Examples Jordan Normal Form UTK – M531 – Ordinary Differential Equations I Fall 2004, Jochen Denzler, TR 11:10–12:25, Ayres 309B

(These examples were generated with the help of symbolic algebra software, and also the calculations were done using such software.)

 $\operatorname{diag}(\lambda_1,\ldots,\lambda_n)$ denotes the diagonal matrix (size $n \times n$) with the diagonal entries as specified.

I may write column vectors like $\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$ as transposed rows $\begin{bmatrix} 1, 2, 3 \end{bmatrix}^T$ for typographical reasons.

Example 1:

The matrix

$$A = \begin{bmatrix} \frac{44}{3} & -\frac{82}{3} & -20\\ \frac{19}{3} & -\frac{35}{3} & -10\\ 4 & -8 & -4 \end{bmatrix}$$

has characteristic polynomial

$$\det(A - \lambda I) = -\lambda^3 - \lambda^2 + 10\lambda - 8 = -(\lambda - 2)(\lambda - 1)(\lambda + 4)$$

where the factorization is based on eyeballing (guesswork) to find $\lambda = 1$ as one root, and then the quadratic formula.

Since all eigenvalues are distinct, we can diagonalize the matrix $A = SDS^{-1}$ with D = diag(1, 2, -4). (Any other order like eg. $\tilde{D} = \text{diag}(1, -4, 2)$ would do just as well, with a different $\tilde{S} \neq S$ (similarly permuted. So we have chosen the numbering $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = -4$. Let's find corresponding eigenvectors v_1, v_2, v_3 :

 \boldsymbol{v}_1 is calculated as a solution to the linear system $(A - \lambda_1)\boldsymbol{v}_1 = \mathbf{0}$:

$$\begin{aligned} & \frac{41}{3}v_1^{(1)} + \frac{82}{3}v_1^{(2)} + (-20)v_1^{(3)} = 0\\ & \frac{19}{3}v_1^{(1)} + \frac{-38}{3}v_1^{(2)} + (-10)v_1^{(3)} = 0\\ & 4v_1^{(1)} + (-8)v_1^{(2)} + (-5)v_1^{(3)} = 0 \end{aligned}$$

(Upper indices denote components of the vector, lower indices identify vectors.) Gauss elimination from this system produces: $v_1^{(1)} = 2v_1^{(2)}$, $v_1^{(3)} = 0$. We may therefore choose $v_1 = [2, 1, 0]^T$. Any nonzero multiple would have been just as legitimate a choice (and would have led to a somewhat different matrix S).

Likewise we obtain $\boldsymbol{v}_2 = [1, -1, 2]^T$ and $\boldsymbol{v}_3 = [4, 2, 1]^T$, where again nonzero multiples would have been just as legitimate choices. We have therefore found (our choice of) the matrix S:

$$S = \begin{bmatrix} 2 & 1 & | & 4 \\ 1 & -1 & 2 \\ 0 & 2 & | & 1 \end{bmatrix}$$

(Vertical lines inserted to make eigenvectors more clearly visible). It is another bunch of

linear equations to find its inverse (if you need it):

$$S^{-1} = \frac{1}{3} \begin{bmatrix} 5 & 7 & -6 \\ 1 & -2 & 0 \\ -2 & 4 & 3 \end{bmatrix}$$

You can now check explicitly that AS = SD, or $A = SDS^{-1}$.

Example 2:

This example must be higher dimensional, because its purpose is to display several bells and whistles at the same time. Took me quite a while to come up with an example with *somewhat* decent numbers. Let

	28	4	$^{-1}$	1	-9	-15	-8
	90	4	-2	2	-36	-45	-27
	93	0	-2	0	-40	-45	-28
A =	93	0	0	-2	-40	-45	-28
	-560	-12	3	-3	235	275	169
	-554	4	-1	1	243	267	168
	1790	24	-6	6	-759	-875	-540

The characteristic polynomial is

$$\det(A - \lambda I) = -\lambda^7 - 10\lambda^6 - 41\lambda^5 - 90\lambda^4 - 120\lambda^3 - 112\lambda^2 - 80\lambda - 32 = -(\lambda + 2)^5(\lambda^2 + 1)$$

where the factorization is a conspiratively designed lucky 'coincidence'. So $\lambda_1 = -2$ is an eigenvalue with algebraic multiplicity 5 and $\lambda_{6,7} = \pm i$ are single eigenvalues. To find the geometric multiplicity of λ_1 , we must actually solve the linear system $(A+2I)\mathbf{v} = \mathbf{0}$. Let me do this 'by hand', with 'unsystematic' row transformations (i.e., smart pivoting) to preserve nice numbers:

30	4	-1	1	-9	-15	-8		30	4	$^{-1}$	1	-9	-15	-8
90	6	-2	2	-36	-45	-27		-3	6	-2	2	4	0	1
93	0	0	0	-40	-45	-28		93	0	0	0	-40	-45	-28
93	0	0	0	-40	-45	-28	step1	0	0	0	0	0	0	0
-560	-12	3	-3	237	275	169	\longrightarrow	-560	-12	3	-3	237	275	169
-554	4	-1	1	243	269	168		6	16	-4	4	6	-6	-1
1790	24	-6	6	-759	-875	-538		110	-12	3	-3	-48	-50	-31

<u>step 1:</u> subtract 3rd row from 2nd and 4th; subtract 5th row from 6th and add three times to 7th. <u>step 2:</u> add $5 \times \text{last}$ row to 5th, then subtract 3rd row from last, then use 2nd row to produce leading 0's in 1st, 3rd, 6th row

step 3: move 4th row to bottom, 2nd row to top, and use it to create more zeros in the 1st column

0	64	-21	21	31	-15	2		-3	6	-2	2	4	0	1
-3	6	-2	2	4	0	1		0	64	-21	21	31	-15	2
0	186	-62	62	84	-45	3		0	186	-62	62	84	-45	3
0	0	0	0	0	0	0	step3	0	-92	$\frac{74}{3}$	$\frac{-74}{3}$	$\frac{-49}{3}$	25	$\frac{32}{3}$
-10	-72	18	-18	-3	25	14	\longrightarrow	0	28	-8	8	14	-6	1
0	28	-8	8	14	-6	1		0	22	$\frac{-25}{3}$	$\frac{25}{3}$	$\frac{44}{3}$	-5	$\frac{8}{3}$
17	-12	3	-3	-8	-5	-3		0	0	0	0	0	0	Ŏ

p. 2

step 4: subtract 2nd row 3 times from 3rd, add it to 4th, subtract 5th row from 6th step 5: add 5th row to 4th, subtract it 5/2 times from 2nd; subtract 3rd row from 6th

step 6: multiply 4th and 6th row by 3; use 3rd row to produce 0's in column2 of 2nd and 5th row step 7: exchange 3rd and 2nd row; use new 3rd (old 2nd) row to produce 0's in 3rd column

step 8: multiply row5 by 3/2 and add row 4 to it: it becomes (0, 0, 0, 0, -1, 3, -1); use it to produce $\overline{0}$'s in column 5.

step 9: the 4th row has become a multiple of the 6th and can be dropped; normalize the 6th row.

-3	6	-2	2	4	0	1		-3	6	-2	2	4	0	1
0	-6	1	$^{-1}$	-9	0	-3		0	-6	1	-1	-9	0	-3
0	0	-2	2	5	0	$\frac{5}{2}$	at an 0	0	0	-2	2	5	0	$\frac{5}{2}$
0	0	0	0	0	$\frac{345}{2}$	$\frac{-115}{4}$	$\xrightarrow{\text{step9}}$	0	0	0	0	-1	3	$-\overline{1}$
0	0	0	0	-1	3	-1		0	0	0	0	0	6	-1
0	0	0	0	0	60	-10								

We therefore find two eigenvectors: $v^{(7)}$ can be chosen arbitrarily, but the 5th eqn requires $6v^{(6)} - v^{(7)} = 0$. The 4th eqn then determines $v^{(5)}$, whereas $v^{(4)}$ is again arbitrary. The other components are then determined again. The eigenspace is therefore 2-dimensional (geometric multiplicity 2), and we choose two linearly independent eigenvectors \boldsymbol{v} and \boldsymbol{w} by letting $v^{(7)} = 2, v^{(4)} = 0$, and $w^{(7)} = 0, w^{(4)} = 1$. Other choices would be equally legitimate and would simply produce a different matrix S.

I skip the remaining linear systems (the row transformations could be reused) and merely give the results:

The system $(A+2I)\mathbf{v}' = \mathbf{v}$ has the solutions $\mathbf{v}' = [0, \frac{1}{12}, 0, 0, 0, 0, 0]^T + c_1\mathbf{v} + c_2\mathbf{w}$. The most convenient choice is of course $c_1 = c_2 = 0$, and we have $\mathbf{v}' = [0, \frac{1}{12}, 0, 0, 0, 0, 0]^T$.

The system $(A + 2I)\boldsymbol{w}' = \boldsymbol{w}$ has the solutions $\boldsymbol{w}' = [2, \frac{3}{2}, 0, 0, -1, 5, 0]^T + c_3\boldsymbol{v} + c_4\boldsymbol{w}$, and again we choose $\boldsymbol{w}' = [2, \frac{3}{2}, 0, 0, -1, 5, 0]^T$. The system (A+2I)v'' = v' has the solutions $v'' = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{3} \\ \frac{1}{6} \\ \frac{1}{6} \\ \frac{1}{6} \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{2} \end{bmatrix}^T + c_5 v + c_6 w.$ We choose $c_5 = c_6 = 0$.

The system $(A+2I)\boldsymbol{w}'' = \boldsymbol{w}'$ has NO solutions.

We have already 5 vectors, and indeed the system (A + 2I)v''' = v'' (which we might yet consider trying) has no solutions. At this moment we know that the two Jordan blocks for $\lambda = -2$ have sizes 3 and 2 respectively, corresponding to the sets of vectors $\{v_1 := v, v_2 := v', v_3 := v''\}$ and $\{v_4 := w, v_5 := w'\}$. (Now that we know the sizes of the Jordan blocks, we can number them sensibly.)

We still need eigenvectors v_6 and v_7 for the eigenvalues i and -i respectively. Then we put them all as columns in our matrix S. We get AS = SJ with :

$$S = \begin{bmatrix} \frac{1}{3} & 0 & \frac{1}{4} & 0 & 2 & -1 & -1 \\ \frac{1}{2} & \frac{1}{12} & \frac{1}{3} & 0 & \frac{3}{2} & 0 & 0 \\ 0 & 0 & \frac{-1}{6} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & \frac{-3}{4} & 0 & -1 & -1+i & -1-i \\ \frac{1}{3} & 0 & \frac{1}{4} & 0 & 5 & \frac{-9+8i}{5} & \frac{-9-8i}{5} \\ 2 & 0 & \frac{3}{2} & 0 & 0 & 1-4i & 1+4i \end{bmatrix} \qquad J = \begin{bmatrix} -2 & 1 & 0 & | & | & | \\ 0 & -2 & 1 & | & | \\ 0 & 0 & -2 & 0 & | \\ \hline & & -2 & 1 & | \\ 0 & 0 & -2 & | \\ \hline & & & & i \\ \hline & & & & & | & -i \end{bmatrix}$$

S is invertible as predicted by the general theory. I won't write down S^{-1} , but note that det S = i/540, therefore $A = SJS^{-1}$.

 $\ker(A+2I)$ is spanned by columns 1 and 4 of S, $\ker(A+2I)^2$ is spanned by columns 1,2,4,5 of S. The complete eigenspace for eigenvalue -2 is $\ker(A+2I)^3 = \ker(A+2I)^j$ for any $j \ge 3$, spanned by columns 1–5 of S. — Have a look at the (3,4) entry of J, which is 0. It is this 0 that distinguishes between the case of a 3-Jordan block and a 2-Jordan block, as opposed to a single 5-Jordan block.

The span of columns 6 and 7 of S can also be spanned by real vectors (which are then no longer eigenvectors), namely the real and imaginary parts of these two vectors, $[-1, 0, 0, 0, -1, -\frac{9}{5}, 1]^T$ and $[0, 0, 0, 0, 1, \frac{8}{5}, -4]^T$.

Exponentials

The exponential of a Jordan block of size n can be calculated explicitly:

$$\exp t \begin{bmatrix} \lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{bmatrix} = \exp \left(t\lambda I + t \begin{bmatrix} 0 & 1 & & \\ & 0 & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{bmatrix} \right) = e^{t\lambda} \begin{bmatrix} 1 & t & \frac{t^2}{2!} & \cdots & \frac{t^{n-1}}{(n-1)!} \\ & 1 & t & \ddots & \vdots \\ & & \ddots & \ddots & \frac{t^2}{2!} \\ & & & \ddots & t \\ & & & & t \end{bmatrix}$$

Therefore the JNF theorem implies that $\exp(tA) \to 0$ as $t \to \infty$ if and only if all eigenvalues of A have $\operatorname{Re} \lambda < 0$.

Moreover, $\exp(tA)$ remains bounded as $t \to \infty$ if and only if all eigenvalues of A have $\operatorname{Re} \lambda \leq 0$ and all Jordan blocks for eigenvalues with $\operatorname{Re} \lambda = 0$ have size 1.