EXAM #2 MATH 32 - Fall 2005

Name:

I have adhered to the Duke Community standard in completing this test.

signature

Q 1	/10
$\mathbf{Q} \ 2$	/18
Q 3	/15
Q 4	/30
Q 5	/15
Q 6	/12
Total:	/100

Here's a list of formulas that may be of use to you. Good luck!

- $\frac{d}{dx}\sinh^{-1}(x) = \frac{1}{\sqrt{1+x^2}}, \ \frac{d}{dx}\cosh^{-1}(x) = \frac{1}{\sqrt{x^2-1}}, \ \frac{d}{dx}\tanh^{-1}(x) = \frac{1}{1-x^2}$
- If an integral involves $a^2 u^2$, substitute $u = a \sin(\theta)$. If an integral involves $a^2 + u^2$, substitute $u = a \tan(\theta)$. If an integral involves $u^2 - a^2$, substitute $u = a \sec(\theta)$.

1. Solve the following initial value problems:

(a) (5 pts.)
$$\frac{dy}{dx} = x^4 + y^2 x^4$$
, $y(0) = 1$.

(b) (5 pts.)
$$\frac{dy}{dx} = \frac{y}{x \ln(x)}, \ y(e) = 2.$$

- 2. Compute the following limits.
 - (a) (6 pts.) $\lim_{x\to 0^+} x^x =$

(b) (6 pts.)
$$\lim_{x \to \infty} \frac{\tan^{-1}(x)}{e^x} =$$

(c) (6 pts.)
$$\lim_{x\to\infty} \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)^x =$$

3. Compute the following integrals:

(a) (5 pts.)
$$\int \frac{\sinh^3(x)}{\cosh^7(x)} dx =$$

(b) (5 pts.) $\int e^x \cos(x) dx =$

(c) (5 pts.) $\int \sinh^{-1}(x) dx =$

4. (a) (10 pts.) Write a factorization of $(x^3 + 1)$ as a product of a linear term and a quadratic term (Hint: find a root, then use long division). (b) (10 pts.) Write a partial fraction decomposition of $\frac{1}{x^3+1}$

(c) (10 pts.) Compute the integral $\int \frac{1}{x^3+1} dx$

5. (a) (5 pts.) Prove that $\csc(x) = \frac{\sin(x)}{1 - \cos^2(x)}$

(b) (5 pts.) Use part (a) and the fact that $\frac{1}{1-u^2} = \frac{1}{2} \left(\frac{1}{1+u}\right) + \frac{1}{2} \left(\frac{1}{1-u}\right)$ to prove that $\csc(x) = \frac{1}{2} \left(\frac{\sin(x)}{1+\cos x}\right) + \frac{1}{2} \left(\frac{\sin(x)}{1-\cos(x)}\right)$

(c) (5 pts.) Compute $\int \csc(x) dx$

6. Determine whether or not the following improper integrals converge. Evaluate those that do converge.

(a) (6 pts.) $\int_{\pi}^{\infty} \frac{1}{(x-3)^{7/2}} dx$

(b) (6 pts.) $\int_0^{\pi/2} \tan(x) dx$