
Examples Jordan Normal Form
UTK – M531 – Ordinary Differential Equations I

Fall 2004, Jochen Denzler, TR 11:10–12:25, Ayres 309B

(These examples were generated with the help of symbolic algebra software, and also the
calculations were done using such software.)

diag(λ1, . . . , λn) denotes the diagonal matrix (size n×n) with the diagonal entries as specified.

I may write column vectors like

 1
2
3

 as transposed rows [1 , 2 , 3]T for typographical

reasons.

Example 1:

The matrix

A =


44
3 −82

3 −20
19
3 −35

3 −10

4 −8 −4


has characteristic polynomial

det(A− λI) = −λ3 − λ2 + 10λ− 8 = −(λ− 2)(λ− 1)(λ + 4)

where the factorization is based on eyeballing (guesswork) to find λ = 1 as one root, and
then the quadratic formula.

Since all eigenvalues are distinct, we can diagonalize the matrix A = SDS−1 with D =
diag(1, 2,−4). (Any other order like eg. D̃ = diag(1,−4, 2) would do just as well, with a
different S̃ 6= S (similarly permuted. So we have chosen the numbering λ1 = 1, λ2 = 2,
λ3 = −4. Let’s find corresponding eigenvectors v1, v2, v3:

v1 is calculated as a solution to the linear system (A− λ1)v1 = 0:

41
3 v

(1)
1 + 82

3 v
(2)
1 + (−20)v(3)

1 = 0
19
3 v

(1)
1 + −38

3 v
(2)
1 + (−10)v(3)

1 = 0

4v
(1)
1 + (−8)v(2)

1 + (−5)v(3)
1 = 0

(Upper indices denote components of the vector, lower indices identify vectors.) Gauss
elimination from this system produces: v

(1)
1 = 2v

(2)
1 , v

(3)
1 = 0. We may therefore choose

v1 = [2 , 1 , 0]T . Any nonzero multiple would have been just as legitimate a choice (and
would have led to a somewhat different matrix S).

Likewise we obtain v2 = [1 , −1 , 2]T and v3 = [4 , 2 , 1]T , where again nonzero multiples
would have been just as legitimate choices. We have therefore found (our choice of) the
matrix S:

S =

 2 1 4
1 −1 2
0 2 1


(Vertical lines inserted to make eigenvectors more clearly visible). It is another bunch of
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linear equations to find its inverse (if you need it):

S−1 =
1
3

 5 7 −6
1 −2 0
−2 4 3


You can now check explicitly that AS = SD, or A = SDS−1.

Example 2:

This example must be higher dimensional, because its purpose is to display several bells and
whistles at the same time. Took me quite a while to come up with an example with somewhat
decent numbers. Let

A =



28 4 −1 1 −9 −15 −8
90 4 −2 2 −36 −45 −27
93 0 −2 0 −40 −45 −28
93 0 0 −2 −40 −45 −28

−560 −12 3 −3 235 275 169
−554 4 −1 1 243 267 168
1790 24 −6 6 −759 −875 −540


The characteristic polynomial is

det(A− λI) = −λ7 − 10λ6 − 41λ5 − 90λ4 − 120λ3 − 112λ2 − 80λ− 32 = −(λ + 2)5(λ2 + 1)

where the factorization is a conspiratively designed lucky ‘coincidence’. So λ1 = −2 is an
eigenvalue with algebraic multiplicity 5 and λ6,7 = ±i are single eigenvalues. To find the
geometric multiplicity of λ1, we must actually solve the linear system (A+2I)v = 0. Let me
do this ‘by hand’, with ‘unsystematic’ row transformations (i.e., smart pivoting) to preserve
nice numbers:

30 4 −1 1 −9 −15 −8
90 6 −2 2 −36 −45 −27
93 0 0 0 −40 −45 −28
93 0 0 0 −40 −45 −28

−560 −12 3 −3 237 275 169
−554 4 −1 1 243 269 168
1790 24 −6 6 −759 −875 −538

step1
−→

30 4 −1 1 −9 −15 −8
−3 6 −2 2 4 0 1
93 0 0 0 −40 −45 −28
0 0 0 0 0 0 0

−560 −12 3 −3 237 275 169
6 16 −4 4 6 −6 −1

110 −12 3 −3 −48 −50 −31

step 1: subtract 3rd row from 2nd and 4th; subtract 5th row from 6th and add three times to 7th.

step 2: add 5×last row to 5th, then subtract 3rd row from last, then use 2nd row to produce leading
0’s in 1st, 3rd, 6th row

step 3: move 4th row to bottom, 2nd row to top, and use it to create more zeros in the 1st column

0 64 −21 21 31 −15 2
−3 6 −2 2 4 0 1

0 186 −62 62 84 −45 3
0 0 0 0 0 0 0

−10 −72 18 −18 −3 25 14
0 28 −8 8 14 −6 1

17 −12 3 −3 −8 −5 −3

step3
−→

−3 6 −2 2 4 0 1
0 64 −21 21 31 −15 2
0 186 −62 62 84 −45 3
0 −92 74

3
−74
3

−49
3 25 32

3
0 28 −8 8 14 −6 1
0 22 −25

3
25
3

44
3 −5 8

3
0 0 0 0 0 0 0
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step 4: subtract 2nd row 3 times from 3rd, add it to 4th, subtract 5th row from 6th

step 5: add 5th row to 4th, subtract it 5/2 times from 2nd; subtract 3rd row from 6th

−3 6 −2 2 4 0 1
0 64 −21 21 31 −15 2
0 −6 1 −1 −9 0 −3
0 −28 11

3
−11
3

44
3 10 38

3
0 28 −8 8 14 −6 1
0 −6 −1

3
1
3

2
3 1 5

3

step5
−→

−3 6 −2 2 4 0 1
0 −6 −1 1 −4 0 −1

2
0 −6 1 −1 −9 0 −3
0 0 −13

3
13
3

86
3 4 41

3
0 28 −8 8 14 −6 1
0 0 −4

3
4
3

29
3 1 14

3

step 6: multiply 4th and 6th row by 3; use 3rd row to produce 0’s in column2 of 2nd and 5th row

step 7: exchange 3rd and 2nd row; use new 3rd (old 2nd) row to produce 0’s in 3rd column

−3 6 −2 2 4 0 1
0 0 −2 2 5 0 5

2
0 −6 1 −1 −9 0 −3
0 0 −13 13 86 12 41
0 0 − 10

3
10
3 −28 −6 −13

0 0 −4 4 29 3 14

step7
−→

−3 6 −2 2 4 0 1
0 −6 1 −1 −9 0 −3
0 0 −2 2 5 0 5

2
0 0 0 0 107

2 12 99
4

0 0 0 0 −109
3 −6 −103

6
0 0 0 0 19 3 9

step 8: multiply row5 by 3/2 and add row 4 to it: it becomes (0, 0, 0, 0,−1, 3,−1); use it to produce
0’s in column 5.

step 9: the 4th row has become a multiple of the 6th and can be dropped; normalize the 6th row.

−3 6 −2 2 4 0 1
0 −6 1 −1 −9 0 −3
0 0 −2 2 5 0 5

2
0 0 0 0 0 345

2
−115

4
0 0 0 0 −1 3 −1
0 0 0 0 0 60 −10

step9
−→

−3 6 −2 2 4 0 1
0 −6 1 −1 −9 0 −3
0 0 −2 2 5 0 5

2
0 0 0 0 −1 3 −1
0 0 0 0 0 6 −1

We therefore find two eigenvectors: v(7) can be chosen arbitrarily, but the 5th eqn requires
6v(6) − v(7) = 0. The 4th eqn then determines v(5), whereas v(4) is again arbitrary. The
other components are then determined again. The eigenspace is therefore 2-dimensional
(geometric multiplicity 2), and we choose two linearly independent eigenvectors v and w by
letting v(7) = 2, v(4) = 0, and w(7) = 0, w(4) = 1. Other choices would be equally legitimate
and would simply produce a different matrix S.

We thus find the eigenvectors v = [13 , 1
2 , 0 , 0 , −1 , 1

3 , 2]T and w = [0 , 0 , 1 , 1 , 0 , 0 , 0]T .

We try to find further vectors by solving (A + 2I)v′ = v and (A + 2I)w′ = w (if possi-
ble). And then, we try to solve (A + 2I)v′′ = v′ and (A + 2I)w′′ = w′ (if possible). We
wouldn’t know yet if any particular among these equations has a solution, but the JNF
theorem guarantees that altogether we find three solutions, i.e., among the tentative vec-
tors {v′,v′′,v′′′, . . . ,w′,w′′,w′′′, . . .} three will actually exist (such as to bring the total to 5
generalized eigenvectors, according to the algebraic multiplicity 5).

I skip the remaining linear systems (the row transformations could be reused) and merely
give the results:

The system (A + 2I)v′ = v has the solutions v′ = [0 , 1
12 , 0 , 0 , 0 , 0 , 0]T + c1v + c2w. The

most convenient choice is of course c1 = c2 = 0, and we have v′ = [0 , 1
12 , 0 , 0 , 0 , 0 , 0]T .

The system (A + 2I)w′ = w has the solutions w′ = [2 , 3
2 , 0 , 0 , −1 , 5 , 0]T + c3v + c4w,

and again we choose w′ = [2 , 3
2 , 0 , 0 , −1 , 5 , 0]T .
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The system (A + 2I)v′′ = v′ has the solutions v′′ = [14 , 1
3 , −1

6 , 0 , −3
4 , 1

4 , 3
2 ]T + c5v + c6w.

We choose c5 = c6 = 0.

The system (A + 2I)w′′ = w′ has NO solutions.

We have already 5 vectors, and indeed the system (A + 2I)v′′′ = v′′ (which we might yet
consider trying) has no solutions. At this moment we know that the two Jordan blocks for
λ = −2 have sizes 3 and 2 respectively, corresponding to the sets of vectors {v1 := v,v2 :=
v′,v3 := v′′} and {v4 := w,v5 := w′}. (Now that we know the sizes of the Jordan blocks,
we can number them sensibly.)

We still need eigenvectors v6 and v7 for the eigenvalues i and −i respectively. Then we put
them all as columns in our matrix S. We get AS = SJ with :

S =



1
3 0 1

4 0 2 −1 −1
1
2

1
12

1
3 0 3

2 0 0

0 0 −1
6 1 0 0 0

0 0 0 1 0 0 0

−1 0 −3
4 0 −1 −1 + i −1− i

1
3 0 1

4 0 5 −9+8i
5

−9−8i
5

2 0 3
2 0 0 1− 4i 1 + 4i


J =



−2 1 0
0 −2 1
0 0 −2 0

−2 1
0 −2

i

−i



S is invertible as predicted by the general theory. I won’t write down S−1, but note that
det S = i/540, therefore A = SJS−1.

ker(A + 2I) is spanned by columns 1 and 4 of S, ker(A + 2I)2 is spanned by columns 1,2,4,5
of S. The complete eigenspace for eigenvalue −2 is ker(A+2I)3 = ker(A+2I)j for any j ≥ 3,
spanned by columns 1–5 of S. — Have a look at the (3,4) entry of J , which is 0. It is this 0
that distinguishes between the case of a 3-Jordan block and a 2-Jordan block, as opposed to
a single 5-Jordan block.

The span of columns 6 and 7 of S can also be spanned by real vectors (which are then no
longer eigenvectors), namely the real and imaginary parts of these two vectors,
[−1 , 0 , 0 , 0 , −1 , −9

5 , 1]T and [0 , 0 , 0 , 0 , 1 , 8
5 , −4]T .

Exponentials

The exponential of a Jordan block of size n can be calculated explicitly:

exp t


λ 1

λ
. . .
. . . 1

λ

 = exp

tλI + t


0 1

0
. . .
. . . 1

0


 = etλ



1 t t2

2! · · · tn−1

(n−1)!

1 t
. . .

...
. . . . . . t2

2!
. . . t

t


Therefore the JNF theorem implies that exp(tA) → 0 as t →∞ if and only if all eigenvalues
of A have Re λ < 0.

Moreover, exp(tA) remains bounded as t → ∞ if and only if all eigenvalues of A have
Re λ ≤ 0 and all Jordan blocks for eigenvalues with Re λ = 0 have size 1.
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