$UTK-M351-Algebra\ I \\ Spring\ 2007,\ Jochen\ Denzler,\ MWF\ 10:10-11:00,\ Ayres\ 205 \\$

A Zoopark of groups

Examples & Hwk 1: $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$ and $(\mathbb{C},+)$ are groups. — $(\mathbb{N},+)$ is NOT a group. Why not? — Is the set of irrational numbers, with +, a group? Explain.

Examples & Hwk 2: (\mathbb{Z}^*, \cdot) is NOT a group. Why not? $-(\mathbb{Q}^*, \cdot)$, (\mathbb{R}^*, \cdot) and (\mathbb{C}^*, \cdot) are groups. Here we have used the following notations for certain sets of numbers: $\mathbb{Z}^* := \mathbb{Z} \setminus \{0\}$, $\mathbb{Q}^* := \mathbb{Q} \setminus \{0\}$, $\mathbb{R}^* := \mathbb{R} \setminus \{0\}$, $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$.

Examples & Hwk 3: Matrix groups. We denote by $GL_n(\mathbb{R})$ the set of all invertible $n \times n$ matrices with real entries, and by $SL_n(\mathbb{R})$ the set of all those $n \times n$ matrices with real entries whose determinant is 1. By $O_n(\mathbb{R})$ we denote the set of orthogonal $n \times n$ matrices with real entries. Similarly, we write $GL_n(\mathbb{Q})$ or $GL_n(\mathbb{Z})$ etc. to require that the entries be rational numbers, or integers. + and \cdot denote matrix addition or multiplication respectively. $-(GL_n(\mathbb{R}), \cdot)$ is a group. Why? Which statement from Math 251 is pertinent here? Are $SL_n(\mathbb{R})$ and $O_n(\mathbb{R})$ groups? How about $GL_n(\mathbb{Q})$, $GL_n(\mathbb{Z})$, $SL_n(\mathbb{Q})$, $SL_n(\mathbb{Z})$, each together with \cdot ?

Example & Hwk 4: The set $\{E,O\}$ together with addition subject to the rules E+E=E, E+O=O+E=O, O+O=E is a group. Can you recognize some simple wisdom commonly known to high school graduates that is represented by this abstract example?

Example & Hwk 5: Can you generalize the previous example and construct a group on a set of three elements, let's call it $\{Z, I, T\}$, with an appropriate addition, with a similar idea behind the abstract example?

Example & Hwk 6: The set $\{a+b\sqrt{2} \mid a,b \in \mathbb{Q}\} \setminus \{0\}$, together with multiplication, is a group. Show this. Explain why it is necessary to know that $\sqrt{2}$ is irrational in order for your proof to work.

Example & Hwk 7: The set of permutations of $\{1, 2, ..., n\}$, together with composition \circ , is a group, often called S_n . Remember the definition of permutations: For instance, the permutation (1347256) is the function $1 \mapsto 1, 2 \mapsto 3, 3 \mapsto 4, 4 \mapsto 7, 5 \mapsto 2, 6 \mapsto 5, 7 \mapsto 6$. What is the inverse of this permutation? What is $(1347256) \circ (3512647)$? What is $(3512647) \circ (1347256)$?

Example & Hwk 8: Take the following set of six rational functions $\{I, F_0, F_1, F_\infty, M, W\}$ given by I(z) = z, $F_0(z) = z/(z-1)$, $F_1(z) = 1/z$, $F_\infty(z) = 1-z$, M(z) = (z-1)/z, W(z) = 1/(1-z). Don't try to understand the rationale behind the names. Use composition \circ as operation. This is a group. To help showing this, construct the group table.

Is the set of all rational functions, together with \circ , a group? Give a reason for your answer. — Show that the set of those rational functions of the form $f(z) = \frac{az+b}{cz+d}$ with a,b,c,d real and $ad-bc \neq 0$ forms a group, again under the composition \circ as operation.

Example & Hwk 9: Draw a regular n-gon, say, to be specific, a hexagon n = 6. Draw its six symmetry axes a_1, \ldots, a_6 (half of them are lines through opposite vertices, half of them are lines through midpoints of opposite sides. Let S_1, \ldots, S_6 be reflections of the hexagon with respect to the axes a_1, \ldots, a_6 respectively. Moreover, let R_0, \ldots, R_5 denote counterclockwise rotations about the center of the hexagon by 0, 60, 120,...,300 degrees resectively. The mappings $S_1, \ldots, S_6, R_0, \ldots, R_5$, together with composition, form a group, which is called DIHEDRAL GROUP D_6 . (Or similarly D_n , if you have an n-gon instead of a hexagon.)

Example & Hwk 10: The set $O_2(\mathbb{R}) \times \mathbb{R}^2$ consists of pairs (A, a) where A is an orthogonal 2×2 matrix and a is a 2-vector. We define the multiplication by $(A, a) \odot (B, b) = (AB, Ab + a)$. Check that this is a group. It is called the symmetry group of the plane, because the motiviation behind the definition of \odot is that (A, a) represents the mapping $x \mapsto Ax + a, \mathbb{R}^2 \to \mathbb{R}^2$.