Examples Jordan Normal Form
 UTK - M531 - Ordinary Differential Equations I
 Fall 2004, Jochen Denzler, TR 11:10-12:25, Ayres 309B

(These examples were generated with the help of symbolic algebra software, and also the calculations were done using such software.)
$\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ denotes the diagonal matrix (size $n \times n$) with the diagonal entries as specified.
I may write column vectors like $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ as transposed rows $[1,2,3]^{T}$ for typographical reasons.

Example 1:

The matrix

$$
A=\left[\begin{array}{ccc}
\frac{44}{3} & -\frac{82}{3} & -20 \\
\frac{19}{3} & -\frac{35}{3} & -10 \\
4 & -8 & -4
\end{array}\right]
$$

has characteristic polynomial

$$
\operatorname{det}(A-\lambda I)=-\lambda^{3}-\lambda^{2}+10 \lambda-8=-(\lambda-2)(\lambda-1)(\lambda+4)
$$

where the factorization is based on eyeballing (guesswork) to find $\lambda=1$ as one root, and then the quadratic formula.
Since all eigenvalues are distinct, we can diagonalize the matrix $A=S D S^{-1}$ with $D=$ $\operatorname{diag}(1,2,-4)$. (Any other order like eg. $\tilde{D}=\operatorname{diag}(1,-4,2)$ would do just as well, with a different $\tilde{S} \neq S$ (similarly permuted. So we have chosen the numbering $\lambda_{1}=1, \lambda_{2}=2$, $\lambda_{3}=-4$. Let's find corresponding eigenvectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$:
\boldsymbol{v}_{1} is calculated as a solution to the linear system $\left(A-\lambda_{1}\right) \boldsymbol{v}_{1}=\mathbf{0}$:

$$
\begin{aligned}
& \frac{41}{3} v_{1}^{(1)}+\frac{82}{3} v_{1}^{(2)}+(-20) v_{1}^{(3)}=0 \\
& \frac{19}{3} v_{1}^{(1)}+\frac{-38}{3} v_{1}^{(2)}+(-10) v_{1}^{(3)}=0 \\
& 4 v_{1}^{(1)}+(-8) v_{1}^{(2)}+(-5) v_{1}^{(3)}=0
\end{aligned}
$$

(Upper indices denote components of the vector, lower indices identify vectors.) Gauss elimination from this system produces: $v_{1}^{(1)}=2 v_{1}^{(2)}, v_{1}^{(3)}=0$. We may therefore choose $\boldsymbol{v}_{1}=[2,1,0]^{T}$. Any nonzero multiple would have been just as legitimate a choice (and would have led to a somewhat different matrix S).
Likewise we obtain $\boldsymbol{v}_{2}=[1,-1,2]^{T}$ and $\boldsymbol{v}_{3}=[4,2,1]^{T}$, where again nonzero multiples would have been just as legitimate choices. We have therefore found (our choice of) the matrix S :

$$
S=\left[\begin{array}{c|c|c}
2 & 1 & 4 \\
1 & -1 & 2 \\
0 & 2 & 1
\end{array}\right]
$$

(Vertical lines inserted to make eigenvectors more clearly visible). It is another bunch of
linear equations to find its inverse (if you need it):

$$
S^{-1}=\frac{1}{3}\left[\begin{array}{ccc}
5 & 7 & -6 \\
1 & -2 & 0 \\
-2 & 4 & 3
\end{array}\right]
$$

You can now check explicitly that $A S=S D$, or $A=S D S^{-1}$.

Example 2:

This example must be higher dimensional, because its purpose is to display several bells and whistles at the same time. Took me quite a while to come up with an example with somewhat decent numbers. Let

$$
A=\left[\begin{array}{rrrrrrr}
28 & 4 & -1 & 1 & -9 & -15 & -8 \\
90 & 4 & -2 & 2 & -36 & -45 & -27 \\
93 & 0 & -2 & 0 & -40 & -45 & -28 \\
93 & 0 & 0 & -2 & -40 & -45 & -28 \\
-560 & -12 & 3 & -3 & 235 & 275 & 169 \\
-554 & 4 & -1 & 1 & 243 & 267 & 168 \\
1790 & 24 & -6 & 6 & -759 & -875 & -540
\end{array}\right]
$$

The characteristic polynomial is

$$
\operatorname{det}(A-\lambda I)=-\lambda^{7}-10 \lambda^{6}-41 \lambda^{5}-90 \lambda^{4}-120 \lambda^{3}-112 \lambda^{2}-80 \lambda-32=-(\lambda+2)^{5}\left(\lambda^{2}+1\right)
$$

where the factorization is a conspiratively designed lucky 'coincidence'. So $\lambda_{1}=-2$ is an eigenvalue with algebraic multiplicity 5 and $\lambda_{6,7}= \pm i$ are single eigenvalues. To find the geometric multiplicity of λ_{1}, we must actually solve the linear system $(A+2 I) \boldsymbol{v}=\mathbf{0}$. Let me do this 'by hand', with 'unsystematic' row transformations (i.e., smart pivoting) to preserve nice numbers:

$$
\begin{array}{rrrrrrrl}
30 & 4 & -1 & 1 & -9 & -15 & -8 & \\
90 & 6 & -2 & 2 & -36 & -45 & -27 & \\
-3 & 4 & -1 & 1 & -9 & -15 & -8 \\
93 & 0 & 0 & 0 & -40 & -45 & -28 & \\
93 & 0 & -2 & 2 & 4 & 0 & 1 \\
93 & 0 & 0 & 0 & -40 & -45 & -28 & \text { step1 } \\
-560 & -12 & 3 & -3 & 237 & 275 & 169 & 0 \\
0 & 0 & 0 & 0 & -40 & -45 & -28 \\
-554 & 4 & -1 & 1 & 243 & 269 & 168 & \\
0 & 0 & -12 & 3 & -3 & 237 & 275 & 169 \\
1790 & 24 & -6 & 6 & -759 & -875 & -538 & \\
& 110 & 16 & -4 & 4 & 6 & -6 & -1 \\
\hline
\end{array}
$$

step 1: subtract 3rd row from 2nd and 4th; subtract 5th row from 6 th and add three times to 7 th.
step 2: add $5 \times$ last row to 5 th, then subtract 3 rd row from last, then use 2 nd row to produce leading 0's in 1st, 3rd, 6th row
step 3: move 4 th row to bottom, 2 nd row to top, and use it to create more zeros in the 1 st column

$$
\begin{array}{rrrrrrrlrrrrrrr}
0 & 64 & -21 & 21 & 31 & -15 & 2 & & -3 & 6 & -2 & 2 & 4 & 0 & 1 \\
-3 & 6 & -2 & 2 & 4 & 0 & 1 & & 0 & 64 & -21 & 21 & 31 & -15 & 2 \\
0 & 186 & -62 & 62 & 84 & -45 & 3 & & 0 & 186 & -62 & 62 & 84 & -45 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \text { step3 } & 0 & -92 & \frac{74}{3} & \frac{-74}{3} & \frac{-49}{3} & 25 & \frac{32}{3} \\
-10 & -72 & 18 & -18 & -3 & 25 & 14 & \longrightarrow & 0 & 28 & -8 & 8 & 14 & -6 & 1 \\
0 & 28 & -8 & 8 & 14 & -6 & 1 & & 0 & 22 & \frac{-25}{3} & \frac{25}{3} & \frac{44}{3} & -5 & \frac{8}{3} \\
17 & -12 & 3 & -3 & -8 & -5 & -3 & & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

step 4: subtract 2 nd row 3 times from 3 rd, add it to 4 th, subtract 5 th row from 6 th
step 5: add 5 th row to 4 th, subtract it $5 / 2$ times from 2 nd; subtract 3 rd row from 6 th

$$
\begin{array}{rrrrrrrllrrrrrrr}
-3 & 6 & -2 & 2 & 4 & 0 & 1 & & -3 & 6 & -2 & 2 & 4 & 0 & 1 \\
0 & 64 & -21 & 21 & 31 & -15 & 2 & & 0 & -6 & -1 & 1 & -4 & 0 & \frac{-1}{2} \\
0 & -6 & 1 & -1 & -9 & 0 & -3 \\
0 & -28 & \frac{11}{3} & \frac{-11}{3} & \frac{44}{3} & 10 & \frac{38}{3} & \text { step5 } & 0 & -6 & 1 & -1 & -9 & 0 & -3 \\
0 & 28 & -8 & 8 & 14 & -6 & 1 & & 0 & \frac{-13}{3} & \frac{13}{3} & \frac{86}{3} & 4 & \frac{41}{3} \\
0 & -6 & \frac{-1}{3} & \frac{1}{3} & \frac{2}{3} & 1 & \frac{5}{3} & & 0 & 0 & \frac{-8}{3} & 8 & 14 & -6 & 1 \\
0 & \frac{4}{3} & \frac{29}{3} & 1 & \frac{14}{3}
\end{array}
$$

step 6: multiply 4th and 6 th row by 3 ; use 3 rd row to produce 0 's in column 2 of 2 nd and 5 th row step 7: exchange 3rd and 2nd row; use new 3rd (old 2nd) row to produce 0's in 3rd column

$$
\begin{array}{rrrrrrrlllrrrrrr}
-3 & 6 & -2 & 2 & 4 & 0 & 1 & & -3 & 6 & -2 & 2 & 4 & 0 & 1 \\
0 & 0 & -2 & 2 & 5 & 0 & \frac{5}{2} & & 0 & -6 & 1 & -1 & -9 & 0 & -3 \\
0 & -6 & 1 & -1 & -9 & 0 & -3 \\
0 & 0 & -13 & 13 & 86 & 12 & 41 & \text { step7 } & 0 & 0 & -2 & 2 & 5 & 0 & \frac{5}{2} \\
0 & 0 & -\frac{10}{3} & \frac{10}{3} & -28 & -6 & -13 & & 0 & 0 & 0 & \frac{107}{2} & 12 & \frac{99}{4} \\
0 & 0 & -4 & 4 & 29 & 3 & 14 & & 0 & 0 & 0 & 0 & \frac{-109}{3} & -6 & \frac{-103}{6} \\
0 & 0 & 0 & 19 & 3 & 9
\end{array}
$$

step 8: multiply row5 by $3 / 2$ and add row 4 to it: it becomes $(0,0,0,0,-1,3,-1)$; use it to produce 0's in column 5.
step 9: the 4 th row has become a multiple of the 6 th and can be dropped; normalize the 6 th row.

$$
\begin{array}{rrrrrrrlllrrrrr}
-3 & 6 & -2 & 2 & 4 & 0 & 1 & & -3 & 6 & -2 & 2 & 4 & 0 & 1 \\
0 & -6 & 1 & -1 & -9 & 0 & -3 & & 0 & -6 & 1 & -1 & -9 & 0 & -3 \\
0 & 0 & -2 & 2 & 5 & 0 & \frac{5}{2} & & 0 & 0 & -2 & 2 & 5 & 0 & \frac{5}{2} \\
0 & 0 & 0 & 0 & 0 & \frac{345}{2} & \frac{-115}{4} & \text { step9 } & 0 & 0 & 0 & 0 & -1 & 3 & -1 \\
0 & 0 & 0 & 0 & -1 & 3 & -1 & & 0 & 0 & 0 & 0 & 0 & 6 & -1 \\
0 & 0 & 0 & 0 & 0 & 60 & -10 & & & & & & & &
\end{array}
$$

We therefore find two eigenvectors: $v^{(7)}$ can be chosen arbitrarily, but the 5 th eqn requires $6 v^{(6)}-v^{(7)}=0$. The 4th eqn then determines $v^{(5)}$, whereas $v^{(4)}$ is again arbitrary. The other components are then determined again. The eigenspace is therefore 2-dimensional (geometric multiplicity 2), and we choose two linearly independent eigenvectors \boldsymbol{v} and \boldsymbol{w} by letting $v^{(7)}=2, v^{(4)}=0$, and $w^{(7)}=0, w^{(4)}=1$. Other choices would be equally legitimate and would simply produce a different matrix S.
We thus find the eigenvectors $\boldsymbol{v}=\left[\frac{1}{3}, \frac{1}{2}, 0,0,-1, \frac{1}{3}, 2\right]^{T}$ and $\boldsymbol{w}=[0,0,1,1,0,0,0]^{T}$. We try to find further vectors by solving $(A+2 I) \boldsymbol{v}^{\prime}=\boldsymbol{v}$ and $(A+2 I) \boldsymbol{w}^{\prime}=\boldsymbol{w}$ (if possible). And then, we try to solve $(A+2 I) \boldsymbol{v}^{\prime \prime}=\boldsymbol{v}^{\prime}$ and $(A+2 I) \boldsymbol{w}^{\prime \prime}=\boldsymbol{w}^{\prime}$ (if possible). We wouldn't know yet if any particular among these equations has a solution, but the JNF theorem guarantees that altogether we find three solutions, i.e., among the tentative vectors $\left\{\boldsymbol{v}^{\prime}, \boldsymbol{v}^{\prime \prime}, \boldsymbol{v}^{\prime \prime \prime}, \ldots, \boldsymbol{w}^{\prime}, \boldsymbol{w}^{\prime \prime}, \boldsymbol{w}^{\prime \prime \prime}, \ldots\right\}$ three will actually exist (such as to bring the total to 5 generalized eigenvectors, according to the algebraic multiplicity 5).
I skip the remaining linear systems (the row transformations could be reused) and merely give the results:
The system $(A+2 I) \boldsymbol{v}^{\prime}=\boldsymbol{v}$ has the solutions $\boldsymbol{v}^{\prime}=\left[0, \frac{1}{12}, 0,0,0,0,0\right]^{T}+c_{1} \boldsymbol{v}+c_{2} \boldsymbol{w}$. The most convenient choice is of course $c_{1}=c_{2}=0$, and we have $\boldsymbol{v}^{\prime}=\left[0, \frac{1}{12}, 0,0,0,0,0\right]^{T}$.
The system $(A+2 I) \boldsymbol{w}^{\prime}=\boldsymbol{w}$ has the solutions $\boldsymbol{w}^{\prime}=\left[2, \frac{3}{2}, 0,0,-1,5,0\right]^{T}+c_{3} \boldsymbol{v}+c_{4} \boldsymbol{w}$, and again we choose $\boldsymbol{w}^{\prime}=\left[2, \frac{3}{2}, 0,0,-1,5,0\right]^{T}$.

The system $(A+2 I) \boldsymbol{v}^{\prime \prime}=\boldsymbol{v}^{\prime}$ has the solutions $\boldsymbol{v}^{\prime \prime}=\left[\frac{1}{4}, \frac{1}{3}, \frac{-1}{6}, 0, \frac{-3}{4}, \frac{1}{4}, \frac{3}{2}\right]^{T}+c_{5} \boldsymbol{v}+c_{6} \boldsymbol{w}$. We choose $c_{5}=c_{6}=0$.
The system $(A+2 I) \boldsymbol{w}^{\prime \prime}=\boldsymbol{w}^{\prime}$ has NO solutions.
We have already 5 vectors, and indeed the system $(A+2 I) \boldsymbol{v}^{\prime \prime \prime}=\boldsymbol{v}^{\prime \prime}$ (which we might yet consider trying) has no solutions. At this moment we know that the two Jordan blocks for $\lambda=-2$ have sizes 3 and 2 respectively, corresponding to the sets of vectors $\left\{\boldsymbol{v}_{1}:=\boldsymbol{v}, \boldsymbol{v}_{2}:=\right.$ $\left.\boldsymbol{v}^{\prime}, \boldsymbol{v}_{3}:=\boldsymbol{v}^{\prime \prime}\right\}$ and $\left\{\boldsymbol{v}_{4}:=\boldsymbol{w}, \boldsymbol{v}_{5}:=\boldsymbol{w}^{\prime}\right\}$. (Now that we know the sizes of the Jordan blocks, we can number them sensibly.)
We still need eigenvectors \boldsymbol{v}_{6} and \boldsymbol{v}_{7} for the eigenvalues i and $-i$ respectively. Then we put them all as columns in our matrix S. We get $A S=S J$ with :
$S=\left[\begin{array}{ccccccc}\frac{1}{3} & 0 & \frac{1}{4} & 0 & 2 & -1 & -1 \\ \frac{1}{2} & \frac{1}{12} & \frac{1}{3} & 0 & \frac{3}{2} & 0 & 0 \\ 0 & 0 & \frac{-1}{6} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & \frac{-3}{4} & 0 & -1 & -1+i & -1-i \\ \frac{1}{3} & 0 & \frac{1}{4} & 0 & 5 & \frac{-9+8 i}{5} & \frac{-9-8 i}{5} \\ 2 & 0 & \frac{3}{2} & 0 & 0 & 1-4 i & 1+4 i\end{array}\right]$

S is invertible as predicted by the general theory. I won't write down S^{-1}, but note that $\operatorname{det} S=i / 540$, therefore $A=S J S^{-1}$.
$\operatorname{ker}(A+2 I)$ is spanned by columns 1 and 4 of $S, \operatorname{ker}(A+2 I)^{2}$ is spanned by columns $1,2,4,5$ of S. The complete eigenspace for eigenvalue -2 is $\operatorname{ker}(A+2 I)^{3}=\operatorname{ker}(A+2 I)^{j}$ for any $j \geq 3$, spanned by columns $1-5$ of S. - Have a look at the $(3,4)$ entry of J, which is 0 . It is this 0 that distinguishes between the case of a 3-Jordan block and a 2-Jordan block, as opposed to a single 5-Jordan block.
The span of columns 6 and 7 of S can also be spanned by real vectors (which are then no longer eigenvectors), namely the real and imaginary parts of these two vectors, $\left[-1,0,0,0,-1,-\frac{9}{5}, 1\right]^{T}$ and $\left[0,0,0,0,1, \frac{8}{5},-4\right]^{T}$.

Exponentials

The exponential of a Jordan block of size n can be calculated explicitly:
$\exp t\left[\begin{array}{cccc}\lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & \lambda\end{array}\right]=\exp \left(t \lambda I+t\left[\begin{array}{cccc}0 & 1 & & \\ & 0 & \ddots & \\ & & \ddots & 1 \\ & & & 0\end{array}\right]\right)=e^{t \lambda}\left[\begin{array}{ccccc}1 & t & \frac{t^{2}}{2!} & \cdots & \frac{t^{n-1}}{(n-1)!} \\ & 1 & t & \ddots & \vdots \\ & & \ddots & \ddots & \frac{t^{2}}{2!} \\ & & & \ddots & t \\ & & & & t\end{array}\right]$
Therefore the JNF theorem implies that $\exp (t A) \rightarrow 0$ as $t \rightarrow \infty$ if and only if all eigenvalues of A have $\operatorname{Re} \lambda<0$.
Moreover, $\exp (t A)$ remains bounded as $t \rightarrow \infty$ if and only if all eigenvalues of A have $\operatorname{Re} \lambda \leq 0$ and all Jordan blocks for eigenvalues with $\operatorname{Re} \lambda=0$ have size 1 .

