normal), so the product space R% is also regular. Thus
this example serves two purposes. It shows that a regular space need not be normal, and it
shows that the product of two normal spaces need not be normal.

We suppose R% is normal and derive a contradiction. Let L be the subspace of IR’.%
consisting of all points of the form x x (—x). Then L is closed in Rz, and L has the
discrete topology. Hence every subset A of L, being closed in L, is closed in R%. Because
L — A is also closed in R%, this means that for every nonempty proper subset A of L, one
can find disjoint open sets U4 and V4 containing A and L — A, respectively.

Let D denote the set of points of R? having rational coordinates; it is dense in RZ. We
define a map 6 that assigns, to each subset of the line L, a subset of the set D, by setting

B(A)=DNUs if@GCAGL,
0(2) = @,
6(L) = D.

We show that 6 : (L) — P (D) is injective.

Let A be a proper nonempty subset of L. Then 8(A) = DN U4 is neither empty (since
Uy, is open and D is dense in R2) nor all of D (since D N V4 is nonempty). It remain’s to
show that if B is another proper nonempty subset of L, then 8(A) # 6(B).

One of the sets A, B contains a point not in the other; suppose that x € A and x ¢ B.
Then x € L — B, so that x € Ua N Vp; since the latter set is open and nonempty, it must
contain points of D. These points belong to U4 and not to U; therefore, DNUs # DNUp,
as desired. Thus 6 is injective.

Now we show there exists an injective map ¢ : (D) — L. Because D is countably
infinite and L has the cardinality of R, it suffices to define an injective map ¥ of P(Z,)
into R. For that, we let ¢ assign to the subset S of Z, the infinite decimal .a)a; . . ., where
a;=0ifi € Sandg; = 1ifi ¢ S. That s,

o0
¥(S) =) ai/10".
i=1
Now the composite

L) —> (D) > 1

is an injective map of J(L) into L. But Theorem 7.8 tells us such a map does not exist!
Thus we have reached a contradiction.
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This proof that R% is not normal is in some ways not very satisfying. We showed

- only that there must exist some proper nonempty subset A of L such that the sets A and

B = L — A are not contained in disjoint open sets of R%. But we did not actually find such
a set A. In fact, the set A of points of L having rational coordinates is such a set, but the
proof is not easy. It is left to the exercises.

Exercises

1.

Show that if X is regular, every pair of points of X have neighborhoods whose
closures are disjoint.

. Show that if X is normal, every pair of disjoint closed sets have neighborhoods

whose closures are disjoint.

. Show that every order topology is regular.
. Let X and X’ denote a single set under two topologies 7~ and 7', respectively;

assume that 7' D 7. If one of the spaces is Hausdorff (or regular, or normal),
what does that imply about the other?

. Let f, g : X — Y be continuous; assume that Y is Hausdorff. Show that {x |

f(x) = g(x)}isclosedin X.

. Let p : X — Y be a closed continuous surjective map. Show that if X is normal,

then so is Y. [Hint: If U is an open set containing p~!({y}), show there is a
neighborhood W of y such that p~ (W) c U]

. Let p : X — Y be a closed continuous surjective map such that p“l((y}) is

compact for each y € Y. (Such a map is called a perfect map.)

(a) Show that if X is Hausdorff, then sois Y.

(b) Show that if X is regular, then sois Y.

(c) Show that if X is locally compact, then sois Y.

(d) Show thatif X is second-countable, then sois Y. {Hint: Let B be a countable
basis for X. For each finite subset J of B, let U; be the union of all sets of
the form p‘l(W), for W open in Y, that are contained in the union of the
elements of J.]

. Let X be a space; let G be a topological group. An action of G on X is a

continuous map « : G x X — X such that, denoting o(g x x) by g - x, one has;
(i) e-x =xforall x € X.

(i) g1-(g2-x)=(g1-g2) -xforallx € Xand g1, 82 € G.
Define x ~ g - x for all x and g; the resulting quotient space is denoted X /G and
called the orbit space of the action «.
Theorem. Let G be a compact topological group; let X be a topological space;
let o be an action of G on X. If X is Hausdorff, or regular, or normal, or locally
compact, or second-countable, sois X/ G.
[Hint: See Exercise 13 of §26.]
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*9, Let A be the set of all points of R% of the form x x (—x), for x rational; let B be
the set of all points of this form for x irrational. If V is an open set of R% con-
taining B, show there exists no open set U containing A that is disjoint from V/,
as follows:

(a) Let K, consist of all irrational numbers x in [0, 1] such that [x, x + 1/n) x
[—x, —x + 1/n) is contained in V. Show [0, 1] is the union of the sets K,
and countably many one-point sets.

(b) Use Exercise 5 of §27 to show that some set K, contains an open interval
(a, b) of R.

(c) Show that V contains the open parallelogram consisting of all points of the
form x x (—x + €) for whicha < x <band0 <€ < 1/n.

(d) Conclude that if ¢ is a rational number with a < ¢ < b, then the point
g x (—q) of R is a limit point of V.

§32 Normal Spaces

Now we turn to a more thorough study of spaces satisfying the normality axiom. In
one sense, the term “normal” is something of a misnomer, for normal spaces are not as
well-behaved as one might wish. On the other hand, most of the spaces with which we
are familiar do satisfy this axiom, as we shall see. Its importance comes from the fact
that the results one can prove under the hypothesis of normality are central to much of
topology. The Urysohn metrization theorem and the Tietze extension theorem are two
such results; we shall deal with them later in this chapter.

We begin by proving three theorems that give three important sets of hypotheses
under which normality of a space is assured.

Theorem 32.1. Every regular space with a countable basis is normal.

Proof. Let X be a regular space with a countable basis B. Let A and B be disjoint
closed subsets of X. Each point x of A has a neighborhood U not intersecting B. Using
regularity, choose a neighborhood V of x whose closure lies in U; finally, choose an
element of B containing x and contained in V. By choosing such a basis element for
each x in A, we construct a countable covering of A by open sets whose closures do
not intersect B. Since this covering of A is countable, we can index it with the positive
integers; let us denote it by {U,}.

Similarly, choose a countable collection {V,,} of open sets covering B, such that
each set V,, is disjoint from A. The sets U = | JU, and V = | V,, are open sets con-
taining A and B, respectively, but they need not be disjoint. We perform the following
simple trick to construct two open sets that are disjoint. Given n, define

U,

=U, —

i

n n
;. and V,::V,,—UU,-.
=1 i=1
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Note that each set U,, is open, being the difference of an open set U, and a closed set
U, V;. Similarly, each set V,, is open. The collection {U} covers A, because each
x in A belongs to U, for some n, and x belongs to none of the sets V;. Similarly, the
collection {V} covers B. See Figure 32.1.

XN

Y
4%

%

\
\
\

N

N
)
.

Figure 32.1

Finally, the open sets
v=1|Ju, ad V=[]V,
neZy neZy
are disjoint. Forif x € U' N V', then x € UJ{ N V, for some j and k. Suppose that
Jj < k. It follows from the definition of U/ ; that x € Uj; and since j < k it follows
from the definition of V| that x ¢ U j- A similar contradiction arises if j > k. m
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Theorem 32.2. Every metrizable space is normal.

Proof. Let X be a metrizable space with metric d. Let A and B be disjoint closed
subsets of X. For each a € A, choose ¢, so that the ball B(a, ¢,) does not intersect B.
Similarly, for each b in B, choose €; so that the ball B(b, €5) does not intersect A.
Define

U=U8@qﬂ)am V=Uqum.

acA beB

Then U and V are open sets containing A and B, respectively; we assert they are
disjoint. Forif z € U N V, then

z € B(a, €2/2) N B(b, €5/2)

for some a € A and some b € B. The triangle inequality applies to show that
d(a,b) < (eg +€p)/2. If ¢4 < €p, then d(a,b) < €p, so that the ball B(b, €p)
contains the point a. If €5 < ¢4, then d(a, b) < €, so that the ball B(a, €;) contains
the point b. Neither situation is possible. [ ]

Theorem 32.3. Every compact Hausdorff space is normal.

Proof. Let X be a compact Hausdorff space. We have already essentially proved
that X is regular. For if x is a point of X and B is a closed set in X not containing x,
then B is compact, so that Lemma 26.4 applies to show there exist disjoint open sets
about x and B, respectively.

Essentially the same argument as given in that lemma can be used to show that X
is normal: Given disjoint closed sets A and B in X, choose, for each point a of A,
disjoint open sets U, and V,, containing a and B, respectively. (Here we use regularity
of X.) The collection {U,} covers A; because A is compact, A may be covered by
finitely many sets Uy, ..., Ug,,. Then

U=Ua1U"'UUam and V=Valn"'nVam

are disjoint open sets containing A and B, respectively. ]

Here is a further result about normality that we shall find useful in dealing with
some examples.

Theorem 32.4. Every well-ordered set X is normal in the order topology.

It is, in fact, true that every order topology is normal (see Example 39 of [S-S]);
but we shall not have occasion to use this stronger result.
Proof. Let X be a well-ordered set. We assert that every interval of the form (x, y]
is open in X: If X has a largest element and y is that element, (x, y] is just a basis
element about y. If y is not the largest element of X, then (x, y] equals the open set
(x,y"), where y’ is the immediate successor of y.
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Now let A and B be disjoint closed sets in X; assume for the moment that neither A
nor B contains the smallest element ag of X. For each a € A, there exists a basis
element about a disjoint from B; it contains some interval of the form (x, a]. (Here
1s where we use the fact that a is not the smallest element of X.) Choose, for each
a € A, such an interval (x,, a} disjoint from B. Similarly, for each b € B, choose an
interval (yp, b] disjoint from A. The sets

U:U(xa,a] and V=U(y1,,b]

acA beB

are open sets containing A and B, respectively; we assert they are disjoint. For suppose
that z € U N V. Then z € (x4, a] N (vp, b] for some a € A and some b € B. Assume
thata < b. Then if a < y,, the two intervals are disjoint, while if a > y,, we have
a € {(yp, b], contrary to the fact that (y, b] is disjoint from A. A similar contradiction
occurs if b < a.

Finally, assume that A and B are disjoint closed sets in X, and A contains the
smallest element ag of X. The set {ag} is both open and closed in X. By the result of
the preceding paragraph, there exist disjoint open sets U and V containing the closed
sets A—{ao} and B, respectively. Then U U{ag} and V are disjoint open sets containing
A and B, respectively. [ |

EXAMPLE 1.  If J is uncountable, the product space R’ is not normal. The proof is
fairly difficult; we leave it as a challenging exercise (see Exercise 9).

This example serves three purposes. It shows that a regular space R’ need not be
normal. It shows that a subspace of a normal space need not be normal, for R’ is home-
omorphic to the subspace (0, D’ of [0, 1]/, which (assuming the Tychonoff theorem) is
compact Hausdorff and therefore normal. And it shows that an uncountable product of
normal spaces need not be normal. It leaves unsettled the question as to whether a finite or
a countable product of normal spaces might be normal.

EXAMPLE 2.  The product space Sq x Sq is not normal.’

Consider the well-ordered set S'Q, in the order topology, and consider the subset Sq, in
the subspace topology (which is the same as the order topology). Both spaces are normal,
by Theorem 32.4. We shall show that the product space Sg x Sg is not normal.

This example serves three purposes. First, it shows that a regular space need not be
normal, for Sq x Sq is a product of regular spaces and therefore regular. Second, it shows
that a subspace of a normal space need not be normal, for S x Sg is a subspace of Sg x Sq,
which is a compact Hausdorff space and therefore normal. Third, it shows that the product
of two normal spaces need not be normal.

First, we consider the space Sq x Sq, and its “diagonal” A = {x x x | x € Sq].
Because Sp is Hausdorff, A is closed in S x Sg: If U and V are disjoint neighborhoods
of x and y, respectively, then U x V is a neighborhood of x x y that does not intersect A.

Therefore, in the subspace Sg x Sq, the set

A=ANSqx Sq)=A—{2x8)

Kelley [K] attributes this example to J. Dieudonné and A. P. Morse independently.
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Figure 32.2
is closed. Likewise, the set
B = Sq x {2}

is closed in Sg x Sq, being a “slice” of this product space. The sets A and B are disjoint.
We shall assume there exist disjoint open sets U and V of Sq x Sq containing A and B,
respectively, and derive a contradiction. See Figure 32.2.

Given x € Sq, consider the vertical slice x x Sg;. We assert that there is some point 8
with x < 8 < Q such that x x B lies outside U. For if U contained all points x x 8 for
x < B < §, then the top point x x 2 of the slice would be a limit point of U, which it is
not because V is an open set disjoint from U containing this top point.

Choose B(x) to be such a point; just to be definite, let (x) be the smallest element
of Sq such that x < B(x) < € and x x B(x) lies outside U. Define a sequence of points
of Sq as follows: Let x; be any point of S;. Let x = B(x)), and in general, x,41 = B(x,).
We have

X1 <Xx2<...,

because f(x) > x for all x. The set {x,} is countable and therefore has an upper bound
in Sq; let b € Sq be its least upper bound. Because the sequence is increasing, it must
converge to its least upper bound; thus x, — b. But 8(x,) = x,4), so that B(x,) — b
also. Then

Xn X B(xp) — b x b

in the product space. See Figure 32.3. Now we have a contradiction, for the point b x b
lies in the set A, which is contained in the open set U; and U contains none of the points
Xp X B(xn).
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bxb

Figure 32.3

Exercises

Show that a closed subspace of a normal space is normal.

Show that if [ | Xo is Hausdorff, or regular, or normal, then so is X,. (Assume
that each X, is nonempty.)

Show that every locally compact Hausdorff space is regular.

Show that every regular Lindelof space is normal.

. Is R“ normal in the product topology? In the uniform topology?

It is not known whether R® is normal in the box topology. Mary-Ellen Rudin
has shown that the answer is affirmative if one assumes the continuum hypothe-
sis [RM]. In fact, she shows it satisfies a stronger condition called paracompact-
ness.

. A space X is said to be completely normal if every subspace of X is normal.

Show that X is completely normal if and only if for every pair A, B of separated
sets in X (that is, sets such that AN B = @ and A N B = o), there exist
disjoint open sets containing them. [Hint: If X is completely normal, consider
X~ (ANB)]

. Which of the following spaces are completely normal? Justify your answers.

(a) A subspace of a completely normal space.

(b) The product of two completely normal spaces.
(c) A well-ordered set in the order topology.

(d) A metrizable space.
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(e) A compact Hausdorff space.
(f) A regular space with a countable basis.
(g) The space Ry.

Prove the following:

Theorem. Every linear continuum X is normal.

(a) Let C be anonempty closed subset of X. If U is a component of X —C, show
that U is a set of the form (c, ¢’) or (¢, 0©) or (—o0, ¢), where ¢, ¢’ € C.

{b) Let A and B be closed disjoint subsets of X. For each component W of
X — A U B that is an open interval with one end point in A and the other
in B, choose a point cyw of W. Show that the set C of the points cw is closed.

(c) Show that if V is a component of X — C, then V does not intersect both A
and B.

Prove the following:

Theorem. If J is uncountable, then R’ is not normal.

Proof. (This proof is due to A. H. Stone, as adapted in [S-S].) Let X = (Z+)J ; it

will suffice to show that X is not normal, since X is a closed subspace of R’. We

use functional notation for the elements of X, so that the typical element of X is
afunctionx : J — Zg4.

(a) Ifx € X and if B is a finite subset of J, let U (x, B) denote the set consisting
of all those elements y of X such that y(e) = x(a) for ¢ € B. Show the sets
U(x, B) are a basis for X.

(b) Define P, to be the subset of X consisting of those x such that on the set
J — x~1(n), the map x is injective. Show that P, and P, are closed and
disjoint.

(c) Suppose U and V are open sets containing P; and P;, respectively. Given a
sequence ay, a2, ... of distinct elements of J, and a sequence

O=np<ni<ny<---
of integers, for eachi = 1 let us set
B; = {al, Ce ,a"i}
and define x; € X by the equations

xi(aj)=j forl <j<niy,
x;(e) =1 for all other values of «.

Show that one can choose the sequences «; and n; so that for each i, one
has the inclusion

Uk, B)) CU.

[Hint: To begin, note that x; (@) = 1 for all a; now choose B; so that
Uy, By)cU.]
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(d) Let A be the set {a], a2, ...} constructed in (¢). Definey : J — Z, by the
equations

yaj)=j fora; €A,
y(a) =2  for all other values of «.

Choose B so that U(y, B) C V. Then choose i so that B N A is contained
in the set B;. Show that

Uxiy1, Biy1) NU(y, B)

is not empty.
10. Is every topological group normal?

§33 The Urysohn Lemma

Now we come to the first deep theorem of the book, a theorem that is commonly
called the “Urysohn lemma.” It asserts the existence of certain real-valued continuous
functions on a normal space X. It is the crucial tool used in proving a number of
important theorems. We shall prove three of them—the Urysohn metrization theorem,
the Tietze extension theorem, and an imbedding theorem for manifolds—in succeeding
sections of this chapter.

Why do we call the Urysohn lemma a “deep” theorem? Because its proof involves
a really original idea, which the previous proofs did not. Perhaps we can explain
what we mean this way: By and large, one would expect that if one went through this
book and deleted all the proofs we have given up to now and then handed the book
to a bright student who h:d not studied topology, that student ought to be able to go
through the book and work out the proofs independently. (It would take a good deal of
time and effort, of course; and one would not expect the student to handle the trickier
examples.) But the Urysohn lemma is on a different level. It would take considerably
more originality than most of us possess to prove this lemma unless we were given
copious hints!

Theorem 33.1 (Urysohn lemma). Let X be a normal space; let A and B be disjoint
closed subsets of X. Let [a, b] be a closed interval in the real line. Then there exists a
continuous map

f:X —[a,b]
such that f(x) = a forevery x in A, and f(x) = b for every x in B.

Proof. 'We need consider only the case where the interval in question is the interval
[0, 1]; the general case follows from that one. The first step of the proof is to con-
struct, using normality, a certain family U, of open sets of X, indexed by the rational
numbers. Then one uses these sets to define the continuous function f.



208 Countability and Separation Axioms Ch. 4

Step 1. Let P be the set of all rational numbers in the interval [0, 1].7 We shall
define, for each p in P, an open set U, of X, in such a way that whenever p < g, we
have

U, C U,.

Thus, the sets U, will be simply ordered by inclusion in the same way their subscripts
are ordered by the usual ordering in the real line.

Because P is countable, we can use induction to define the sets U, (or rather, the
principle of recursive definition). Arrange the elements of P in an infinite sequence in
some way; for convenience, let us suppose that the numbers 1 and O are the first two
elements of the sequence.

Now define the sets U, as follows: First, define Uy = X — B. Second, because A
is a closed set contained in the open set U, we may by normality of X choose an open
set Ug such that

AcUy and UycCU.

In general, let P, denote the set consisting of the first n rational numbers in the
sequence. Suppose that U, is defined for all rational numbers p belonging to the
set P,, satisfying the condition

(%) p<q==>l_1pCUq.

Let r denote the next rational number in the sequence; we wish to define U, .

Consider the set P, = P, U {r}. It is a finite subset of the interval [0, 1], and, as
such, it has a simple ordering derived from the usual order relation < on the real line.
In a finite simply ordered set, every element (other than the smallest and the largest)
has an immediate predecessor and an immediate successor. (See Theorem 10.1.) The
number 0 is the smallest element, and 1 is the largest element, of the simply ordered
set P41, and r is neither 0 nor 1. So r has an immediate predecessor p in P,4+1 and an
immediate successor q in Pn+1. The sets U, and U, are already defined, and U), C U,
by the induction hypothesis. Using normality of X, we can find an open set U, of X
such that

U,cU and U, CU,.

We assert that (*) now holds for every pair of elements of P, ;. If both elements lie
in P,, (*) holds by the induction hypothesis. if one of them is r and the other is a point
s of P,, then either s < p, in which case

Us c U, C Uy,
or s > g, in which case

U, c U, C Us.

T Actually, any countable dense subset of [0, 1] will do, providing it contains the points 0 and 1.
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Thus, for every pair of elements of P, 1, relation () holds.
By induction, we have U, defined for all p € P.

To illustrate, let us suppose we started with the standard way of arranging the elements
of P in an infinite sequence:

_ 11213 2
P_{l)ov 2'3>324 & 3

wiw

)

After defining Ug and U}, we would define U;,2 so that Up c Uy ;2 and U, ;2 C Up. Then
we would fit in Uy 3 between Ug and U ;2; and Uy3 between Uy 2 and U;. And so on. At
the eighth step of the proof we would have the situation pictured in Figure 33.1. And the
ninth step would consist of choosing an open set Uy/5 to fit in between U;3 and U) /2. And

SO on.

1
5

Alus:

Figure 33.1

Step 2. Now we have defined U, for all rational numbers p in the interval [0, 1].
We extend this definition to all rational numbers p in R by defining

Up=02 ifp <0,
Up=X ifp>1

It is still true (as you can check) that for any pair of rational numbers p and g,
p<qg=U,cCU,.

Step 3. Given a point x of X, let us define Q(x) to be the set of those rational
numbers p such that the corresponding open sets U, contain x:

Q(x) ={p | x € Up}.
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This set contains no number less than 0, since no x is in U, for p < 0. And it contains
every number greater than 1, since every x is in Up, for p > 1. Therefore, Q(x) is
bounded below, and its greatest lower bound is a point of the interval [0, 1]. Define

f(x) =infQ(x) = inf{p | x € U,}.

Step 4. We show that f is the desired function. If x € A, then x € U, for every
p > 0, so that Q(x) equals the set of all nonnegative rationals, and f(x) = inf Q(x) =
0. Similarly, if x € B, then x € Uj, for no p < I, so that Q(x) consists of all rational
numbers greater than 1, and f(x) = 1.
All this is easy. The only hard part is to show that f is continuous. For this
purpose, we first prove the following elementary facts:
M) xel, = fx)<r.
@) x¢Ur= fx)=r.
To prove (1), note that if x € U,, then x € Uy for every s > r. Therefore, Q(x)
contains all rational numbers greater than r, so that by definition we have

fX)=infQx) < r.
To prove (2), note that if x ¢ U,, then x is not in U, for any s < r. Therefore, Q(x)
contains no rational numbers less than r, so that

f(x)=infQx) > r.

Now we prove continuity of f. Given a point xg of X and an open interval (c, d)
in R containing the point f(xp), we wish to find a neighborhood U of x¢ such that
f(U) C (c, d). Choose rational numbers p and g such that

c<p< fixg) <g<d.

We assert that the open set

U=U,-Up
is the desired neighborhood of xo. See Figure 33.2.

P N
P q
L | P | Y
Y T d o 7
c f(x,) d
Figure 33.2

First, we note that xg € U. For the fact that f(x9) < ¢ implies by condition (2)
that xo € Uy, while the fact that f(xg) > p implies by (1) that xo ¢ U p- }

Second, we show that f(U) C (c,d). Letx € U. Thenx € U; C Uy, so
that f(x) < g,by (1). And x ¢ Up, so that x ¢ U, and f(x) > p, by (2). Thus,
f(x) ep.q] C (c,d), as desired. ]
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Definition. If A and B are two subsets of the topological space X, and if there is a
continuous function f : X — [0, 1] such that f(A) = {0} and f(B) = {1}, we say
that A and B can be separated by a continuous function.

The Urysohn lemma says that if every pair of disjoint closed sets in X can be
separated by disjoint open sets, then each such pair can be separated by a continuous
function. The converse is trivial, forif f : X — [0, 1] is the function, then f -0, %))
and f~! ((%, 1]) are disjoint open sets containing A and B, respectively.

This fact leads to a question that may already have occurred to you: Why cannot
the proof of the Urysohn lemma be generalized to show that in a regular space, where
you can separate points from closed sets by disjoint open sets, you can also separate
points from closed sets by continuous functions?

At first glance, it seems that the proof of the Urysohn lemma should go through.
You take a point ¢ and a closed set B not containing a, and you begin the proof
just as before by defining U} = X — B and choosing Uy to be an open set about a
whose closure is contained in U; (using regularity of X). But at the very next step
of the proof, you run into difficulty. Suppose that p is the next rational number in
the sequence after 0 and 1. You want to find an open set U such that Up C Up and
Up C U,. For this, regularity is not enough.

Requiring that one be able to separate a point from a closed set by a continuous
function is, in fact, a stronger condition than requiring that one can separate them by
disjoint open sets. We make this requirement into a new separation axiom:

Definition. A space X is completely regular if one-point sets are closed in X and
if for each point xp and each closed set A not containing xyp, there is a continuous
function f : X — [0, 1] such that f(xg) = 1 and f(A) = {0}.

A normal space is completely regular, by the Urysohn lemma, and a completely
regular space is regular, since given f, the sets f ~L([o0, %)) and f ‘1((%, 1]) are dis-
joint open sets about A and xg, respectively. As a result, this new axiom fits in between
regularity and normality in the list of separation axioms. Note that in the definition one
could just as well require the function to map xg to 0, and A to {1}, for g(x) = 1— f(x)
satisfies this condition. But our definition is at times a bit more convenient.

In the early years of topology, the separation axioms, listed in order of increasing
strength, were labelled T), 7> (Hausdorff), T3 (regular), 74 (normal), and T5 (com-
pletely normal), respectively. The letter “T” comes from the German “Trennungsax-
iom,” which means “separation axiom.” Later, when the notion of complete regular-
ity was introduced, someone suggested facetiously that it should be called the “T—3%
axiom,” since it lies between regularity and normality. This terminology is in fact
sometimes used in the literature!

Unlike normality, this new separation axiom is nicely behaved with regard to sub-
spaces and products:

Theorem 33.2. A subspace of a completely regular space is completely regular. A
product of completely regular spaces is completely regular.
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Proof. Let X be completely regular; let Y be a subspace of X. Let xo be a pointof Y,
and let A be a closed set of Y disjoint from x¢. Now A = AN Y, where A denotes the
closure of A in X. Therefore, xo ¢ A. Since X is completely regular, we can choose
a continuous function f : X — [0, 1] such that f(xg) = 1 and f (A) = {0}. The
restriction of f to Y is the desired continuous function on Y.

Let X = [] X be a product of completely regular spaces. Let b = (b,) be a point
of X and let A be a closed set of X disjoint from b. Choose a basis element [| Uy
containing b that does not intersect A; then U, = X, except for finitely many «, say
o=uqa..., 0, Giveni = 1, ..., n, choose a continuous function

fi 1 X, = [0, 1]

such that f;(by;) = 1 and fi(X — Uy,) = (0}. Let ¢; (X) = fi (4, (X)); then ¢; maps X
continuously into R and vanishes outside T 1 (Uy; ). The product

X)) =¢1(X)-d2(x) - -+ - Pp(X)

is the desired continuous function on X, for it equals 1 at b and vanishes outside [ | U,,.
n

EXAMPLE 1.  The spaces R% and Sq x Sq are completely regular but not normal. For
they are products of spaces that are completely regular (in fact, normal).

A space that is regular but not completely regular is much harder to find. Most of
the examples that have been constructed for this purpose are difficult, and require consid-
erable familiarity with cardinal numbers. Fairly recently, however, John Thomas [T] has
constructed a much more elementary example, which we outline in Exercise 11.

Exercises

1. Examine the proof of the Urysohn lemma, and show that for given r,

o= MNv,-JV,.
p>r q<r
p, g rational.

2. (a) Show that a connected normal space having more than one point is uncount-
able.
(b) Show that a connected regular space having more than one point is uncount-
able.” [Hint: Any countable space is Lindelof.]

3. Give a direct proof of the Urysohn lemma for a metric space (X, d) by setting
‘ d(x, A)
(x, A) +d(x, B)

fx)y =

TSurprisingly enough, there does exist a connected Hausdorff space that is countably infinite. See
Example 75 of [S-S].
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. Recall that A is a “G; set” in X if A is the intersection of a countable collection

of open sets of X.
Theorem. Let X be normal. There exists a continuous function f : X — [0, 1]
such that f(x) = O forx € A, and f(x) > Oforx ¢ A,ifandonly if A is a
closed Gg setin X.

A function satisfying the requirements of this theorem is said to vanish pre-
ciselyon A.

. Prove:

Theorem (Strong form of the Urysohn lemma). Let X be a normal space. There
is a continuous function f : X — [0, 1] such that f(x) = 0 for x € A, and
f(x)=1forx € B,and0 < f(x) < 1 otherwise, if and only if A and B are
disjoint closed G sets in X.

. A space X is said to be perfectly normal if X is normal and if every closed set

in X 1sa Gg setin X.

(a) Show that every metrizable space is perfectly normal.

(b) Show that a perfectly normal space is completely normal. For this reason the
condition of perfect normality is sometimes called the “T¢ axiom.” [Hint:
Let A and B be separated sets in X. Choose continuous functions f, g :
X — [0, 1] that vanish precisely on A and B, respectively. Consider the
function f — g.]

(c) There is a familiar space that is completely normal but not perfectly normal.
What is it?

7. Show that every locally compact Hausdorff space is completely regular.

8. Let X be completely regular; let A and B be disjoint closed subsets of X. Show

*10.

that if A is compact, there is a continuous function f X — [0, 1] such that

f(A) = {0} and f(B) = {1}.

. Show that R’ in the box topology is completely regular. [Hint: Show that it

suffices to consider the case where the box neighborhood (—1, 1)/ is disjoint
from A and the point is the origin. Then use the fact that a function continuous
in the uniform topology is also continuous in the box topology.]

Prove the following:

Theorem. Every topological group is completely regular.

Proof. Let Vj be a neighborhood of the identity element e, in the topological
group G. In general, choose V, to be a neighborhood of e such that V,, - V,, C
Va—1. Consider the set of all dyadic rationals p, that is, all rational numbers of
the form k /2", with k and n integers. For each dyadic rational p in (0, 1], define
an open set U (p) inductively as follows: U(1) = Vp and U (%) = V}. Given n,
if U(k/2™) is defined for 0 < k/2" < 1, define

U/2"*y = Vo,
U(@k+ 1)/2"Y = Vo1 - Uk/2%)
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forO <k <2". Forp <0,let U(p) = @; and for p > 1, let U(p) = G. Show
that

Ve -Uk/2™) CUWk+1)/2™)

for all k and n. Proceed as in the Urysohn lemma.
This exercise is adapted from [M-Z], to which the reader is referred for further
results on topological groups.

*11. Define a set X as follows: For each even integer m, let L, denote the line seg-
ment m x [—1, 0] in the plane. For each odd integer n and each integer k > 2,
let C, x denote the union of the line segments (n + 1 — 1/k) x [—1, 0] and
(n—1+1/k) x [—1, 0] and the semicircle

(xxy|l(x=m?+y?=(0-1/k)?and y > 0}

in the plane. Let p, ; denote the topmost point n x (1 — 1/k) of this semicircle.
Let X be the union of all the sets L,, and C, x, along with two extra points a
and b. Topologize X by taking sets of the following four types as basis elements:
(i) The intersection of X with a horizontal open line segment that contains

none of the points p, .

(i1) A set formed from one of the sets C,, x by deleting finitely many points.

(iii) For each even integer m, the union of {a} and the set of points x x y of
X for which x < m.

(iv) For each even integer m, the union of {b} and the set of points x x y of
X for which x > m.

(a) Sketch X; show that these sets form a basis for a topology on X.

(b) Let f be a continuous real-valued function on X. Show that for any c, the
set f~!(c) is a G5 set in X. (This is true for any space X.) Conclude that
the set S, x consisting of those points p of C, x for which f(p) # f(pnx)
is countable. Choose d € [—1, 0] so that the line y = d intersects none of
the sets S, 4. Show that for n odd,

fln =1 xd) = lim f(par) = f((n+1) x d).

Conclude that f(a) = f(b).
(c) Show that X is regular but not completely regular.

§34 The Urysohn Metrization Theorem

Now we come to the major goal of this chapter, a theorem that gives us conditions
under which a topological space is metrizable. The proof weaves together a number
of strands from previous parts of the book; it uses results on metric topologies from
Chapter 2 as well as facts concerning the countability and separation axioms proved in
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the present chapter. The basic construction used in the proof is a simple one, but very
useful. You will see it several times more in this book, in various guises.

There are two versions of the proof, and since each has useful generalizations that
will appear subsequently, we present both of them here. The first version generalizes
to give an imbedding theorem for completely regular spaces. The second version will
be generalized in Chapter 6 when we prove the Nagata-Smirnov metrization theorem.

Theorem 34.1 (Urysohn metrization theorem). Every regular space X with a
countable basis is metrizable.

Proof. 'We shall prove that X is metrizable by imbedding X in a metrizable space Y;
that is, by showing X homeomorphic with a subspace of Y. The two versions of
the proof differ in the choice of the metrizable space Y. In the first version, Y is
the space R® in the product topology, a space that we have previously proved to be
metrizable (Theorem 20.5). In the second version, the space Y is also R®, but this
time in the topology given by the uniform metric p (see §20). In each case, it turns out
that our construction actually imbeds X in the subspace [0, 1]* of R®.

Step 1. We prove the following: There exists a countable collection of continuous
functions f, : X — [0, 1) having the property that given any point xo of X and
any neighborhood U of xq, there exists an index n such that f, is positive at xo and
vanishes outside U .

It is a consequence of the Urysohn lemma that, given x¢ and U, there exists such a
function. However, if we choose one such function for each pair (xg, U), the resulting
collection will not in general be countable. Our task is to cut the collection down to
size. Here is one way to proceed:

Let {B,} be a countable basis for X. For each pair n, m of indices for which
B, C B, apply the Urysohn lemma to choose a continuous function g, ,, : X —
[0, 1] such that g,,‘,,,(lri,,) = {1} and gn m (X — By) = {0}. Then the collection {gy n}
satisfies our requirement: Given x¢ and given a neighborhood U of x¢, one can choose
abasis element B, containing x¢ that is contained in U. Using regularity, one can then
choose B, so that xo € B, and B, C Byy. Thenn, misa pair of indices for which the
function g, » is defined; and it is positive at xo and vanishes outside U/. Because the
collection {g ,»} is indexed with a subset of Z. x Z,., it is countable; therefore it can
be reindexed with the positive integers, giving us the desired collection { f,,}.

Step 2 (First version of the proof). Given the functions f, of Step 1, take R® in the
product topology and define a map F : X — R® by the rule

F(x) = (H(x), falx),...).

We assert that F is an imbedding.

First, F is continuous because R has the product topology and each f, is contin-
uous. Second, F is injective because given x # y, we know there is an index n such
that f,(x) > O and f,(y) = 0; therefore, F(x) # F(y).

Finally, we must prove that F is a homeomorphism of X onto its image, the sub-
space Z = F(X) of R”. We know that F defines a continuous bijection of X with Z,
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so we need only show that for each open set U in X, the set F(U) is openin Z. Let zg
be a point of F(U). We shall find an open set W of Z such that

z0 € W C F(U).

Let xp be the point of U such that F(xg) = z9. Choose an index N for which
fn(xp) > 0 and fy(X — U) = {0}. Take the open ray (0, +00) in R, and let V be the
open set

V = 15'((0, +00))

of R”. Let W = V N Z; then W is open in Z, by definition of the subspace topology.
See Figure 34.1. We assert that zo € W C F(U). First, zo € W because

an(z0) = an(F(xo)) = fn(xp) > 0.

Second, W ¢ F(U). Forif z € W, thenz = F(x) for some x € X, and ny(2) €
(0, 4+00). Since ty(z) = nny(F(x)) = fa(x), and fx vanishes outside U, the point x
must be in UU. Then z = F(x) is in F(U), as desired.

Thus F is an imbedding of X in R,

Figure 34.1

‘Step 3 (Second version of the proof). In this version, we imbed X in the metric
space (R®, p). Actually, we imbed X in the subspace [0, 1]*, on which g equals the
metric

p(x,y) = sup{|x; — yil}.
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We use the countable collection of functions f, : X — [0, 1] constructed in Step 1.
But now we impose the additional condition that f,,(x) < 1/n for all x. (This condi-
tion is easy to satisfy; we can just divide each function f, by n.)

Define F : X — [0, 1]® by the equation

Fx) = (fi(x), f2(x),...)
as before. We assert that F is now an imbedding relative to the metric p on [0, 1]”. We
know from Step 2 that F is injective. Furthermore, we know that if we use the product
topology on [0, 1]“, the map F carries open sets of X onto open sets of the subspace
Z = F(X). This statement remains true if one passes to the finer (larger) topology on
[0, 1}* induced by the metric p.

The one thing left to do is to prove that F is continuous. This does not follow from
the fact that each component function is continuous, for we are not using the product
topology on R® now. Here is where the assumption f,(x) < 1/n comes in.

Let xo be a point of X, and let ¢ > 0. To prove continuity, we need to find a
neighborhood U of x¢ such that

xelU = p(F(x), F(xg)) < €.

First choose N large enough that 1/N < €/2. Then foreachn = 1, ..., N use the
continuity of f, to choose a neighborhood U, of xy such that

[fn(x) — fa(x0)| < €/2

forx € U,. Let U = Uy N---N Up; we show that U is the desired neighborhood
of xg. Letx e U.If n < N,

| fa(x) = fu(x0)| < €/2
by choice of U. And if n > N, then
| fa(x) — fa(xo)l < 1/N < ¢€/2
because f, maps X into [0, 1/n]. Therefore forall x € U,
P(F(x), F(xp)) < €/2 <,
as desired. m

In Step 2 of the preceding proof, we actually proved something stronger than the
result stated there. For later use, we state it here:

Theorem 34.2 (Imbedding theorem). Let X be a space in which one-point sets are
closed. Suppose that { fy}qc s is an indexed family of continuous functions fy : X —
R satisfying the requirement that for each point xp of X and each neighborhood U
of xp, there is an index « such that f, is positive at xy and vanishes outside U. Then
the function F : X — R’ defined by

F(x) = (fa(x))aes

is an imbedding of X in RY. If f, maps X into [0, 1] for each «, then F imbeds X in
[0, 17”.
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The proof is almost a copy of Step 2 of the preceding proof; one merely replaces n
by @, and R® by R”, throughout. One needs one-point sets in X to be closed in order
to be siire that, given x # y, there is an index « such that f,(x) # f,(»).

A family of continuous functions that satisfies the hypotheses of this theorem is
said to separate points from closed sets in X. The existence of such a family is readily
seen to be equivalent, for a space X in which one-point sets dre closed, to the re-
quirement that X be completely regular. Therefore one has the following immediate
corollary:

Theorem 34.3. A space X is completely regular if and only if it is homeomorphic to
a subspace of [0, 11/ for some J.

Exercises

1. Give an example showing that a Hausdorff space with a countable basis need not
be metrizable.

2. Give an example showing that a space can be completely normal, and satisfy
the first countability axiom, the Lindelof condition, and have a countable dense
subset, and still not be metrizable.

3. Let X be a compact Hausdorff space. Show that X is metrizable if and only if X
has a countable basis.

4. Let X be a locally compact Hausdorff space. Is it true that if X has a countable
basis, then X is metrizable? Is it true that if X is metrizable, then X has a
countable basis?

5. Let X be a locally compact Hausdorff space. Let Y be the one-point compactifi-
cation of X. Is it true that if X has a countable basis, then Y is metrizable? Is it
true that if Y is metrizable, then X has a countable basis?

6. Check the details of the proof of Theorem 34.2.

7. A space X is locally metrizable if each point x of X has a neighborhood that is
metrizable in the subspace topology. Show that a compact Hausdorff space X is
metrizable if it is locally metrizable. [Hint: Show that X is a finite union of open
subspaces, each of which has a countable basis.]

8. Show that a regular Lindelof space is metrizable if it is locally metrizable. [Hint:
A closed subspace of a Lindelof space is Lindelof.] Regularity is essential; where
do you use it in the proof?

9. Let X be a compact Hausdorff space that is the union of the closed subspaces X
and X;. If X and X5 are metrizable, show that X is metrizable. [Hint: Construct
a countable collection 4 of open sets of X whose intersections with X; form a
basis for X;, fori = 1, 2. Assume X| — X; and X; — X belong to 4. Let B
consist of finite intersections of elements of A.]
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*8§35 The Tietze Extension Theorem'

One immediate consequence of the Urysohn lemma is the useful theorem called the
Tietze extension theorem. It deals with the problem of extending a continuous real-
valued function that is defined on a subspace of a space X to a continuous function
defined on all of X. This theorem is important in many of the applications of topology.

Theorem 35.1 (Tietze extension theorem). Let X be a normal space; let A be a
closed subspace of X .

(a) Any continuous map of A into the closed interval [a, b] of R may be extended
to a continuous map of all of X into [a, b].

(b) Any continuous map of A into R may be extended to a continuous map of all
of X into R.

Proof. The idea of the proof is to construct a sequence of continuous functions s,
defined on the entire space X, such that the sequence s, converges uniformly, and such
that the restriction of s, to A approximates f more and more closely as n becomes
large. Then the limit function will be continuous, and its restriction to A will equal f.

Step 1. The first step is to construct a particular function g defined on all of X such
that g is not too large, and such that g approximates f on the set A to a fair degree of
accuracy. To be more precise, let us take the case f : A — [—r, r]. We assert that
there exists a continuous function g : X — R such that

lg(x)| < zr forallx € X,
1g(a) — f(a)| <

The function g is constructed as follows:
Divide the interval [—r, r] into three equal intervals of length %r:

I = [*r, ~—%r], I = [—%r, %r] , I= [%r r].

Let B and C be the subsets

r foralla € A.

WIN f—

B=f"'U) and C=fl()

of A. Because f is continuous, B and C are closed disjoint subsets of A. Therefore,
they are closed in X. By the Urysohn lemma, there exists a continuous function

g: X — [—%r, %r]

having the property that g(x) = —%r for each x in B, and g(x) = %r foreach x in C.
Then |g(x)| < %r for all x. We assert that for each g in A,

lg(@) = f(@)] < §r.

TThis section will be assumed in §62. It is also used in a number of exercises.
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Figure 35.1

There are three cases. If @ € B, then both f(a) and g(a) belong to I1. If a € C, then
f(a) and g(a) are in I5. And ifa ¢ BUC, then f(a) and g(a) are in I5. In each case,
lg(@) — f(a)| < %r. See Figure 35.1.

Step 2. We now prove part (a) of the Tietze theorem. Without loss of generality,
we can replace the arbitrary closed interval [a, b] of R by the interval [—1, 1].

Let f : X — [—1,1] be a continuous map. Then f satisfies the hypotheses
of Step 1, with r = 1. Therefore, there exists a continuous real-valued function g1,
defined on all of X, such that

lg1(x)|<1/3  forx € X,
|f(a) —gi1(a)]| <2/3 fora € A.

Now consider the function f — g1. This function maps A into the interval [—-2/3, 2/3],
so we can apply Step 1 again, letting r = 2/3. We obtain a real-valued function g
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defined on all of X such that
1/2
|g2(x)| < 3 <-3—) forx € X,

2\ 2
|f(a) — g1(a) — g2(a)| < (3) fora € A.

Then we apply Step 1 to the function f — g; — g2. And so on.

At the general step, we have real-valued functions g1, ..., g, defined on all of X
such that
2 n
[f(a) —gi1(@) —--- — gn(a)| < (3)
fora € A. Applying Step 1 to the function f — gy — --- — gp, wWith r = (%)", we

obtain a real-valued function g, defined on all of X such that

1 /2\"
Ign1(x)| < 3 (5) forx € X,

2 n+1
(@) — g1(@) — - — gny1(@)] < (5) fora € A.

By induction, the functions g, are defined for all n.
We now define

gx) =) gn(x)
n=1

for all x in X. Of course, we have to know that this infinite series converges. But that
follows from the comparison theorem of calculus; it converges by comparison with the

geometric series
l oG 2 n—1
s2(5)
n=1

To show that g is continuous, we must show that the sequence s, converges to g
uniformly. This fact follows at once from the “Weierstrass M-test” of analysis. With-
out assuming this result, one can simply note that if k > n, then

k

Y &)

i=n+1

[sg(x) —sp(x)| =
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Holding » fixed and letting k — oo, we see that

|g(x) = sn(x)| < (%)

for all x € X. Therefore, s, converges to g uniformly.

We show that g(a) = f(a) fora € A. Let s,(x) = Y [_, gi(x), the nth partial
sum of the series. Then g(x) is by definition the limit of the infinite sequence s, (x) of
partial sums. Since

n 2\"
|f(a) - ;gi(a)l =|f(a) —sn(a)| < (g)

for all a in A, it follows that s,(a) — f(a) for all a € A. Therefore, we have
fla) =g(a)fora € A.

Finally, we show that g maps X into the interval [—1, 1]. This condition is in fact
satisfied automatically, since the series (1/3) >_(2/3)" converges to 1. However, this
is just a lucky accident rather than an essential part of the proof. If all we knew was
that ¢ mapped X into R, then the map r o g, where r : R — [—1, 1] is the map

r(y) =y if [yl <1,
r(y) =y/lyl iflyl>1,

would be an extension of f mapping X into [—1, 1].

Step 3. We now prove part (b) of the theorem, in which f maps A into R. We can
replace R by the open interval (—1, 1), since this interval is homeomorphic to R.

So let f be a continuous map from A into (—1, 1). The half of the Tietze theorem
already proved shows that we can extend f to a continuous map g : X — [—1, 1]
mapping X into the closed interval. How can we find a map h carrying X into the
open interval?

Given g, let us define a subset D of X by the equation

D=g'q-1hug 1.

Since g is continuous, D is a closed subset of X. Because g(A) = f(A), which is
contained in (—1, 1), the set A is disjoint from D. By the Urysohn lemma, there is a
continuous function ¢ : X — [0, 1] such that ¢ (D) = {0} and ¢(A) = {1}. Define

h(x) = ¢(x)g(x).

Then h is continuous, being the product of two continuous functions. Also, h is an
extension of f, since fora in A,

h(a) = ¢(a)g(a) =1-g(a) = f(a).

Finally, h maps all of X into the open interval (—1, 1). For if x € D, then h(x) =
0-g(x) =0. Andif x ¢ D, then |g(x)| < 1; it follows that |[A(x)| < 1-|g(x)| < 1. W
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Exercises

1. Show that the Tietze extension theorem implies the Urysohn lemma.

2. In the proof of the Tietze theorem, how essential was the clever decision in Step |
to divide the interval [—r, r] into three equal pieces? Suppose instead that one
divides this interval into the three intervals

ll =[_rv _ar]’ 122[—arvar]v 13 :[arv r]a
for some a with 0 < a < 1. For what values of a other than @ = 1/3 (if any)
does the proof go through?

3. Let X be metrizable. Show that the following are equivalent:

(i) X is bounded under every metric that gives the topology of X.

(ii) Every continuous function ¢ : X — R is bounded.
(iii) X is limit point compact.
[Hint: If ¢ : X — R is a continuous function, then F(x) = x X ¢(x) is an
imbedding of X in X x R. If A is an infinite subset of X having no limit point,
let ¢ be a surjection of A onto Z .]

4. Let Z be a topological space. If Y is a subspace of Z, we say that Y is a retract

of Z if there is a continuous map r : Z — Y such that r(y) = y foreach y € Y.

(a) Show that if Z is Hausdorff and Y is a retract of Z, then Y is closed in Z.

(b) Let A be a two-point set in RZ. Show that A is not a retract of R?.

(c) Let S! be the unit circle in R?; show that S! is a retract of R — {0}, where 0
is the origin. Can you conjecture whether or not §! is a retract of R2?

. A space Y is said to have the universal extension property if for each triple

consisting of a normal space X, a closed subset A of X, and a continuous function

f 1 A = Y, there exists an extension of f to a continuous map of X into Y.

(a) Show that R” has the universal extension property.

(b) Show that if ¥ is homeomorphic to a retract of R, then Y has the universal
extension property.

. Let Y be a normal space. Then Y is said to be an absolute retract if for every

pair of spaces (Yy, Z) such that Z is normal and Yj is a closed subspace of Z

homeomorphic to Y, the space Yy is a retract of Z.

(a) Show that if Y has the universal extension property, then Y is an absolute
retract.

(b) Show thatif Y is an absolute retract and Y is compact, then Y has the univer-
sal extension property. [Hint: Assume the Tychonoff theorem, so you know
[0, 117 is normal. Imbed Y in [0, 1]”.]

. (a) Show the logarithmic spiral

C={0x0}U{e'cost x e'sint |t € R}

is a retract of R?. Can you define a specific retraction r : R — C?
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) =

Figure 35.2

(b) Show that the “knotted x-axis” K of Figure 35.2 is a retract of R3.

*8. Prove the following:
Theorem. LetY be a normal space. Then Y is an absolute retract if and only
if Y has the universal extension property.

{Hint: If X and Y are disjoint normal spaces, Aisclosedin X,and f : A »> Y
is a continuous map, define the adjunction space Z ; to be the quotient space ob-
tained from X U Y by identifying each point a of A with the point f(a) and with
all the points of f (| f(@)}). Using the Tietze theorem, show that Z s is normal.
If p: XUY — Zjy is the quotient map, show that p|Y is a homeomorphism of
Y with a closed subspace of Z.]

9. Let X; C X C --- be a sequence of spaces, where X; is a closed subspace
of X, foreachi. Let X be the union of the X;; let us topologize X by declaring

a set U to be open in X if U N X; is open in X for each i.

(a) Show that this is a topology on X and that each space X; is a subspace (in
fact, a closed subspace) of X in this topology. This topology is called the
topology coherent with the subspaces X;.

(b) Show that f : X — Y is continuous if f|X; is continuous for each i.

(c) Show thatif each space X; is normal, then X is normal. [Hint: Given disjoint
closed sets A and B in X, set f equal to O on A and 1 on B, and extend f
successivelyto AUBU X; fori =1,2,....]

*§36 Imbeddings of Manifolds'

We have shown that every regular space with a countable basis can be imbedded in the
“infinite-dimensional” euclidean space R“. It is natural to ask under what conditions a
space X can be imbedded in some finite-dimensional euclidean space RY . One answer
to this question is given in this section. A more general answer will be obtained in
Chapter 8, when we study dimension theory.

T This section will be assumed when we study paracompactness in §41 and when we study dimen-
sion theory in §50.
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Definition. An m-manifold is a Hausdorff space X with a countable basis such that
each point x of X has a neighborhood that is homeomorphic with an open subset
of R™.

A 1-manifold is often called a curve, and a 2-manifold is called a surface. Man-
ifolds form a very important class of spaces; they are much studied in differential
geometry and algebraic topology.

We shall prove that if X is a compact manifold, then X can be imbedded in a finite-
dimensional euclidean space. The theorem holds without the assumption of compact-
ness, but the proof is a good deal harder.

First, we need some terminology.

If ¢ : X — R, then the support of ¢ is defined to be the closure of the set
¢~ 1(R — {0}). Thus if x lies outside the support of ¢, there is some neighborhood of x
on which ¢ vanishes.

Definition. Let {U), ..., U,} be a finite indexed open covering of the space X. An
indexed family of continuous functions

¢;: X —1[0,1] fori=1, ..., n,
is said to be a partition of unity dominated by {U;} if:
(1) (support ¢;) C U, for eachi.
(2) Y1, ¢i(x) =1 for each x.

Theorem 36.1 (Existence of finite partitions of unity). Let{U),..., U,} be a finite
open covering of the normal space X. Then there exists a partition of unity dominated
by {U;}.

Proof. Step 1. First, we prove that one can “shrink” the covering {U;} to an open

covering {V1, ..., V,} of X such that V; C U; for eachii.
We proceed by induction. First, note that the set

A=X—-(UU.---UUy,)

is a closed subset of X. Because {U, ..., Up} covers X, the set A is contained in the
open set U;. Using normality, choose an open set V; containing A such that V| C Uy.
Then the collection {V, U3, ..., U,} covers X.

In general, given open sets Vi, ..., Vi_ such that the collection

Vie oo s Vi1, Uk, Uk, -+ ., Up)
covers X, let
A=X-WV1U.---UVi_1) = (Ug1 U---UUy).

Then A is a closed subset of X whicb is contained in the open set Uy. Choose V; to be
an open set containing A such that V;, C U. Then {Vy, ..., Vi_1, Vi, Uk4y, ..., Uy}
covers X. At the nth step of the induction, our result is proved.
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Step 2. Now we prove the theorem. Given the open covering (U, ..., Up} of X,
choose an open covering {V1, ..., V,} of X such that V; C U; for each i. Then choose
an open covering {W|, ..., W,} of X such that W; C V; for each i. Using the Urysohn
lemma, choose for each i a continuous function

Vi X —> [0, 1]

such that 1//i(Wi) = {1} and ¥; (X — V;) = {0}. Since 1//[.'1(R—- {0}) is contained in V;,
we have

(support ¥;) C Vi C Us.

Because the collection {W;} covers X, the sum ¥(x) = Z:":l V¥ (x) is positive for
each x. Therefore, we may define, for each j,

_ ¥
¢j (x) = () .
It is easy to check that the functions ¢y, ..., ¢, form the desired partition of unity. B

There is a comparable notion of partition of unity when the open covering and the
collection of functions are not finite, nor even countable. We shall consider this matter
in Chapter 6, when we study paracompactness.

Theorem 36.2. If X is a compact m-manifold, then X can be imbedded in RN for
some positive integer N.

Proof. Cover X by finitely many open sets {U], ..., U,}, each of which may be
imbedded in R™. Choose imbeddings g; : U; — R™ for each i. Being compact and
Hausdorff, X is normal. Let ¢, ..., ¢, be a partition of unity dominated by {U;}; let
A; = support¢;. Foreachi = 1, ..., n, define a function h; : X — R™ by the rule

_)#ix)-gi(x)  forx e Ui,

hi(x) =
0=(,...,0) forxeX — A,.
[Here ¢; (x) is areal number ¢ and g; (x) is a pointy = (yi, ..., ym) of R™; the product
¢ -y denotes of course the point (cy1, ..., cyy) of R™.] The function k; is well defined

because the two definitions of h; agree on the intersection of their domains, and A; is
continuous because its restrictions to the open sets U; and X — A; are continuous.
Now define

F:X— Rx---xRxR"x-.-xR™

g

n times n times

by the rule
Fx) = (@1(x), ..., ¢n(x), h1(x), ..., hy(x)).
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Clearly, F is continuous. To prove that F is an imbedding we need only to show that
F is injective (because X is compact). Suppose that F(x) = F(y). Then ¢;(x) =
@i (y) and h;(x) = h;(y) for all i. Now ¢;(x) > O for some i [since Y ¢;(x) = 1].
Therefore, ¢; (y) > 0 also, so that x, y € U;. Then

di(x) - gi(x) =hi(x) =hi(y) =i (y) - 8 (y).

Because ¢; (x) = ¢;(y) > 0, we conclude that g;(x) = g;(y). But g; : U; = R™ is
injective, so that x = y, as desired. [ ]

In many applications of partitions of unity, such as the one just given, all one needs
to know is that the sum Y _ ¢; (x) is positive for each x. In others, however, one needs
the stronger condition that that }_ ¢; (x) = 1. See §50.

Exercises

1. Prove that every manifold is regular and hence metrizable. Where do you use the
Hausdorff condition?

2. Let X be a compact Hausdorff space. Suppose that for each x € X, there is a
neighborhood U of x and a positive integer & such that U can be imbedded in R*.
Show that X can be imbedded in RY for some positive integer N.

3. Let X be a Hausdorff space such that each point of X has a neighborhood that is
homeomorphic with an open subset of R™. Show that if X is compact, then X is
an m-manifold.

4. Anindexed family {A,} of subsets of X is said to be a point-finite indexed family
if each x € X belongs to A, for only finitely many values of «.
Lemma (The shrinking lemma). Let X be a normal space; let {Uy, U, ...} be
a point-finite indexed open covering of X. Then there exists an indexed open
covering {Vi, Vo, ...} of X such that V, C U, for eachn.

5. The Hausdorff condition is an essential part of the definition of a manifold; it is
not implied by the other parts of the definition. Consider the following space:
Let X be the union of the set R — {0} and the two-point set { p, q}. Topologize X
by taking as basis the collection of all open intervals in R that do not contain 0,
along with all sets of the form (—a, 0) U {p} U (0, a) and all sets of the form
(—a,0) U {g} U (0,a), for a > 0. The space X is called the line with two
origins.

(a) Check that this is a basis for a topology.

(b) Show that each of the spaces X — {p} and X — {q} is homeomorphic to R.

(c) Show that X satisfies the 7 axiom, but is not Hausdorff.

(d) Show that X satisfies all the conditions for a 1-manifold except for the Haus-
dorff condition.
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*Supplementary Exercises: Review of the Basics

Consider the following properties a space may satisfy:
(1) connected
(2) path connected
(3) locally connected
(4) locally path connected
(5) compact
(6) limit point compact
(7) locally compact Hausdorff
(8) Hausdorff
(9) regular
(10) completely regular
(11) normal
(12) first-countable
(13) second-countable
(14) Lindelof
(15) has a countable dense subset
(16) locally metrizable
(17) metrizable

Ch. 4

1. For each of the following spaces, determine (if you can) which of these properties

it satisfies. (Assume the Tychonoff theorem if you need it.)
(@) So

b Sa¢

(©) Sa x Sq

(d) The ordered square

(e) Ry

(H R?

(g) R? in the product topology

(h) R? in the uniform topology

(1) R? in the box topology

() R! in the product topology, where I = [0, 1]
(k) Rg

2. Which of these properties does a metric space necessarily have?

3. Which of these properties does a compact Hausdorff space have?

4. Which of these properties are preserved when one passes to a subspace? To a

closed subspace? To an open subspace?

5. Which of these properties are preserved under finite products? Countable prod-

ucts? Arbitrary products?
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6. 'Which of these properties are preserved by continuous maps?

7. After studying Chapters 6 and 7, repeat Exercises 1-6 for the following proper-
ties:
(18) paracompact
(19) topologically complete
You should be able to answer all but one of the 340 questions involved in Exer-

cises 1-6, and all but one of the 40 questions involved in Exercise 7. These two are
unsolved; see the remark in Exercise 5 of §32.



Chapter 5

The Tychonoff Theorem

We now return to a problem we left unresolved in Chapter 3. We shall prove the
Tychonoff theorem, to the effect that arbitrary products of compact spaces are compact.
The proof makes use of Zorn’s Lemma (see §11). An alternate proof, which relies
instead on the well-ordering theorem, is outlined in the exercises.

The Tychonoff theorem is of great usefulness to analysts (less so to geometers).
We apply it in §38 to construct the Stone-Cech compactification of a completely regu-
lar space, and in §47 in proving the general version of Ascoli’s theorem.

§37 The Tychonoff Theorem

Like the Urysohn lemma, the Tychonoff theorem is what we call a “deep” theorem. Its
proof involves not one but several original ideas; it is anything but straightforward. We
shall discuss the crucial ideas of the proof in some detail before turming to the proof
itself.

In Chapter 3, we proved the product X x Y of two compact spaces to be compact.
For that proof the open covering formulation of compactness was quite satisfactory.
Given an open covering of X x Y by basis elements, we covered each slice x x Y by
finitely many of them, and proceeded from that to construct a finite covering of X x Y.

It is quite tricky to make this approach work for an arbitrary product of com-
pact spaces; one must well-order the index set and use transfinite induction. (See

230
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Exercise 5.) An alternate approach is to abandon open coverings and to approach the
problem by applying the closed set formulation of compactness, using Zom’s lemma.

To see how this idea might work, let us consider first the simplest possible case:
the product of two compact spaces X x X2. Suppose that 4 is a collection of closed
subsets of X; x X5 that has the finite intersection property. Consider the projection
map 1 : X1 X X2 — X. The collection

{m(A) | A € A}

of subsets of X also has the finite intersection property, and so does the collection of
their closures 771 (A). Compactness of X guarantees that the intersection of all the sets
71(A) is nonempty. Let us choose a point x| belonging to this intersection. Similarly,
let us choose a point x2 belonging to all the sets 72 (A). The obvious conclusion we
would like to draw is that the point x; x x lies in [ Aen A, for then our theorem would
be proved.

But that is unfortunately not true. Consider the following example, in which X =
X2 = [0, 1] and the collection « consists of all closed elliptical regions bounded by
ellipses that have the points p = (%, %) andg = (%, %) as their foci. See Figure 37.1.
Certainly 4 has the finite intersection property. Now let us pick a point x; in the
intersection of the sets {7;(A) | A € A}. Any point of the interval [%, %] will do;

suppose we choose x; = % Similarly, choose a point x; in the intersection of the sets

{m2(A) | A € A}. Any point of the interval [%, %] will do; suppose we pick x; = 1

3
This proves to be an unfortunate choice, for the point

JC1XX2=%X%

does not lie in the intersection of the sets A.

X, X X,

S

e

1
2

@l

Figure 37.1

“Aha!” you say, “yoﬁ made a bad choice. If after choosing x| = % you had chosen
Xy = %, then you would have found a point in ()44 A The difficulty with our
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tentative proof is that it gave us too much freedom in picking x; and x»; it allowed us
to make a “bad” choice instead of a “good” choice.

How can we alter the proof so as to avoid this difficulty?

This question leads to the second idea of the proof: Perhaps if we expand the
collection 4 (retaining the finite intersection property, of course), that expansion will
restrict the choices of x; and x; sufficiently that we will be forced to make the “right”
choice. To illustrate, suppose that in the previous example we expand the collection 4
to the collection D consisting of all closed elliptical regions bounded by ellipses that
have p = (%, %) as one focus and any point of the line segment pq as the other focus.
This collection is illustrated in Figure 37.2. The new collection D still has the finite
intersection property. But if you try to choose a point x{ in

[ =D,
DeD

the only possible choice for x; is % Similarly, the only possible choice for x; is %

And % X % does belong to every set D, and hence to every set A. In other words,
expanding the collection #4 to the collection & forces the proper choice on us.

win
L g

Wl

PR
3 2
Figure 37.2

Now of course in this example we chose D carefully so that the proof would work.
What hope can we have for choosing D correctly in general? Here is the third idea of
the proof: Why not simply choose D to be a collection that is “as large as possible”—
so that no larger collection has the finite intersection property—and see whether such
a D will work? It is not at all obvious that such a collection D exists; to prove it, we
must appeal to Zorn’s lemma. But after we prove that D exists, we shall in fact be
able to show that D is large enough to force the proper choices on us.

A final remark. The assumption that the elements of the collection A were closed
sets was irrelevant in this discussion. For even if the set A € 4 is closed, the set 771 (A)
need not be closed, so we had to take its closure in order to apply the closed set formu-
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lation of compactness. Therefore, we may as well begin with an arbitrary collection
of subsets of X having the finite intersection property, and prove that the intersection
of their closures is nonempty. This approach actually proves to be more convenient.

Lemma 37.1. Let X be a set; let A be a collection of subsets of X having the
finite intersection property. Then there is a collection D of subsets of X such that D
contains +, and D has the finite intersection property, and no collection of subsets
of X that properly contains © has this property.

We often say that a collection D satisfying the conclusion of this theorem is max-
imal with respect to the finite intersection property.

Proof. As you might expect, we construct D by using Zomn’s lemma. It states that,
given a set A that is strictly partially ordered, in which every simply ordered subset
has an upper bound, A itself has a maximal element.

The set A to which we shall apply Zorn’s lemma is not a subset of X, nor even a
collection of subsets of X, but a set whose elements are collections of subsets of X.
For purposes of this proof, we shall call a set whose elements are collections of subsets
of X a “superset” and shall denote it by an outline letter. To summarize the notation:

¢ is an element of X.

C is a subset of X.
C is a collection of subsets of X.

C is a superset whose elements are collections of subsets of X.

Now by hypothesis, we have a collection A of subsets of X that has the finite
intersection property. Let A denote the superset consisting of all collections 8B of
subsets of X such that 8 > A and B has the finite intersection property. We use
proper inclusion & as our strict partial order on A. To prove our lemma, we need to
show that A has a maximal element D.

In order to apply Zom’s lemma, we must show that if B is a “subsuperset” of A
that is simply ordered by proper inclusion, then B has an upper bound in A. We shall
show in fact that the collection

c=Js,

BeB

which is the union of the collections belonging to B, is an element of A; then it is the
required upper bound on B.

To show that C is an element of A, we must show that ¢ > A and that C has
the finite intersection property. Certainly C contains .4, since each element of B con-
tains 4. To show that C has the finite intersection property, let Cy, .. ., Cp, be elements
of C. Because C is the union of the elements of B, there is, for each i, an element B;
of B such that C; € B;. The superset {(By, ..., B,} is contained in B, so it is simply
ordered by the relation of proper inclusion. Being finite, it has a largest element; that
is, there is an index k such that B; C By fori = 1,...,n. Thenallthesets Cy, ..., C,
are elements of By. Since By has the finite intersection property, the intersection of
the sets Cj, ..., C, is nonempty, as desired. ]
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Lemma 37.2. Let X be a set; let D be a collection of subsets of X that is maximal
with respect to the finite intersection property. Then:
(a) Any finite intersection of elements of D is an element of D.

(b) If A is a subset of X that intersects every element of D, then A is an element
of D.

Proof. (a) Let B equal the intersection of finitely many elements of £. Define a
collection & by adjoining B to D, so that § = D U {B}. We show that & has the finite
intersection property; then maximality of O implies that & = D, so that B € D as
desired. .

Take finitely many elements of &. If none of them is the set B, then their intersec-
tion is nonempty because D has the finite intersection property. If one of them is the
set B, then their intersection is of the form

DiNn---NDyNB.

Since B equals a finite intersection of elements of D, this set is nonempty.

(b) Given A, define & = DU {A}. We show that € has the finite intersection prop-
erty, from which we conclude that A belongs to D. Take finitely many elements of &.
If none of them is the set A, their intersection is automatically nonempty. Otherwise,
it is of the form

DiNn---ND,NA.

Now Dy N --- N D, belongs to D, by (a); therefore, this intersection is nonempty, by
hypothesis. a

Theorem 37.3 (Tychonoff theorem). An arbitrary product of compact spaces is
compact in the product topology.

Proof. Let

x=]‘[xa,

aelJ

where each space X, is compact. Let A be a collection of subsets of X having the
finite intersection property. We prove that the intersection

N4

AeA
is nonempty. Compactness of X follows.

Applying Lemma 37.1, choose a collection D of subsets of X such that D D A
and D is maximal with respect to the finite intersection property. It will suffice to
show that the intersection (Y p g, D is nonempty.

Givena € J, let 1, : X — X, be the projection map, as usual. Consider the
collection

{me(D) | D € D}
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of subsets of X,. This collection has the finite intersection property because & does.
By compactness of X,, we can for each « choose a point x, of X, such that

Xq € ﬂ e (D).

DeD

Let x be the point (x4 )qcs of X. We shall show thatx € D for every D € D; then our
proof will be finished.

First we show that if 74 'w ) is any subbasis element (for the product topology
on X) containing X, then nﬂ" 1(Uﬁ) intersects every element of . The set Ug is a
neighborhood of xg in Xg. Since xg € mg(D) by definition, Ug intersects 7g(D) in
some point g (y), where y € D. Then it follows thaty € nﬂ_ 1(U,g) N D.

It follows from (b) of Lemma 37.2 that every subbasis element containing x be-
longs to . And then it follows from (a) of the same lemma that every basis element
containing x belongs to &D. Since D has the finite intersection property, this means
that every basis element containing X intersects every element of D; hence x € D for
every D € D as desired. u

Exercises

1. Let X be a space. Let D be a collection of subsets of X that is maximal with
respect to the finite intersection property.
(a) Show that x € D for every D € D if and only if every neighborhood of x
belongs to £D. Which implication uses maximality of D?
(b) Let D € D. Show thatif A D D, then A € D.
(c) Show that if X satisfies the Tj axiom, there is at most one point belonging
to nDeéD D.

2. A collection A of subsets of X has the countable intersection property if every
countable intersection of elements of A is nonempty. Show that X is a Lindelof
space if and only if for every collection A of subsets of X having the countable
intersection property,

A
AcA
is nonempty.
3. Consider the three statements:
(i) If X is a set and A is a collection of subsets of X having the count-
able intersection property, then there is a collection O of subsets of X

such that D O A and D is maximal with respect to the countable
intersection property.
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(i) Suppose D is maximal with respect to the countable intersection prop-
erty. Then countable intersections of elements of & are in £. Further-
more, if A is a subset of X that intersects every element of £, then A
is an element of D.
(iii) Products of Lindelof spaces are Lindelof.
(a) Show that (i) and (ii) together imply (iii).
(b) Show that (it) holds.
(c) Products of Lindelof spaces need not be Lindelof (see §30). Therefore (i)
does not hold. If one attempts to generalize the proof of Lemma 37.1 to the
countable intersection property, at what point does the proof break down?

Here is another theorem whose proof uses Zorn’s lemma. Recall that if A is a

space and if x, y € A, we say that x and y belong to the same quasicomponent

of A if there is no separation A = C U D of A into two disjoint sets open in A

suchthatx € Cand y € D.

Theorem. Let X be a compact Hausdorff space. Then x and y belong to the

same quasicomponent of X if and only if they belong to the same component

of X.

(a) Let A be the collection of all closed subspaces A of X such that x and y lie in
the same quasicomponent of A. Let B be a subcollection of - that is simply
ordered by proper inclusion. Show that the intersection of the elements of B
belongs to A. [Hint: Compare Exercise 11 of §26.]

(b) Show A has a minimal element D.

(¢) Show D is connected.

Here is a proof of the Tychonoff theorem that relies on the well-ordering theo-
rem rather than on Zormn’s lemma. First, prove the following version of the tube
lemma; then prove the theorem.

Lemma. Let A be a collection of basis elements for the topology of the product
space X x Y, such that no finite subcollection of A covers X x Y. If X is
compact, there is a point x € X such that no finite subcollection of A covers the
slice {x} x Y.

Theorem. An arbitrary product of compact spaces is compact in the product
topology.

Proof. Let {X4)qes be an indexed family of compact spaces; let

X =[] X
act

Let 7y : X — X, be the projection map. Well-order J, once and for all, in such
a way that J has a largest element.

- (a) Let B € J. Suppose points p; € X; are given, foralli < 8. For any a < B,

let Y, denote the subspace of X defined by the equation
Yo = {x| mi(x) = p; fori < a}.

Note that if @ < a’, then Y, D Y,.. Show that if 4 is a finite collection of
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basis elements for X that covers the space

Zp= ﬂY = {x | m(x) = p; fori < B},

a<f

then A actually covers Y, for some ¢ < B. [Hint: If B has an immediate
predecessor in J, let @ be that immediate predecessor. Otherwise, for each
A € A, let J4 denote the set of those indices i < 8 for which ;(A) # X;;
the union of the sets J4, for A € A, is finite; let « be the largest element of
this union.]

(b) Assume 4 is a collection of basis elements for X such that no finite subcol-
lection of A covers X. Show that one can choose points p; € X; for all {,
such that for each ¢, the space Y, defined in (a) cannot be finitely covered
by 4. When « is the largest element of J, one has a contradiction. [Hint: If
a is the smallest element of J, use the preceding lemma to choose p,. If p;
is defined for all i < B, note that (a) implies that the space Zg cannot be
finitely covered by 4 and use the lemma to find pg.]

§38 The Stone-Cech Compactification

We have already studied one way of compactifying a topological space X, the one-
point compactification (§29); it is in some sense the minimal compactification of X.
The Stone-Cech compactification of X, which we study now, is in some sense the
maximal compactification of X. It was constructed by M. Stone and E. Cech, inde-
pendently, in 1937. It has a number of applications in modern analysis, but these lie
outside the scope of this book.

We recall the following definition:

Definition. A compactification of a space X is a compact Hausdorff space ¥ con-
taining X as a subspace such that X = Y. Two compactifications ¥; and Y, of X are
said to be equivalent if there is a homeomorphism 4 : Y; — Y5 such that A(x) = x
for every x € X.

If X has a compactification Y, then X must be completely regular, being a sub-
space of the completely regular space Y. Conversely, if X is completely regular, then
X has a compactification. For X can be imbedded in the compact Hausdorff space
[0, 1]/ for some J, and any such imbedding gives rise to a compactification of X, as
the following lemma shows:

Lemma 38.1. Let X be a space; suppose that h : X — Z is an imbedding of X in
the compact Hausdorff space Z. Then there exists a corresponding compactification Y
of X; it has the property that there is an imbedding H : Y — Z that equals h on X.
The compactification Y is uniquely determined up to equivalence.
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We call Y the compactification induced by the imbedding .

Proof. Given h, let Xo denote the subspace #(X) of Z, and let Yy denote its clo-
sure in Z. Then Yy is a compact Hausdorff space and Xo = Yo; therefore, Y is a
compactification of Xj.

We now construct a space Y containing X such that the pair (X, ¥) is homeomor-
phic to the pair (X, Yp). Let us choose a set A disjoint from X that is in bijective
correspondencé with the set Yo — X under some map £k : A — Yy — Xo. Define
Y = X U A, and define a bijective correspondence H : Y — Yq by the rule

Hx)=h(x) forxelX,
H(a) =k(a) foraec A.

Then topologize Y by declaring U to be open in Y if and only if H(U) is open in Y.
The map H is automatically a homeomorphism; and the space X is a subspace of Y
because H equals the homeomorphism & when restricted to the subspace X of Y. By
expanding the range of H, we obtain the required imbedding of Y into Z.

Now suppose ¥; is a compactification of X and that H; : ¥; — Z is an imbedding
that is an extension of 4, fori = 1, 2. Now H; maps X onto A(X) = Xp. Because
H; is continuous, it must map Y; into Xo; because H;(Y;) contains Xg and is closed
(being compact), it contains Xo. Hence H;(Y) = Xo, and Hz”1 o H; defines a home-
omorphism of ¥; with ¥, that equals the identity on X. [ ]

In general, there are many different ways of compactifying a given space X. Con-
sider for instance the following compactifications of the open interval X = (0, 1):
EXAMPLE 1.  Take the unit circle §! in R? and let 4 : (0, 1) — S' be the map
h(t) = (cos2mt) x (sin2mt).

The compactification induced by the imbedding 4 is equivalent to the one-point compacti-
fication of X.

EXAMPLE 2. Let Y be the space [0, 1]. Then Y is a compactification of X; it is obtained
by “adding one point at each end of (0, 1).”

EXAMPLE 3.  Consider the square [—1, 11 in R% and let & : 0,1 » [—1, 112 be the
map

h(x) = x x sin(1/x).

The space Yo = h(X) is the topologist’s sine curve (see Example 7 of §24). The imbed-
ding k gives rise to a compactification of (0, 1) quite different from the other two. It is
obtained by adding one point at the right-hand end of (0, 1), and an entire line segment of
points at the left-hand end!

A basic problem that occurs in studying compactifications is the following:

If Y is a compactification of X, under what conditions can a continuous
real-valued function f defined on X be extended continuously to Y ?
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The function f will have to be bounded if it is to be extendable, since its extension
will carry the compact space Y into R and will thus be bounded. But boundedness is
not enough, in general. Consider the following example:

EXAMPLE 4. Let X = (0, 1). Consider the one-point compactification of X given
in Example 1. A bounded continuous function f : (0,1) — R is extendable to this
compactification if and only if the limits

lim f(x) and lim f(x)
x—0+ x—>1—

exist and are equal.

For the “the two-point compactification” of X considered in Example 2, the function f
is extendable if and only if both these limits simply exist.

For the compactification of Example 3, extensions exist for a still broader class of
functions. It is easy to see that f is extendable if both the above limits exist. But the func-
tion f(x) = sin(1/x) is also extendable to this compactification: Let H be the imbedding
of Y in R? that equals 4 on the subspace X. Then the composite map

Y—H>IRXRL>

is the desired extension of f. For if x € X, then H(x) = h(x) = x x sin(l/x), so that
m2(H (x)) = sin(1/x), as desired.

There is something especially interesting about this last compactification. We con-
structed it by choosing an imbedding

h:(0,1) — R?

whose component functions were the functions x and sin(l/x). Then we found that
both the functions x and sin(1/x) could be extended to the compactification. This
suggests that if we have a whole collection of bounded continuous functions defined
on (0, 1), we might use them as component functions of an imbedding of (0, 1) into R’
for some J, and thereby obtain a compactification for which every function in the
collection is extendable.

This idea is the basic idea behind the Stone-Cech compactification. It is defined as
follows:

Theorem 38.2. Let X be a completely regular space. There exists a compactifica-
tion Y of X having the property that every bounded continuous map f : X — R
extends uniquely to a continuous map of Y into R.

Proof. Let { fy}aey be the collection of all bounded continuous real-valued functions
on X, indexed by some index set J. For each o € J, choose a closed interval I, in R
containing f,(X). To be definite, choose

Iy = [inf fo (X), sup Ja (X)].
Then define h : X — [],.; I« by the rule
h(x) = (fa(x))aes-
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By the Tychonoff theorem, [] I, is compact. Because X is completely regular, the
collection { f,,} separates points from closed sets in X. Therefore, by Theorem 34.2,
the map 4 is an imbedding.

Let Y be the compactification of X induced by the imbedding h. Then there is
an imbedding H : Y — [] I, that equals h when restricted to the subspace X of Y.
Given a bounded continuous real-valued function f on X, we show it extends to Y.
The function f belongs to the collection { fy}aes, 50 it equals fg for some index B.
Let g : []1o — Ig be the projection mapping. Then the continuous map mg o H :
Y — Ig is the desired extension of f. For if x € X, we have

ng(H(x)) = mg(h(x)) = mg((fa(x)aes) = fp(x).

Uniqueness of the extension is a consequence of the following lemma. [ ]

Lemma 383. Let A C X;let f : A — Z be a continuous map of A into the
Hausdorff space Z. There is at most one extension of f to a continuous function
g A—> Z.

Proof. This lemma was given as an exercise in §18; we give a proof here. Suppose
that g, g’ : A — X are two different extensions of f; choose x so that g(x) # g’(x).
Let U and U’ be disjoint neighborhoods of g(x) and g’(x), respectively. Choose a
neighborhood V of x so that g(V) C U and g’(V) C U’. Now V intersects A in some
point y; then g(y) € U and g’(y) € U’. But since y € A, we have g(y) = f(y) and
&' (») = f(»). This contradicts the fact that U and U’ are disjoint. [ ]

Theorem 38.4. Let X be a completely regular space; let Y be a compactification
of X satisfying the extension property of Theorem 38.2. Given any continuous map
f : X — C of X into a compact Hausdorff space C, the map f extends uniquely to a
continuousmapg : Y — C.

Proof. Note that C is completely regular, so that it can be imbedded in [0, 17/ for
some J. So we may as well assume that C C [0, 1]/. Then each component function
Jo of the map f is a bounded continuous real-valued function on X; by hypothesis, fy
can be extended to a continuous map g, of Y into R. Define g : ¥ — R’ by setting
8(y) = (ga(¥))acys; then g is continuous because R’ has the product topology. Now
in fact g maps Y into the subspace C of R”. For continuity of g implies that

g =gX)Cceg=fX)cC=C.
Thus g is the desired extension of f. [ ]
Theorem 38.5. Let X be a completely regular space. If Y| and Y, are two compact-

ifications of X satisfying the extension property of Theorem 38.2, then Y| and Y, are
equivalent.
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Proof. Consider the inclusion mapping j, : X — Y5. Itis a continuous map of X
into the compact Hausdorff space Y. Because Y; has the extension property, we may,
by the preceding theorem, extend j, to a continuous map f; : ¥; — Y. Similarly,
we may extend the inclusion map j; : X — Yj to a continuous map f; : Y2 —» Y)
(because Y, has the extension property and Y is compact HausdorfY).

Cc n X Cc 1

l/ "

The composite f1 o f» : Y1 — Y) has the property that for every x € X, one has
Si(fa(x)) = x. Therefore, f1 o f2 is a continuous extension of the identity map
ix : X — X. But the identity map of Y} is also a continuous extension of ix. By
uniqueness of extensions (Lemma 38.3), fi o f, must equal the identity map of Yj.
Similarly, f> o fj must equal the identity map of Y;. Thus f; and f, are homeomor-
phisms. [ |

Definition. For each completely regular space X, let us choose, once and for all,
a compactification of X satisfying the extension condition of Theorem 38.2. We will
denote this compactification of X by (X) and call it the Stone-Cech compactification
of X. It is characterized by the fact that any continuous map f : X — C of X into a
compact Hausdorff space C extends uniquely to a continuous map g : $(X) — C.

Exercises

1. Verify the statements made in Example 4.

2. Show that the bounded continuous function g : (0, 1) — R defined by g(x) =
cos(1/x) cannot be extended to the compactification of Example 3. Define an
imbedding 4 : (0, 1) — [0, 113 such that the functions x, sin(1/x), and cos(1/x)
are all extendable to the compactification induced by 4.

3. Under what conditions does a metrizable space have a metrizable compactifica-
tion?

4. Let Y be an arbitrary compactification of X; let (X) be the Stone-Cech com-
pactification. Show there is a continuous surjective closed map g : f(X) »> Y
that equals the identity on X.

[This exercise makes precise what we mean by saying that 8(X) is the “maxi-
mal” compactification of X. It shows that every compactification of X is equiv-
alent to a quotient space of 8(X).]

5. (a) Show that every continuous real-valued function defined on Sq is “eventu-
ally constant.” [Hint: First prove that for each ¢, there is an element o of Sg
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such that | f(8) — f(a)| < eforall 8 > a. Thenlete = 1/nforn € Z,
and consider the corresponding points «;,.]

(b) Show that the one-point compactification of Sg and the Stone-Cech com-
pactification are equivalent.

(c) Conclude that every compactification of Sq is equivalent to the one-point
compactification.

. Let X be completely regular. Show that X is connected if and only if 8(X) is

connected. [Hint: If X = A U B is a separation of X, let f(x) =0forx € A
and f(x) = 1forx € B.]

. Let X be a discrete space; consiger the space B8(X).

(a) Show thatif A C X, then A and X — A are disjoint, where the closures are
taken in 8(X).

(b) Show that if U is open in B(X), then U is open in 8(X).

(c) Show that 8(X) is totally disconnected.

. Show that 8(Z_ ) has cardinality at least as great as / I where I = [0, 1]. [Hint:

The space /7 has a countable dense subset.]

. (a) If X is normal and y is a point of 8(X) — X, show that y is not the limit of

a sequence of points of X.
(b) Show that if X is completely regular and noncompact, then 8(X) is not
metrizable.

We have constructed a correspondence X — B(X) that assigns, to each com-
pletely regular space, its Stone-Cech compactification. Now let us assign, to each
continuous map f : X — Y of completely regular spaces, the unique continuous
map B(f) : B(X) — B(Y) that extends the map i o f, wherei : ¥ — B(Y)is
the inclusion map. Verify the following: '
(1) If 1y : X — X is the identity map of X, then 8(lx) is the identity
map of 8(X).
()Iff:X—>Yandg:Y — Z,then (g o f) = B(g) o B(f).

These properties tell us that the correspondence we have constructed is what is
called a functor; it is a functor from the “category” of completely regular spaces
and continuous maps of such spaces, to the “category” of compact Hausdorff
spaces and continuous maps of such spaces. You will see these properties again
in Part II of the book; they are fundamental in algebra and in algebraic topology.



Chapter 6

Metrization Theorems
and Paracompactness

The Urysohn metrization theorem of Chapter 4 was the first step—a giant one—toward
an answer to the question: When is a topological space metrizable? It gives conditions
under which a space X is metrizable: that it be regular and have a countable basis. But
mathematicians are never satisfied with a theorem if there is some hope of proving a
stronger one. In the present case, one can hope to strengthen the theorem by finding
conditions on X that are both necessary and sufficient for X to be metrizable, that is,
conditions that are equivalent to metrizability.

We know that the regularity hypothesis in the Urysohn metrization theorem is a
necessary one, but the countable basis condition is not. So the obvious thing to do is try
to replace the countable basis condition by something weaker. Finding such condition
is a delicate task. The condition has to be strong enough to imply metrizability, and yet
weak enough that all metrizable spaces satisfy it. In a situation like this, discovering
the right hypothesis is more than half the battle.

The condition that was eventually formulated, by J. Nagata and Y. Smirnov inde-
pendently, involves a new notion, that of local finiteness. We say that a collection A
of subsets of a space X is locally finite if every point of X has a neighborhood that
intersects only finitely many elements of 4.

Now one way of expressing the condition that the basis B is countable is to say
that B can be expressed in the form

8= 8,

neZy
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where each collection B, is finite. This is an awkward way of saying that B is count-
able, but it suggests how to formulate a weaker version of it. The Nagata-Smirnov
condition is to require that the basis 8B can be expressed in the form

8= 8.

n€Z+

where each collection B, is locally finite. We say that such a collection B is count-
ably locally finite. Surprisingly enough, this condition, along with regularity, is both
necessary and sufficient for metrizability of X. This we shall we prove.

There is another concept in topology that involves the notion of local finiteness. It
is a generalization of the concept of compactness called “paracompactness.” Although
of fairly recent origin, it has proved useful in many parts of mathematics. We introduce
it here so that we can give another set of necessary and sufficient conditions for a
space X to be metrizable. It turns out that X is metrizable if and only if it is both
paracompact and locally metrizable. This we prove in §42.

Some of the sections of this chapter are independent of one another. The depen-
dence among them is expressed in the following diagram:

/

§40 l The Nagata-Smirnov metrization theorem

§39 Local finiteness

§41 Paracompactness

¥
§42 The Smirnov metrization theorem

§39 Local Finiteness

In this sections we prove some elementary properties of locally finite collections and
a crucial lemma about metrizable spaces.

Definition. Let X be a topological space. A collection + of subsets of X is said to be
locally finite in X if every point of X has a neighborhood that intersects only finitely
many elements of 4.

EXAMPLE 1. The collection of intervals
A={(n,n+2)|nelZ}

is locally finite in the topological space R, as you can check. On the other hand, the
collection

B={0,1/n) | n € Z4+}
is locally finite in (0, 1) but not in R, as is the collection

C={(/(n+1),1/n)|neZi}
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Lemma 39.1. Let A be a locally finite collection of subsets of X. Then:
(a) Any subcollection of A is locally finite.

(b) The collection B = {A}sc oOf the closures of the elements of 4 is locally finite.
(c) UAE.A A= UAEA A.

Proof. Statement (a) is trivial. To prove (b), note that any open set U that intersects
the set A necessarily intersects A. Therefore, if U is a neighborhood of x that intersects
only finitely many elements A of 4, then U can intersect at most the same number of
sets of the collection 8. (It might intersect fewer sets of B, since A; and A, can be
equal even though A and A; are not).

To prove (c), let Y denote the union of the elements of A:

Ja=vr.

AeA

In general, | JA C Y; we prove the reverse inclusion, under the assumption of local
finiteness. Let x € ¥; let U be a neighborhood of x that intersects only finitely many
elements of 4, say Aj, ..., A;. We assert that x belongs to one of the sets A,
..., Ay, and hence belongs to | J A. For otherwise, the set U — A — - - - — Ay would
be a neighborhood of x that intersects no element of 4 and hence does not intersect Y,
contrary to the assumption that x € Y. ]

There is an analogous concept of local finiteness for an indexed family of subsets
of X. The indexed family {Ay}qcs is said to be a locally finite indexed family in X
if every x € X has a neighborhood that intersects A, for only finitely many values
of a. What is the relation between the two formulations of local finiteness? It is easy
to see that {Ay}ues is a locally finite indexed family if and only if it is locally finite
as a collection of sets and each nonempty subset A of X equals A, for at most finitely
many values of a.

We shall be concerned with locally finite indexed families only in §41, when we
deal with partitions of unity.

Definition. A collection 8B of subsets of X is said to be countably locally finite if B
can be written as the countable union of collections 8B,, each of which is locally finite.

Most authors use the term “o-locally finite” for this concept. The o comes from
measure theory and stands for the phrase “countable union of.” Note that both a count-
able collection and a locally finite collection are countably locally finite.

Definition. Let A be a collection of subsets of the space X. A collection 8 of subsets
of X is said to be a refinement of A (or is said to refine 4) if for each element B of B,
there is an element A of A containing B. If the elements of 8 are open sets, we call B
an open refinement of A; if they are closed sets, we call B a closed refinement.
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Lemma 39.2. Let X be a metrizable space. If A is an open covering of X, then there
is an open covering € of X refining A that is countably locally finite.

Proof. We shall use the well-ordering theorem in proving this theorem. Choose a
well-ordering < for the collection 4. Let us denote the elements of 4 generically by
the letters U, V, W, .. ..

Choose a metric for X. Let n be a positive integer, fixed for the moment. Given an
element U of A, let us define S, (U) to be the subset of U obtained by “‘shrinking” U
a distance of 1/n. More precisely, let

Sp(U) ={x| B(x,1/n) C U}.

(It happens that S,,(U) is a closed set, but that is not important for our purposes.) Now
we use the well-ordering < of A to pass to a still smaller set. For each U in 4, define

L) =Sy~ | J v.
V<U

The situation where 4 consists of the three sets U < V < W is pictured in
Figure 39.1. Just as the figure suggests, the sets we have formed are disjoint.

Figure 39.1

In fact, they are separated by a distance of at least 1/n. This means that if V and W
are distinct elements of A, then d(x, y) > 1/n whenever x € T,(V) and y € T,,(W).

To prove this fact, assume the notation has been so chosen that V. < W. Since x
is in T,,(V), then x is in S,(V'), so the 1/n-neighborhood of x lies in V. On the other
hand, since V < W and y is in T, (W), the definition of the latter set tells us that y is
not in V. It follows that y is not in the 1/n-neighborhood of x.

The sets 7,,(U) are not yet the ones we want, for we do not know that they are
open sets. (In fact, they are closed.) So let us expand each of them slightly to obtain
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an open set E,(U). Specifically, let E,(U) be the 1/3n-neighborhood of T,(U); that
is, let E,(U) be the union of the open balls B(x, 1/3n), for x € T,(U).

In the case U < V < W, we have the situation pictured in Figure 39.2. As the
figure suggests, the sets we have formed are disjoint. Indeed, if V and W are distinct
elements of A, we assert that d(x, y) > 1/3n whenever x € E (V) and y €. E,(W);
this fact follows at once from the triangle inequality. Note that for each V € A, the set
E,(V)is containedin V.

Figure 39.2

Now let us define
& ={E,(U) | U € A}

We claim that &, is a locally finite collection of open sets that refines 4. The fact
that &, refines A comes from the fact that E,(V) C V for each V € A. The fact that
&y is locally finite comes from the fact that for any x in X, the 1/6n-neighborhood of
X can intersect at most one element of &,,.
Of course, the collection &,, will not cover X. (Figure 39.2 illustrates that fact.)
But we assert that the collection
e=J &

neZy

does cover X.

Let x be a point of X. The collection A with which we began covers X; let us
choose U to be the first element of A (in the well-ordering <) that contains x. Since U
is open, we can choose n so that B(x, 1/n) C U. Then, by definition, x € S,(U).
Now because U is the first element of 4 that contains x, the point x belongs to T,,(U).
Then x also belongs to the element E,(U) of &,, as desired. [ ]
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Exercises

1. Check the statements in Example 1.

2. Find a point-finite open covering -4 of R that is not locally finite. (The collec-
tion A is point-finite if each point of R lies in only finitely many elements of 4.)

3. Give an example of a collection of sets - that is not locally finite, such that the
collection B = {A | A € #} is locally finite.

4. Let A be the following collection of subsets of R:
A={n,n+2)|nelZ).
Which of the following collections refine A?

B={x,x+1)|x eR],
C={(n,n+3) |nez
D={(x.x+3)|xeR}.

5. Show that if X has a countable basis, a collection 4 of subsets of X is countably
locally finite if and only if it is countable.

6. Consider R® in the uniform topology. Given n, let B, be the collection of all
subsets of R” of the form | [ A;, where A; = R fori < n and A; equals either {0)
or {1} otherwise. Show that the collection B8 = |_J B, is countably locally finite,
but neither countable nor locally finite.

§40 The Nagata-Smirnov Metrization Theorem

Now we prove that regularity of X and the existence of a countably locally finite basis
for X are equivalent to metrizability of X.

The proof that these conditions imply metrizability follows very closely the second
proof we gave of the Urysohn metrization theorem. In that proof we constructed a map
of the space X into R® that was an imbedding relative to the uniform metric p on R®.
So let us review the major elements of that proof. The first step of the proof was
to prove that every regular space X with a countable basis is normal. The second
step was to construct a countable collection {f,} of real-valued functions on X that
separated points from closed sets. The third step was to use the functions f, to define
a map imbedding X in the product space R”. And the fourth step was to show that if
Jn(x) < 1/n for all x, then this map actually imbeds X in the metric space (R?, p).

Each of these steps needs to be generalized in order to prove the general metriza-
tion theorem. First, we show that a regular space X with a basis that is countably
locally finite is normal. Second, we construct a certain collection of real-valued func-
tions {fy} on X that separates points from closed sets. Third, we use these functions
to imbed X in the product space R/, for some J. And fourth, we show that if the
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functions f, are sufficiently small, this map actually imbeds X in the metric space
®’, p).

Before we start, we need to recall a notion we have already introduced in the
exercises, that of a G set.

Definition. A subset A of a space X is called a G set in X if it equals the intersection
of a countable collection of open subsets of X.

EXAMPLE 1.  Each open subset of X is a G set, trivially. In a first-countable Hausdorff
space, each one-point set is a G set. The one-point subset {2} of S is not a G set, as
you can check.

EXAMPLE 2. In a metric space X, each closed setisa G set. Given A C X,let U (A, €)
denote the e-neighborhood of A. If A is closed, you can check that

A= () U, 1/n).

neZy

Lemma40.1. Let X be a regular space with a basis B that is countably locally finite.
Then X is normal, and every closed setin X isa G setin X.

Proof. Step 1. Let W be open in X. We show there is a countable collection {U,} of

open sets of X such that
W = UUn = U(jn.

Since the basis B for X is countably locally finite, we can write 8 = |_J B,,, where
each collection B, is locally finite. Let C, be the collection of those basis elements B
such that B € 8, and B C W. Then G, is locally finite, being a subcollection of B,,.

Define
U= B
BeC,

Then U, is an open set, and by Lemma 39.1,

b, = | B.

BeCp

Therefore, U,, C W, so that

Ut cJOncw.

We assert that equality holds. Given x € W, there is by regularity a basis element
B € Bsuchthatx € Band B C W. Now B € B, for some n. Then B € C, by
definition, so that x € U,. Thus W C | Uy, as desired.

Step 2. We show that every closed set C in X is a G; set in X. Given C, let
W = X — C. By Step 1, there are sets U, in X such that W = | J U,. Then

C =X -0y,
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so that C equals a countable intersection of open sets of X.

Step 3. We show X is normal. Let C and D be disjoint closed sets in X. Applying
Step 1 to the open set X — D, we construct a countable collection {U,) of open sets
such that J U, = | U, = X — D. Then {U,) covers C and each set U, is disjoint
from D. Similarly, there is a countable covering { V,,} of D by open sets whose closures
are disjoint from C.

Now we are back in the situation that arose in the proof that a regular space with a
countable basis is normal (Theorem 32.1). We can repeat that proof verbatim. Define

n n
Up=U—JVi and V,=Va—|]JUs
=1 =1

Then the sets

U'= U U, and V'= U v,

neZ, neZy

are disjoint open sets about C and D, respectively. n

Lemma 40.2. Let X be normal; let A be a closed G set in X. Then there is a
continuous function f : X — [0, 1] such that f(x) =0 forx € A and f(x) > O for
x €A.

Proof. We gave this as an exercise in §33; we provide a proof here. Write A as the
intersection of the open sets Uy, for n € Z, . For each n, choose a continuous function
Jn: X = [0,1] such that f(x) =0forx € Aand f(x) = 1 forx € X — U,. Define
f(x) =) fa(x)/2". The series converges uniformly, by comparison with »_ 1/2",
so that f is continuous. Also, f vanishes on A and is positive on X — A. |

Theorem 40.3 (Nagata-Smirnov metrization theorem). A space X is metrizable
if and only if X is regular and has a basis that is countably locally finite.

Proof. Step I. Assume X is regular with a countably locally finite basis $3. Then
X is normal, and every closed set in X is a Gs set in X. We shall show that X is
metrizable by imbedding X in the metric space (R”, 5) for some J.

Let 8 = J 8B,, where each collection B, is locally finite. For each positive
integer n, and each basis element B € B,,, choose a continuous function

fag: X — [0, 1/n]

such that f, g(x) > Oforx € B and f, p(x) = O for x ¢ B. The collection { f, g)
separates points from closed sets in X: Given a point xp and a neighborhood U of x,
there is a basis element B such that xo € B C U. Then B € B, for some n, so that
Jn.B(x0) > 0 and f, p vanishes outside U.

Let J be the subset of Z4 x B consisting of all pairs (n, B) such that B is an
element of B,,. Define

F:X — 0,1}
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by the equation

F(x)= (fn.B(x))(n,b)GJ-

Relative to the product topology on [0, 1]/, the map F is an imbedding, by Theo-
rem 34.2.

Now we give [0, 1]/ the topology induced by the uniform metric and show that
F is an imbedding relative to this topology as well. Here is where the condition
fa.8(x) < 1/n comes in. The uniform topology is finer (larger) than the product
topology. Therefore, relative to the uniform metric, the map F is injective and carries
open sets of X onto open sets of the image space Z = F(X). We must give a separate
proof that F is continuous.

Note that on the subspace [0, 117 of R/, the uniform metric equals the metric

p((xa), (Ya)) = sup{|xa — yal}.

To prove continuity, we take a point xg of X and a number € > 0, and find a neighbor-
hood W of xg such that

x e W= p(F(), F(xg)) < €.

Let n be fixed for the moment. Choose a neighborhood U, of x¢ that intersects
only finitely many elements of the collection 8,. This means that as B ranges over B,
all but finitely many of the functions f, g are identically equal to zero on U,,. Because
each function f, p is continuous, we can now choose a neighborhood V,, of x¢ con-
tained in U, on which each of the remaining functions f, g, for B € B,,, varies by at
most €/2.

Choose such a neighborhood V,, of x¢ for each n € Z,. Then choose N so that
1/N <€/2,and define W = Vi N--- N Vy. We assert that W is the desired neighbor-
hood of xg. Let x € W. If n < N, then

| fn.B(x) — fn.B(x0)| < €/2

because the function f,, p either vanishes identically or varies by at most € /2 on W. If
n > N, then

| fn,8(x) — fa.B(x0)| < 1/n < €/2
because f, g maps X into [0, 1/n]. Therefore,
p(F(x), F(x0)) < €/2 <€,

as desired.

Step 2. Now we prove the converse. Assume X is metrizable. We know X is
regular; let us show that X has a basis that is countably locally finite.

Choose a metric for X. Given m, let A, be the covering of X by all open balls
of radius 1/m. By Lemma 39.2, there is an open covering By, of X refining A, such
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that B,, is countably locally finite. Note that each element of B,, has diameter at
most 2/m. Let B be the union of the collections B,,, for m € Z,. Because each
collection B, is countably locally finite, so is 8. We show that B is a basis for X.
Given x € X and given € > 0, we show that there is an element B of 8B contain-
ing x that is contained in B(x, €). First choose m so that 1/m < €/2. Then, because
B,, covers X, we can choose an element B of B,, that contains x. Since B contains x
and has diameter at most 2/m < ¢, it is contained in B(x, €), as desired. |

Exercises

1. Check the details of Examples 1 and 2.

2. A subset W of X is said to be an “F,, set” in X if W equals a countable union of
closed sets of X. Show that W is an F, setin X if and only if X — W is a G set
in X.
[The terminology comes from the French. The “F” stands for “fermé,” which
means “closed,” and the “o” for “somme,” which means “union.”]

3. Many spaces have countable bases; but no Tj space has a locally finite basis
unless it is discrete. Prove this fact.

4. Find a nondiscrete space that has a countably locally finite basis but does not
have a countable basis.

5. A collection A of subsets of X is said to be locally discrete if each point of X
has a neighborhood that intersects at most one ¢lement of 4. A collection B is
countably locally discrete (or “o-locally discrete”) if it equals a countable union
of locally discrete collections. Prove the following:

Theorem (Bing metrization theorem). A space X is metrizable if and only if it
is regular and has a basis that is countably locally discrete.

§41 Paracompactness

The concept of paracompactness is one of the most useful generalizations of compact-
ness that has been discovered in recent years. It is particularly useful for applications
in topology and differential geometry. We shall give just one application, a metrization
theorem that we prove in the next section.

Many of the spaces that are familiar to us already are paracompact. For instance,
every compact space is paracompact; this will be an immediate consequence of the
definition. It is also true that every metrizable space is paracompact; this is a theorem
due to A. H. Stone, which we shall prove. Thus the class of paracompact spaces
includes the two most important classes of spaces we have studied. It includes many
other spaces as well.
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To see how paracompactness generalizes compactness, we recall the definition of
compactness: A space X is said to be compact if every open covering A of X contains
a finite subcollection that covers X. An equivalent way of saying this is the following:

A space X is compact if every open covering A of X has a finite open
refinement B that covers X.

This definition is equivalent to the usual one; given such a refinement B, one can
choose for each element of B an element of A containing it; in this way one obtains a
finite subcollection of ~4 that covers X.

This new formulation of compactness is an awkward one, but it suggests a way to
generalize:

Definition. A space X is paracompact if every open covering 4 of X has a locally
finite open refinement B that covers X.

Many authors, following the lead of Bourbaki, include as part of the definition of
the term paracompact the requirement that the space be Hausdorff. (Bourbaki also
includes the Hausdorff condition as part of the definition of the term compact.) We
shall not follow this convention.

EXAMPLE 1.  The space R" is paracompact. Let X = R". Let A be an open covering
of X. Let By = @, and for each positive integer m, let By, denote the open ball of radius m
centered at the origin. Given m, choose finitely many elements of »4 that cover B,, and
intersect each one with the open set X — Bm_1; let this finite collection of open sets be
denoted Cy,. Then the collection € = |_J G, is a refinement of A. It is clearly locally finite,
for the open set B,, intersects only finitely many elements of C, namely those elements
belonging to the collection €; U - - - U Cy,. Finally, € covers X. For, given x, let m be the
smallest integer such that x € B,, . Then x belongs to an element of C,,, by definition.

Some of the properties of a paracompact space are similar to those of a compact
space. For instance, a subspace of a paracompact space is not necessarily paracompact;
but a closed subspace is paracompact. Also, a paracompact Hausdorff space is normal.
In other ways, a paracompact space is not similar to a compact space; in particular, the
product of two paracompact spaces need not be paracompact. We shall verify these
facts shortly.

Theorem 41.1. Every paracompact Hausdorff space X is normal.

Proof. The proof is somewhat similar to the proof that a compact Hausdorff space is
normal.

First one proves regularity. Let a be a point of X and let B be a closed set of X
disjoint from a. The Hausdorff condition enables us to choose, for each b in B, an open
set Up, about b whose closure is disjoint from a. Cover X by the open sets Up, along
with the open set X — B; take a locally finite open refinement C that covers X. Form
the subcollection D of C consisting of every element of C that intersects B. Then D
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covers B. Furthermore, if D € D, then D is disjoint from a. For D intersects B, so it
lies in some set Up, whose closure is disjoint from a. Let

V=UD;

then V is an open set in X containing B. Because D is locally finite,

V=D
DeD
so that V is disjoint from a. Thus regularity is proved.

To prove normality, one merely repeats the same argument, replacing a by the
closed set A throughout and replacing the Hausdortf condition by regularity. [ ]

Theorem 41.2. Every closed subspace of a paracompact space is paracompact.

Proof. Let Y be a closed subspace of the paracompact space X; let 4 be a covering
of Y by sets open in Y. For each A € A, choose an open set A" of X such that
A’'NY = A. Cover X by the open sets A’, along with the open set X — Y. Let B be a
locally finite open refinement of this covering that covers X. The collection

C={BNY|BeB}
is the required locally finite open refinement of 4. |

EXAMPLE 2. A paracompact subspace of a Hausdorff space X need not be closed in X .
Indeed, the open interval (0, 1) is paracompact, being homeomorphic to R, but it is not
closed in R.

EXAMPLE 3. A subspace of a paracompact space need not be paracompact. The space

Sq x Sq is compact and, therefore, paracompact. But the subspace Sg x Sg is not para-

compact, for it is Hausdorff but not normal.

To prove the important theorem that every metrizable space is paracompact, we
need the following lemma, due to E. Michael, which is also useful for other purposes:

Lemma 41.3. Let X be regular. Then the following conditions on X are equivalent:
Every open covering of X has a refinement that is:
(1) An open covering of X and countably locally finite.
(2) A covering of X and locally finite.
(3) A closed covering of X and locally finite.
(4) An open covering of X and locally finite.

Proof. ltis trivial that (4) = (1). What we need to prove our theorem is the converse.
In order to prove the converse, we must go through the steps (1) = (2) = 3) = 4)
anyway, so we have for convenience listed these conditions in the statement of the
lemma.
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(1) = (2). Let A be an open covering of X. Let B be an open refinement of A
that covers X and is countably locally finite; let

8=|]3.
where each B, is locally finite.
Now we apply essentially the same sort of shrinking trick we have used before to
make sets from.different B,’s disjoint. Given i, let

v,~=UU.

UeB;

Then for each n € Z, and each element U of B,,, define

S, (U)=U — U V.

i<n
[Note that S,,(U) is not necessarily open, nor closed.] Let
C, = {Sn(U) | Ue £n}-

Then €, is a refinement of B,,, because S,(U) C U foreach U € B,.

Let € = | JC,. We assert that C is the required locally finite refinement of 4,
covering X. -

Let x be a point of X. We wish to prove that x lies in an element of C, and
that x has a neighborhood intersecting only finitely many elements of C. Consider the
covering B = | Bn; let N be the smallest integer such that x lies in an element of By .
Let U be an element of By containing x. First, note that since x lies in no element of
B, fori < N, the point x lies in the element Sy (U) of C. Second, note that since each
collection B, is locally finite, we can choose for eachn = 1, ..., N a neighborhood
W, of x that intersects only finitely many elements of 8,. Now if W, intersects
the element S, (V) of C,, it must intersect the element V of B,, since S,(V) C V.
Therefore, W, intersects only finitely many elements of C,. Furthermore, because U
is in By, U intersects no element of C, for n > N. As a result, the neighborhood

winw,n--.NnWynU

of x intersects only finitely many elements of C.

(2) = (3). Let A be an open covering of X. Let 8 be the collection of all open
sets U of X such that U is contained in an element of /. By regularity, B covers X.
Using (2), we can find a refinement C of B that covers X and is locally finite. Let

D={C|C €@}

Then D also covers X it is locally finite by Lemma 39.1; and it refines A.

(3) = (4). Let A be an open covering of X. Using (3), choose B to be a refine-
ment of 4 that covers X and is locally finite. (We can take B to be a closed refinement
if we like, but that is irrelevant.) We seek to expand each element B of B slightly to
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an open set, making the expansion slight enough that the resulting collection of open
sets will still be locally finite and will still refine A.

This step involves a new trick. The previous trick, used several times, consisted of
ordering the sets in some way and forming a new set by subtracting off all the previous
ones. That trick shrinks the sets; to expand them we need something different. We
shall introduce an auxiliary locally finite closed covering € of X and use it to expand
the elements of B.

For each point x of X, there is a neighborhood of x that intersects only finitely
many elements of B. The collection of all open sets that intersect only finitely many
elements of B is thus an open covering of X. Using (3) again, let C be a closed
refinement of this covering that covers X and is locally finite. Each element of C
intersects only finitely many elements of B.

For each element B of B, let

C(B)={C|CeCandC C X — B}.
Then define

EB) =X — U C.

CeC(B)

Because C is a locally finite collection of closed sets, the union of the elements of any
subcollection of € is closed, by Lemma 39.1. Therefore, the set E(B) is an open set.
Furthermore, E(B) D B by definition. (See Figure 41.1, in which the elements of 8
are represented as closed circular regions and line segments, and the elements of C are
represented as closed square regions.)

&&\\\ vl _—— E(B,)
NN

Y,
2

N
R
N
1l

«—E(B,)

Figure 41.1
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Now we may have expanded each B too much; the collection { E(B)} may not be
arefinement of »A. This is easily remedied. For each B € B, choose an element F (B)
of A containing B. Then define

D={E(B)NF(B)| B e B).

The collection D is a refinement of A. Because B C (E(B)N F(B)) and B covers X,
the collection D also covers X.

We have finally to prove that D is locally finite. Given a point x of X, choose a
neighborhood W of x that intersects only finitely many elements of C, say Cy, ..., Ck.
We show that W intersects only finitely many elements of £. Because C covers X,
the set W is covered by Cj, ..., Ci. Thus, it suffices to show that each element C of C
intersects only finitely many elements of . Now if C intersects the set E(B) N F(B),
then it intersects E(B), so by definition of E(B) it is not contained in X — B; hence C
must intersect B. Since C intersects only finitely many elements of B, it can intersect
at most the same number of elements of the collection D. |

Theorem 41.4. Every metrizable space is paracompact.

Proof. Let X be a metrizable space. We already know from Lemma 39.2 that, given
an open covering 4 of X, it has an open refinement that covers X and is countably
locally finite. The preceding lemma then implies that 4 has an open refinement that
covers X and is locally finite. |

Theorem 41.5. Every regular Lindelof space is paracompact.

Proof. Let X be regular and Lindelof. Given an open covering 4 of X, it has a
countable subcollection that covers X; this subcollection is automatically countably
locally finite. The preceding lemma applies to show A has an open refinement that
covers X and is locally finite. |

EXAMPLE 4.  The product of two paracompact spaces need not be paracompact. The
space R, is paracompact, for it is regular and Lindelof. However, R, x R, is not paracom-
pact, for it is Hausdorff but not normal.

EXAMPLE 5.  The space R® is paracompact in both the product and uniform topologies.
This result follows from the fact that R® is metrizable in these topologies. It is not known
whether R® is paracompact in the box topology. (See the comment in Exercise 5 of §32.)

EXAMPLE 6.  The product space R’ is not paracompact if J is uncountable. For R’ is
Hausdorff but not normal.

One of the most useful properties that a paracompact space X possesses has to do
with the existence of partitions of unity on X. We have already seen the finite version
of this notion in §36; we discuss the general case now. Recall thatif ¢ : X — R, the
support of ¢ is the closure of the set of those x for which ¢ (x) # 0.
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Definition. Let {Uy}ycs be an indexed open covering of X. An indexed family of
continuous functions

¢t X — [0, 1]

is said to be a partition of unity on X, dominated by {U,]}, if:
(1) (Supportoy) C Uy, for each .
(2) The indexed family {Support ¢, } is locally finite.
(3) . pu(x) = 1 foreach x.

Condition (2) implies that each x € X has a neighborhood on which the func-
tion ¢, vanishes identically for all but finitely many values of . Thus we can make
sense of the “sum” indicated in (3); we interpret it to mean the sum of the terms ¢, (x)
that do not equal zero.

We now construct a partition of unity on an arbitrary paracompact Hausdorff
space. We begin by proving a “shrinking lemma,” just as we did for the finite case
in §36.

*Lemma 41.6. Let X be a paracompact Hausdorff space; let {Uy}qcs be an in-
dexed family of open sets covering X. Then there exists a locally finite indexed family
{Valaecs of open sets covering X such that Vy C U, for each «.

The condition that V, C U, for each a is sometimes expressed by saying that the
family {V, ]} is a precise refinement of the family {U,}.

Proof. Let A be the collection of all open sets A such that A is contained in some
element of the collection {U,}. Regularity of X implies that A4 covers X. Since X
is paracompact, we can find a locally finite collection 8 of open sets covering X that
refines . Let us index B bijectively with some index set X ; then the general element
. of B can be denoted Bg, for B € K, and {Bglgek is a locally finite indexed family.
Since B refines 4, we can define a function f : K — J by choosing, for each 8 in K,
an element f(B) € J such that

Bg C Usp).
Then for each o € J, we define V, to be the union of the elements of the collection

By = {Bg | f(B) = al.

(Note that V,, is empty if there exists no index B such that f(8) = a.) For each
element By of the collecti_on B, we have Bﬂ C Uy by definition. Because the collec-
tion B, is locally finite, V,, equals the union of the closures of the elements of By, so
that V, C U,.

Finally, we check local finiteness. Given x € X, choose a neighborhood W of x
such that W intersects Bg for only finitely many values of 8, say 8 = By, ..., Bk.
Then W can intersect V,, only if « is one of the indices f(B1), ..., f(Bk). [ ]
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*Theorem 41.7. Let X be a paracompact Hausdortf space; let {Uy}qcs be an indexed
open covering of X. Then there exists a partition of unity on X dominated by {U,}.

Proof. 'We begin by applying the shrinking lemma twice, to find locally finite indexed
familes of open sets {Wy} and {V,} covering X, such that Wy C Vyand V, C U,
for each a. Since X is normal, we may choose, for each ¢, a continuous function
VYo : X — [0, 1] such that Yo (W,) = {1} and Yo (X — V) = {0}. Since v, is
nonzero only at points of V,,, we have

(Support Yy) C Vo C Us.

Furthermore, the indexed family {V,} is locally finite (since an open set intersects V,
only if it intersects Vy); hence the indexed family {Support .} is also locally finite.
Note that because {Wy} covers X, for any given x at least one of the functions v, is
positive at x.

We can now make sense of the formally infinite sum

V() =) Valx).

Since each x € X has a neighborhood W, that intersects the set (Support ¥, ) for
only finitely many values of o, we can interpret this infinite sum to mean the sum of
its (finitely many) nonzero terms. It follows that the restriction of W to W, equals a
finite sum of continuous functions, and is thus continuous. Then since W is continuous
on W, for each x, it is continuous on X. It is also positive. We now define

Ga(x) = Yo (x)/ W (x)

to obtain our desired partition of unity. -

Partitions of unity are most often used in mathematics to “patch together” func-
tions that are defined locally so as to obtain a function that is defined globally. Their
use in §36 illustrates this process. Here is another such illustration:

*Theorem 41.8. Let X be a paracompact Hausdorff space; let C be a collection of
subsets of X; for each C € C, let ec be a positive number. If C is locally finite, there
is a continuous function f : X — R such that f(x) > O for all x, and f(x) < ec for
xeC.

Proof. Cover X by open sets each of which intersects at most finitely many elements
of C; index this collection of open sets so that it becomes an indexed family {U, }aey.
Choose a partition of unity {¢,} on X dominated by {U,}. Given a, let §, be the
minimum of the numbers €c, as C ranges over all those elements of C that intersect
the support of ¢, ; if there are no such elements of C, set §, = 1. Then define

f) =) bata(x).
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Because all the numbers §, are positive, so is f. We show that f(x) < ec forx € C.
It will suffice to show that for x € C and arbitrary «, we have

(*)

Sao (x) < €cPu(x);

then the desired inequality follows by summing, as > ¢, (x) = 1. If x ¢ Support ¢,
then inequality (*) is trivial because ¢,(x) = 0. And if x € Support¢, and x € C,
then C intersects the support of ¢, so that §, < €c by construction; thus (x) holds. ®

Exercises

1.

*7.

Give an example to show that if X is paracompact, it does not follow that for

every open covering + of X, there is a locally finite subcollection of A that

covers X.

(a) Show that the product of a paracompact space and a compact space is para-
compact. [Hint: Use the tube lemma.]

(b) Conclude that S is not paracompact.

Is every locally compact Hausdorff space paracompact?

(a) Show that if X has the discrete topology, then X is paracompact.
(b) Show that if f : X — Y is continuous and X is paracompact, the sub-
space f(X) of Y need not be paracompact.

. Let X be paracompact. We proved a “shrinking lemma” for arbitrary indexed

open coverings of X. Here is an “expansion lemma” for arbitrary locally finite
indexed families in X.

Lemma. Let {By)oes be a locally finite indexed family of subsets of the para-
compact Hausdorff space X. Then there is a locally finite indexed family {Uy }ge s
of open sets in X such that B, C U, for eacha.

(a) Let X be a regular space. If X is a countable union of compact subspaces
of X, then X is paracompact.
(b) Show R™ is paracompact as a subspace of R” in the box topology.

Let X be a regular space.

(a) If X is a finite union of closed paracompact subspaces of X, then X is para-
compact.

(b) If X is a countable union of closed paracompact subspaces of X whose inte-
riors cover X, show X is paracompact.

Let p : X — Y be a perfect map. (See Exercise 7 of §31.)

(a) Show thatif Y is paracompact, so is X. [Hint: If A is an open covering of X,
find a locally finite open covering of Y by sets B such that p—!(B) can be
covered by finitely many elements of 4; then intersect p~!(B) with these
elements of A.]

(b) Show that if X is a paracompact Hausdorff space, then so is Y. [Hint: If B
is a locally finite closed covering of X, then {p(B) | B € B} is a locally
finite closed covering of Y .]
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9. Let G be a locally compact, connected topological group. Show that G is para-
compact. [Hint: Let U; be a neighborhood of e having compact closure. In
general, define U, | = U, - U;. Show the union of the sets U, is both open and
closed in G.]

This result holds without assuming G is connected, but the proof requires more
effort.

10. Theorem. If X is a Hausdorff space that is locally compact and paracompact,
then each component of X has a countable basis.
Proof. If Xg is a component of X, then Xg is locally compact and paracompact.
Let C be a locally finite covering of Xo by sets open in X that have compact
closures. Let U] be a nonempty element of C, and in general let U, be the union
of all elements of € that intersect U,_;. Show U, is compact, and the sets Uy,
cover Xg.

§42 The Smirnov Metrization Theorem

The Nagata-Smimov metrization theorem gives one set of necessary and sufficient
conditions for metrizability of a space. In this section we prove a theorem that gives
another such set of conditions. It is a corollary of the Nagata-Smirmov theorem and
was first proved by Smirnov.

Definition. A space X is locally metrizable if every point x of X has a neighbor-
hood U that is metrizable in the subspace topology.

Theorem 42.1 (Smirnov metrization theorem). A space X is metrizable if and
only if it is a paracompact Hausdorff space that is locally metrizable.

Proof. Suppose that X is metrizable. Then X is locally metrizable; it is also para-
compact, by Theorem 41.4.

Conversely, suppose that X is a paracompact Hausdorff space that is locally metriz-
able. We shall show that X has a basis that is countably locally finite. Since X is
regular, it will then follow from the Nagata-Smirnov theorem that X is metrizable.

The proof is an adaptation of the last part of the proof of Theorem 40.3. Cover X
by open sets that are metrizable; then choose a locally finite open refinement C of
this covering that covers X. Each element C of C is metrizable; let the function d¢ :
C x C — R be a metric that gives the topology of C. Given x € C, let B¢ (x, €)
denote the set of all points y of C such that d¢c(x, y) < €. Being open in C, the set
Bc(x,€)is alsoopenin X.

Given m € Z., let A, be the covering of X by all these open balls of radius 1/m;
that is, let

Ay ={Bc(x,1/m) | x € Cand C € C}.
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Let D, be a locally finite open refinement of A, that covers X. (Here we use para-
compactness.) Let D be the union of the collections D,,. Then D is countably locally
finite. We assert that D is a basis for X; our theorem follows.

Let x be a point of X and let U be a neighborhood of x. We seek to find an
element D of D such that x € D C U. Now x belongs to only finitely many elements
of G,sayto Cy, ..., Cr. Then U N C; is a neighborhood of x in the set C;, so there is
an ¢; > 0 such that

Bc,(x,€) C (UNG)).

Choose m so that 2/m < min{eq, ..., €}. Because the collection D,, covers X, there
must be an element D of D,, containing x. Because D,, refines A,,, there must be
an element B¢ (y, 1/m) of A,,, for some C € C and some y € C, that contains D.
Because

x € D C Bc(y,1/m),

the point x belongs to C, so that C must be one of the sets Cy, ..., Cx. Say C = C;.
Since B¢ (y, 1/m) has diameter at most 2/m < ¢;, it follows that

x € D C B¢,(y,1/m) C B¢, (x,€¢;) C U,

as desired. [ ]

Exercises

1. Compare Theorem 42.1 with Exercises 7 and 8 of §34.

2. (a) Show that for each x € Sq, the section of Sg, by x has a countable basis and
hence is metrizable.
(b) Conclude that Sg is not paracompact.



Chapter 7

Complete Metric Spaces
and Function Spaces

The concept of conipleteness for a metric space is one you may have seen already. It is
basic for all aspects of analysis. Although completeness is a metric property rather than
a topological one, there are a number of theorems involving complete metric spaces
that are topological in character. In this chapter, we shall study the most important
examples of complete metric spaces and shall prove some of these theorems.

The most familiar example of a complete metric space is euclidean space in either
of its usual metrics. Another example, just as important, is the set C(X, Y) of all
continuous functions mapping a space X into a metric space Y. This set has a metric
called the uniform metric, analogous to the uniform metric defined for R’ in §20. If Y
is a complete metric space, then C(X, Y) is complete in the uniform metric. This we
demonstrate in §43. As an application, we construct in §44 the well-known Peano
space-filling curve.

One theorem of topological character concerning complete metric spaces is a the-
otem relating compactness of a space to completeness. We prove it in §45. An im-
mediate corollary is a theorem concerning compact subspaces of the function space
C(X, R™); it is the classical version of a famous theorem called Ascoli’s theorem.

There are other useful topologies on the function space C(X, Y) besides the one
derived from the uniform metric. We study some of them in §46, leading to a proof of
a general version of Ascoli’s theorem in §47.

263
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§43 Complete Metric Spaces

In this section we define the notion of completeness and show that if ¥ is a complete
metric space, then the function space C(X, Y) is complete in the uniform metric. We
also show that every metric space can be imbedded isometrically in a complete metric
space.

Definition. Let (X, d) be a metric space. A sequence (x,) of points of X is said to
be a Cauchy sequence in (X, d) if it has the property that given € > 0, there is an
integer N such that

d(x,, xm) <€ whenevern,m > N.

The metric space (X, d) is said to be complete if every Cauchy sequence in X con-
verges.

Any convergent sequence in X is necessarily a Cauchy sequence, of course; com-
pleteness requires that the converse hold.

Note that a closed subset A of a complete metric space (X, d) is necessarily com-
plete in the restricted metric. For a Cauchy sequence in A is also a Cauchy sequence
in X, hence it converges in X. Because A is a closed subset of X, the limit must lie in
A.

Note also that if X is complete under the metric d, then X is complete under the
standard bounded metric

d(x,y) = min{d(x, y), 1}

corresponding to d, and conversely. For a sequence (x,,) is a Cauchy sequence under d
if and only if it is a Cauchy sequence under d. And a sequence converges under d if
and only if it converges under d.

A useful criterion for a metric space to be complete is the following:

Lemma 43.1. A metric space X is complete if every Cauchy sequence in X has a
convergent subsequence.

Proof. Let (x,) be a Cauchy sequence in (X, d). We show that if (x,) has a sub-
sequence (x,;) that converges to a point x, then the sequence (x,) itself converges
to x.

Given € > 0, first choose N large enough that

d(xp, xm) < €/2

for all n,m > N [using the fact that (x,) is a Cauchy sequence]. Then choose an
integer i/ large enough that n; > N and

d(xp,x) <€/2
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[using the fact that n1 < np < ... is an increasing sequence of integers and xp,
converges to x]. Putting these facts together, we have the desired result that forn > N,

d(x'h -x) ..<_ d(xnv xn,-) +d(-xn,'v x) < €. .

Theorem 43.2.  Euclidean space R* is complete in either of its usual metrics, the
euclidean metric d or the square metric p.

Proof. To show the metric space (Rk, p) is complete, let (x,) be a Cauchy sequence
in (R, p). Then the set {x,} is a bounded subset of (R*, p). For if we choose N so
that

pxn, xm) <1

for all n, m > N, then the number
M = max{p(x1,0), ..., p(xy-1,0), p(xn,0) + 1}

is an upper bound for p(x,, 0). Thus the points of the sequence (x,) all lie in the cube
[—M, M]*. Since this cube is compact, the sequence (x,) has a convergent subse-
quence, by Theorem 28.2. Then (RX, p) is complete.

To show that (R, d) is complete, note that a sequence is a Cauchy sequence rela-
tive to d if and only if it is a Cauchy sequence relative to p, and a sequence converges
relative to d if and only if it converges relative to p. |

Now we deal with the product space R”. We need a lemma about sequences in a
product space.

Lemma 43.3. Let X be the product space X = [| Xq; let x, be a sequence of points
of X. Thenx, — x if and only if m,(X,) —> m,(X) for each «.

Proof. This result was given as an exercise in §19; we give a proof here. Because the
projection mapping 7, : X — X, is continuous, it preserves convergent sequences;
the “only if” part of the lemma follows. To prove the converse, suppose my(X,) —
7 (x) for each @ € J. Let U = [] U, be a basis element for X that contains x. For
each o for which U, does not equal the entire space X, choose N, so that 7y (x,) €
Uy forn > Ny. Let N be the largest of the numbers Ny; then for all n > N, we have
x, elU. |

Theorem 43.4. There is a metric for the product space R relative to which R? is
complete.

Proof. Letd(a, b) = min{ja — b|, 1} be the standard bounded metric on R. Let D be
the metric on R defined by

D(x,y) = sup{d(x;, y1)/i}.
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Then D induces the product topology on R?; we verify that R“ is complete under D.
Let x,, be a Cauchy sequence in (R“, D). Because

d(mi(x), m:(y)) < iD(x,y),

we see that for fixed i the sequence 7; (X, ) is a Cauchy sequence in R, so it converges,
say to a;. Then the sequence x,, converges to the point a = (aj, a2, ...) of R®. ]

EXAMPLE 1. An example of a noncomplete metric space is the space Q of rational
numbers in the usual metric d(x, y) = |x — y|. For instance, the sequence

1.4,1.41, 1.414, 1.4142,1.41421, . ..

of finite decimals converging (in R) to /2 is a Cauchy sequence in Q that does not converge

(in Q).

EXAMPLE 2.  Another noncomplete space is the open interval (—1, 1) in R, in the metric
d(x, y) = |x — y|. In this space the sequence (x,) defined by

xp=1—1/n

is a Cauchy sequence that does not converge. This example shows that completeness is
not a topological property, that is, it is not preserved by homeomorphisms. For (-1, 1) is
homeomorphic to the real line R, and R is complete in its usual metric.

Although both the product spaces R"” and R“ have metrics relative to which they
are complete, one cannot hope to prove the same result for the product space R’ in
general, because R’ is not even metrizable if J is uncountable (see §21). There is,
however, another topology on the set R/, the one given by the uniform metric. Relative
to this metric, R’ is complete, as we shall see.

We define the uniform metric in general as follows:

Definition. Let (Y, d) be a metric space; let d(a, b) = min{d(a, b), 1} be the stan-
dard bounded metric on Y derived from d. If X = (x4)qecs and y = (yq )aes are points
of the cartesian product Y7, let

p(x,y) = sup{d(xe, Yo) | @ € J}.

It is easy to check that p is a metric; it is called the uniform metric on Y’ correspond-
ing to the metricd on Y.

Here we have used the standard “tuple” notation for the elements of the cartesian
product Y”. Since the elements of Y J are simply functions from J to Y, we could
also use functional notation for them. In this chapter, functional notation will be more
convenient than tuple notation, so we shall use it throughout. In this notation, the
definition of the uniform metric takes the following form: If f, g : J — Y, then

B(f, &) = supld(f(), ga) | @ € J}.
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Theorem 43.5. If the space Y is complete in the metric d, then the space Y’ is
complete in the uniform metric p corresponding tod.

Proof. Recall that if (Y, d) is complete, so is (Y, d), where d is the bounded metric
corresponding to d. Now suppose that f1, f2, ... is a sequence of points of Y7 that is
a Cauchy sequence relative to p. Given « in J, the fact that

d(fu(@), fm (@) < p(fus fim)

for all n, m means that the sequence f](a), f2(«), ... is a Cauchy sequence in (Y, d ).
Hence this sequence converges, say to a point y,. Let f : J — Y be the function
defined by f(a) = y». We assert that the sequence ( f,;) converges to f in the metric p.

Given € > 0, first choose N large enough that 5( f, fm) < €/2 whenever n, m >
N. Then, in particular,

d(fu(@), fm(@) < €/2

forn,m > N and ¢ € J. Letting n and « be fixed, and letting m become arbitrarily
large, we see that

d(fu(@), f(@)) < €/2.

This inequality holds for all ¢ in J, provided merely that n > N. Therefore,
olfn, f)<e/2 <€

forn > N, as desired. ]

Now let us specialize somewhat, and consider the set Y* where X is a ropological
space rather than merely a set. Of course, this has no effect on what has gone before;
the topology of X is irrelevant when considering the set of all functions f : X — Y.
But suppose that we consider the subset C(X, Y) of YX consisting of all continuous
functions f : X — Y. It turns out that if Y is complete, this subset is also complete
in the uniform metric. The same holds for the set B(X, Y) of all bounded functions
f X — Y. (A function f is said to be bounded if its image f(X) is a bounded
subset of the metric space (Y, d).)

Theorem 43.6. Let X be a topological space and let (Y, d) be a metric space. The
set C(X, Y) of continuous functions is closed in YX under the uniform metric. So is
the set B(X, Y) of bounded functions. Therefore, if Y is complete, these spaces are
complete in the uniform metric.

Proof. The first part of this theorem is just the uniform limit theorem (Theorem 21.6)
in a new guise. First, we show that if a sequence of elements f, of YX converges to
the element f of Y¥ relative to the metric 5 on YX, then it converges to f uniformly
in the sense defined in §21, relative to the metric d on Y. Given € > 0, choose an
integer N such that

o(f, fn) <€
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foralln > N. Thenforall x € X and alln > N,

d(fu(x), X)) < p(fn, f) < €.

Thus ( f,;) converges uniformly to f.

Now we show that C(X, Y) is closed in YX relative to the metric p. Let f be
an element of YX that is a limit point of C(X, Y). Then there is a sequence ( f,,) of
elements of C(X, Y) converging to f in the metric 5. By the uniform limit theorem,
f is continuous, so that f € C(X,7Y).

Finally, we show that B(X, ¥) is closed in YX_If fis alimit point of B(X,Y),
there is a sequence of elements f, of B(X, Y) converging to f. Choose N so large
that o(fw, f) < 1/2. Then for x € X, we have J(fN(x), f(x)) < 1/2, which implies
that d{( fw(x), f(x)) < 1/2. It follows that if M is the diameter of the set f (X), then
f(X) has diameter at most M + 1. Hence f € B(X,7Y).

We conclude that G(X, Y) and B(X, Y) are complete in the metric p if Y is com-
plete ind. [ ]

Definition. If (Y, d) is a metric space, one can define another metric on the set
B(X, Y) of bounded functions from X to Y by the equation

p(f. 8) = sup{d(f(x), g(x)) | x € X}.

It is easy to see that p is well-defined, for the set f(X)Ug(X) is bounded if both f(X)
and g(X) are. The metric p is called the sup metric.

There is a simple relation between the sup metric and the uniform metric. Indeed,
if f,g € B(X,Y), then

p(f, g) = min{p(f, g), 1}.

For if p(f,g) > 1, then d(f(xg), g(x0)) > 1 for at least one xo € X, so that
J(f(xo), g(x0)) = 1 and p(f, g) = 1 by definition. On the other hand, if p(f, g) < 1,
then d(f (x), g(x)) = d(f(x), g(x)) < 1 forall x, so that 5(f, g) = p(f, g). Thus on
B(X, Y), the metric p is just the standard bounded metric derived from the metric p.
That is the reason we introduced the notation p for the uniform metric, back in §20!

If X is a compact space, then every continuous function f : X — Y is bounded;
hence the sup metric is defined on C(X, Y). If Y is complete under d, then C(X, Y)
is complete under the corresponding uniform metric p, so it is also complete under
the sup metric p. We often use the sup metric rather than the uniform metric in this
situation.

We now prove a classical theorem, to the effect that every metric space can be
imbedded isometrically in a complete metric space. (A different proof, somewhat
more direct, is outlined in Exercise 9.) Although we shall not need this theorem, it is
useful in other parts of mathematics.
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*Theorem 43.7. l.et (X, d) be a metric space. There is an isometric imbedding of X
into a complete metric space.

Proof. Let B(X, R) be the set of all bounded functions mapping X into R. Let xgy be
a fixed point of X. Given a € X, define ¢, : X — R by the equation

¢ﬂ(x) = d(x7 a) - d(xv xO)-
We assert that ¢, is bounded. For it follows, from the inequalities

d(x,a) <d(x,b)+d(a,b),
d(x,b) <d(x,a)+d(a,b),

that
|d(x,a) —d(x, b)| < d(a,b).

Setting b = xp, we conclude that |¢,(x)| < d(a, xg) for all x.
Define @ : X —» B(X, R) by setting

®(a) = ¢a.

We show that @ is an isometric imbedding of (X, d) into the complete metric space
(B(X, R), p). That is, we show that for every pair of points a, b € X,

p(@a, $p) = d(a, b).
By definition,

P (@a, ¢p) = supflga(x) — dp(x)|; x € X}
= sup{|d(x, a) —d(x,b)|; x € X}.

We conclude that
p(¢a» ¢b) 5 d(aa b)
On the other hand, this inequality cannot be strict, for when x = a,

|d(x, a) —-d(x, b)| =d(a,b). ]

Definition. Let X be a metric space. If h : X — Y is an isometric imbedding of X
into a complete metric space Y, then the subspace h(X) of Y is a complete metric
space. It is called the completion of X .

The completion of X is uniquely determined up to an isometry. See Exercise 10.
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Exercises

1. Let X be a metric space.
(a) Suppose that for some € > 0, every e-ball in X has compact closure. Show
that X is complete.
(b) Suppose that for each x € X there is an € > 0 such that the ball B(x, €)
has compact closure. Show by means of an example that X need not be
complete.

2. Let (X, dy) and (¥, dy) be metric spaces; let Y be complete. Let A C X. Show
that if f : A — Y is uniformly continuous, then f can be uniquely extended to
a continuous function g : A — Y, and g is uniformly continuous.

3. Two metrics d and d’ on a set X are said to be metrically equivalent if the identity
map i : (X,d) - (X, d’) and its inverse are both uniformly continuous.
(a) Show that d is metrically equivalent to the standard bounded metric d de-
rived from d.
(b) Show that if d and d’ are metrically equivalent, then X is complete under d
if and only if it is complete under d’.

4. Show that the metric space (X, d) is complete if and only if for every nested
sequence A} D A O --- of nonempty closed sets of X such that diam A, — 0,
the intersection of the sets A,, is nonempty.

S. If (X, d) is a metric space, recall that a map f : X — X is called a contraction
if there is a number o < 1 such that

d(f(x), f(y) <ad(x,y)

for all x, y € X. Show that if f is a contraction of a complete metric space, then
there is a unique point x € X such that f(x) = x. Compare Exercise 7 of §28.

6. A space X is said to be topologically complete if there exists a metric for the

topology of X relative to which X is complete.

(a) Show that a clos