Solutions to Homework for M351 — Algebra I
Examples & Hwk 1:

(Z,+), (Q,+), (R,+) and (C,+) are groups. — (N, +) is NOT a group. Why not? —
Is the set of irrational numbers, with 4+, a group? Explain.

Solution: Conventions differ on whether N denotes the set of positive, or of non-negative, integers.
If you argue the former, then N is not a group, because there is no neutral element. If you argue
the latter, then 0 € N is the neutral element, but not every element has an additive inverse.

The set of irrational numbers (let’s call it I) is not a group with addition, because there is no binary
operation + : I x I — I in the first place (the sum of irrational numbers may well be rational).
This problem could arise, because we restricted an already defined operation + on the larger set R
to a subset. If you define an operation + from scratch to map G x G — G, then this “closedness”
property is automatically taken care of.

Examples & Hwk 2:

(Z*,-) is NOT a group. Why not? — (Q*,-), (R*,-) and (C*, ) are groups. Here we have
used the following notations for certain sets of numbers: Z* := Z\ {0}, Q* := Q\ {0},
R* :=R\ {0}, C* :=C\ {0}.

Solution: (Z*,-) is NOT a group, because the multiplicative inverse is lacking.

Examples & Hwk 3:

Matrix groups. We denote by GL,(R) the set of all invertible n X n matrices with
real entries, and by SL,(R) the set of all those n X n matrices with real entries whose
determinant is 1. By O,(R) we denote the set of orthogonal n X n matrices with real
entries. Similarly, we write GL,,(Q) or GL,,(Z) etc. to require that the entries be rational
numbers, or integers. + and - denote matrix addition or multiplication respectively. —
(GL,(R),-) is a group. Why? Which statement from Math 251 is pertinent here?
Are SL,(R) and O, (R) groups? How about GL,(Q), GLn(Z), SL,(Q), SLy(Z), each
together with -?

Solution: GL,(R) is a group: In order to have the operation within GL,(R) in the first place, we
need that the product of invertible matrices is invertible again. Then we have the associative law
from matrix algebra, the identity matrix als neutral element, and the inverse matrix as inverse in the
sense of the group axioms (and, yes, the inverse of an invertible matrix is invertible). SL,(R) is also
a group, namely a subgroup of GL,(R). We need to check only the ‘closedness’ properties, namely
that products of matrices with determinant 1 have determinant 1 again, and inverses of determinant
1 matrices have determinant 1. (Because det(AB) = det A det B and det(A~!) = (det 4)~1.)

O, (R) is a group, because products and inverses of orthogonal matrices are orthogonal. (Remember:
If AAT = I and BBT = I, then (AB)(AB)T = ABBTAT = AIAT = AAT = I; and a similar
calculation for the inverse.)

GL,(Q) and SL,(Q) are groups. But GL,(Z) is NOT a group, whereas SL,(Z) is. The distinction
in these cases is whether the inverse matrix of a matrix from each of these sets is in the same set
again. For GL,(Z) this clearly needn’t be the case (e.g., the matrix 2I). For A € SL,(Z), the fact
that A~! has integer entries follows from the formula A~! = (adj A)/(det A), where the adjoint
matrix is the transpose of the cofactor matrix.



Example & Hwk 4:

The set {E, O} together with addition subject to the rules E+ E = E, E+0 = O+FE =
O, O+ O = FE is a group. Can you recognize some simple wisdom commonly known to
high school graduates that is represented by this abstract example?

Solution: The rules encode the fact that the sum of two even numbers is even, the sum of two
odd numbers is even, and the sum of an even and an odd number is odd.

Example & Hwk 5:

Can you generalize the previous example and construct a group on a set of three ele-
ments, let’s call it {Z, I, T}, with an appropriate addition, with a similar idea behind
the abstract example?

Solution: Z symbolizes a number leaving the remainder zero when divided by 3. I symbolizes
a number leaving the remainder 1 when divided by 3. And T symbolizes a number leaving the
remainder two, when divided by 3. This motivates therules Z+Z =2, Z+1 =1, Z+T =T,
I+I1=T,1+T=27,T+T =1 with a commutative addition. Group properties can be verified
with patience. The general principle will be discussed in class later.

Example & Hwk 6:

The set {a +bv2 | a,b € Q} \ {0}, together with multiplication, is a group. Show this.
Explain why it is necessary to know that /2 is irrational in order for your proof to
work.

Solution: We view this set as a subset of R, so we inherit the associative and commutative law and
only need to check the closedness properties: (a4 bv/2)(c+dv/2) = (ac+ 2bd) + (ad + bc)v/2. Hence
the product of two elements in the set is also in the set, because ac+ 2bd and ad+ bc will be rational
again. (Note: If T had taken +/2 instead, this property would have failed, or I’d have needed to take
the set of all a+b+/2+c/4 instead.) Now the inverse is (a+bv/2)~! = a/(a® —2b%) —b/(a® —2b%)V/2.
The nonvanishing of the denominator follows from the irrationality of /2.

Example & Hwk 7:

The set of permutations of {1,2,...,n}, together with composition o, is a group, often
called S,. Remember the definition of permutations: For instance, the permutation
(1347256) is the function 1 — 1,2 +— 3,3 — 4,4 — 7,5 — 2,6 — 5,7 — 6. What is
the inverse of this permutation? What is (1347256) o (3512647)? What is (3512647) o
(1347256)7

Solution: The problem was not concerned with the associative law, which holds generally for the
composition of functions. The identity is also obvious: (1234567) in the example n = 7.

The inverse of (1347256) is the function that maps 1 — 1,3+— 2,4+ 3,7+— 4,2+ 5,5 6,6 — 7
(by reversing the arrows). Listing the value table in natural order, we write this permutation as
(1523674).

In (1347256) 0 (3512647), note that the first mapping to be executed is the one to the right of the o.
So this composition maps 1—»3—4,2—-5—2,3—-1—1,4—-2—3,5—-6—56—4—7
and 7 — 7+ 6. Therefore (1347256) o (3512647) = (4213576).

By similar reasoning, (3512647) o (1347256) = (3127564). So, clearly, the group S7 is not abelian.



Example & Hwk 8:

Take the following set of six rational functions {I, Fy, F}, Foo, M, W} given by I(2) = z
Fo(z) = 2/(z = 1), F1(2) = 1/z, Fo(2) = 1 — 2, M(z) = (z —1)/2z, W(z) = 1/(1 -
z). Don’t try to understand the rationale behind the names. Use composition o as
operation. This is a group. To help showing this, construct the group table.

Is the set of all rational functions, together with o, a group? Give a reason for your

answer. — Show that the set of those rational functions of the form f(z) = Zzzig with

a, b, c,d real and ad — bc # 0 forms a group, again under the composition o as operation.

Solution: Clearly I is a (the) neutral element. Let’s calculate a few compositions, as samples:
(Fy o Fi)(z) = Fo(Fi(2)) = Fo(1/z) = l}z/jl = L =W(2), hence Fyo F1 =W. — (F} 0 Fy)(2) =
F\(Fy(2)) = Fi(z/(z — 1)) = (2 — 1) /z = M(z), hence F; o Fy = M. Altogether, there are 25 such
calculations (not counting those trivial cases where one term is I). The following table lists a o b,
where the 1st ‘factor’ a is given in the left column, and the second ‘factor’ b is given in the top row:

o| I Fy, F, Fu M W
I I F, F, Fy M W
Fob|Fhb I W M Fy F
FF|FR, M I W F Fy
Fo|Fw W M I F F,
M| M F Fy Fy, W I
W|W Fy F, F, I M

The set of all rational functions, with composition, does not form a group, because, for instance,
the function z — 22 does not have an inverse. Or, more radically, constant functions (which are
certainly rational), do not have an inverse.

To show that the set of rational functions of the form f(z) = gzzjr'g with a, b, c,d real and ad —bc # 0

forms a group, with composition, we only need to show the closedness properties. The neutral
element f(z) = z is included, with a = d, b = ¢ = 0. (Note that multiples of (a,b,c,d) describe

the same function, so I don’t need to specify which number a = d is.) The inverse of z — azig is
dw—>b
w — <22 because .
az+
dcz+d b -
0zt =z
cz+d ta

b b
If f(2) = —gllzzidi and g(z) = —‘C‘jjidz , then
G ZZE2 b (ayag + bicy)z + (arby + bidy)

(fog)(2) = fl9(2)) = e ?jjidbz +d; (cra2 +dico)z + (c1by + dids)

This is again a rational function of the prescribed form, because
(ar1a2 + bic2)(c1be + di1da) — (a1be + bids)(crae + dic2) = (a1dy — bici)(agds — baca) # 0 (%)
Remarkably, this composition rule corresponds exactly to matrix multiplication for 2 x 2-matrices:

|: a b1 :| [ a9 b2 :| _ [ (a1a2+b102) (a1b2+b1d2)
¢ di co do (Cla2 +d162) (Clbz +d1d2)

The mysterious formula (%) is therefore nothing but det(A;As) = (det A1)(det A2).



Example & Hwk 9:

Draw a regular n-gon, say, to be specific, a hexagon n = 6. Draw its six symmetry axes
ai,. . .ag (half of them are lines through opposite vertices, half of them are lines through
midpoints of opposite sides. Let Si,...,S¢ be reflections of the hexagon with respect
to the axes ai,...,a¢ respectively. Moreover, let Ry,...,R5 denote counterclockwise
rotations about the center of the hexagon by 0, 60, 120,...,300 degrees resectively. The
mappings S1,. . . ,96,Ro,-. - - ,R5, together with composition, form a group, which is called
DIHEDRAL GROUP Dg. (Or similarly D, if you have an n-gon instead of a hexagon.)

Solution: If axis a; arises from axis a; by a rotation of angle c, then
S;0S; is a rotation by angle 2. Order matters: S;o0S; is a rotation about
—2q. — The composition of two rotations is a rotation by the sum of the
angles (commutative). — The composition of a rotation and a reflection
is again a certain reflection, and order matters: Rotating by «, then
reflecting in axis ¢ amounts to reflection in a new axis that is rotated by
angle —a/2 with respect to the old one. The converse order has the new
axis rotated by +ca/2 with respect to the old one. All these facts can
be seen in terms of elementary geometry, by drawing a circle about the
origin, through a point being mapped under the various transformations,
and adding and subtracting the appropriate angles. Each reflection is
its own inverse. Inverses of rotations by a are rotations by the negative
angle —a (or, equivalently, by 27 — «).

It is also possible, but more tedious, to calculate matrices for each of the linear transformations in
question. This way, Dg arises as a subgroup of the group O3(R). It is also possible to study the
transformations by looking at how they permute the vertices of the hexagon. In this way, Dg arises
as a subgroup of the permutation group Ss.

With the principles above, the following group table arises for the dihedral group, Dg. In particular,
it is clear that compositions of transformations from Dg are again from Dg, that Ry is neutral, and
that inverses of transformations in Dg are in Dg. Associativity is inherited from composition of
functions in general.

o H R() R1 RQ R3 R4 R5 ‘ 51 SQ 53 54 S5 Sﬁ ‘
Ry|Ro Ri Ry Ry Ry Rs|S1 S2 S3 Si S5 Se
Ri|Ri Ry R3 Ry Ry Ry | Sy S3 Sy S; Sg 51
Ry |Ry R3 Ry Rs Ry Ri|S3 Sy S5 Se¢ S1 S
R3||R3s Ry Ry Ry Ri Ry | Sy S; S¢ S1 So Ss
Ry|Ry Ry Ry Ri Ry R3|Ss S¢ S1 Sy S3 84
Rs||Rs Ry Ri Ry R3 Rs|Se S1 So S3 S4 Ss
St || S1 S S3 S4 S5 S¢|Roy Rs Re Ry Ry Ry
So || Sg S1 Sy S3 Sy S5 | Ry Ry Ry Ry Rs Ry
S3 (S5 S¢ S1 So S3 Si|Ry Ri Ry Rs Ry Rs
Sy || Sy S5 Sg S1 Sy S3| Ry Ry Ry Ry R; Ry
S5 S3 Sy S5 S¢ S1 So|Ry Ry Ry Ry Ry Rs
Se || S2 S3 S¢ S5 S¢ S1|Rs Ry Ry Ro Ri Ry

Example & Hwk 10:

The set O2(R) x R? consists of pairs (A4,a) where A is an orthogonal 2 x 2 matrix and
a is a 2-vector. We define the multiplication by (4,a) ® (B,b) = (AB, Ab+ a). Check
that this is a group. It is called the isometry group of the plane, because the motivation
behind the definition of ® is that (A, a) represents the mapping z +— Az + a,R? — R2.



Solution: Since the interpretation in terms of mappings was given as illustration, but not proved,
we should abide by the very definition of the operation and prove in particular the associative law
from it, rather than claiming inheritance from composition of mappings in general.

We use in particular that the product of orthogonal matrices is orthogonal to make sure the
operation is well-defined, i.e., (AB, Ab + a) € O9(R) x R?. The neutral element is (I,0), because
(I,0) ® (4,a) = (IA,Ia+0) = (A,0). (The right neutral property can be checked similarly, but
need not, since it follows together with the other group axioms as shown in class.) The inverse
of (A,a) is (A~1,—A~1a), because (471, —A1a) ® (4,a) = (A714,471a — A~ 1a) = (1,0). (A
similar comment applies how we can, but need not, check right inverse property.) — To find the
inverse rather than pulling out of the hat, you'd solve (B,b) ® (4,a) = (I,0) for B and b.

The associative law:
((A,a) ® (B,b)) ®(C,¢) = (AB, Ab+ a) ® (C,¢) = ((AB)C, (AB)c + (Ab + a))
(4,0)© ((B,b) © (C,¢)) = (4,0) © (BC, Be +b) = (A(BC), A(Be +b) +a)

By the associativity of matrix multiplication (between 2 x 2 matrices as well as between 2 x 2 and
2 x 1 matrices) and the associativity of vector addition, both right hand sides are equal.



Hwk 12:

Let R be any ring (with operations + and ). Define the matrix ring M, (R) as the set
of all n x m matrices whose entries are in R. The addition will be componentwise, and
the multiplication will also be defined as in the usual matrix algebra course: (AB);;, =
> ;=1 4i;Bj.

Show that M, (R) is a ring, and show that it has an identity provided R has.

Solution: We denote the entries of matrix A € M, (R) with A;; € R. All summations will range
from 1 to n, so ), is an abbreviation for Y 1 ;. For didactical clarification, we denote the addition
and multiplication in M, (R) by @ and ®, thus distinguishing them from the operations in R. This
change in notation is not necessary.

Commutativity of ®: (A @ B);; := Ai; + B;j, whereas (B ® A);; := B;; + A;j. These latter two
expressions are equal due to commutativity of + in R.

Associativity of ®: ((AGBB) @C)z’j = (Az'j +Bij) +Cija whereas (A@ (B@C))” = Aij + (Bij +Cz'j)-
These two expressions are equal, due to associativity of + in R.

Additive neutral: If 0 is the additive neutral in R, then the zero matrix 0 defined by 0;; = 0 for
each (7,7) is the additive neutral in M, (R). Indeed, (A® 0);; = A;; + 0;; = A;; + 0 = A;.
Additive inverse: The additive inverse of A is the matrix whose entries are —A;;. Calculation
omitted (just as trivial as the preceding ones).

Distributive Laws: We only check A®(B®C) = (A®B)®(A®C). The other relation, (B&C)OA =
(BO®A)® (C G A) is proved analogously.

(A@(B@C) ZAZ]B@CM_ZA” B+ Cji) S)Z,aliijk+Aijcj,c

m (ZJ: Aij jk> (Z A,chk> (A© Blix+(40 O = (4emema0),
These equalities are justified as follows: (1) definition of matrix product; (2) definition of matrix
sum; (3) distributive law in R; (4) commutative and associative laws for + in R, enhanced from
two to n terms by means of induction; (5) definition of matrix addition; (6) definition of matrix
multiplication.

Associativity of ®:

(40 B@C) ZA”B@CJZ—ZA”<ZB,CCM)()Z(ZAZ] kal)

k

@ : (Z(Aiijk)Ckl) & > (Z(Aiijk)Ck:l> & %:(A ®© B)ixChri 7 ((A ®B)® C) .

k kK N g

These equalities are justified as follows: (1),(2) definition of matrix product; (3) distributive law in
R, enhanced by induction; (4) associativity of multiplication in R; (5) commutative and associative
laws for + in R, enhanced from two to n terms by means of induction; (6),(7) definition of matrix
multiplication.

Multiplicative neutral: If 1 is the multiplicative neutral in R (and 0 the additive neutral), then the
matrix 1, given by 1;; = 1 if i = j, and 1;; = 0 if ¢ # j, is the multiplicative neutral in M, (R).
Indeed, (A ® 1)ix = >°; Aijljx = Aijlj=k = Air, 50 A®1 = A. A similar calculation shows
1® A = A. Both are needed, logically.



Hwk 13:

Let R be a ring (with operations + and -). We define operations on R x R as follows:
(@,9) + (w,v) = (@ +u,y+v), (2,9):(v,v) = (zu—yv,2v + yu)

Here, as usual, a — b stands for a plus the additive inverse of b.

Show that this defines a ring. We are going to denote R x R, when adorned with these
operations, as R[i]. (This is admittedly a strange name as of yet).

Solution: The abelian group properties for the addition are immediate and follow similarly as in
the previous problem. I won’t write them out again.

I’ll tacitly use simple properties involving —, which can be concluded easily from the ring axioms,
usually using the distributive law, next to other axioms.

Associativity of - :

((s, t) - (w,y)) - (u,v) (?) (sz —ty, sy +tz) - (u,v) = ((sz — ty)u — (sy + tx)v, (sz — ty)v + (sy + tz)u)

(2)
(; (szu — tyu — syv — tzv, stv — tyv + syu + tou)

(s,1) - ((w,y) - (u, v)) (?) (s,t) - (zu — yv, zv + Yu) (j) (s(zu — yv) — t(zv + yu), s(xv + yu) + t(zu — yv))

= (szu — syv — txv — tyu, sTv + syu + tzu — tyv)

®3)
These equalities are justified as follows: (1),(2) definition of product; (3) distributive law in R;
associativity of addition; associativity of multiplication.
The results coincide, due to commutativity of addition.
Distributive Laws: T’ll show ((s,t) + (w,y)) < (u,v) = (s,t) - (u,v) + (x,y) - (u,v). The other

distributive law is proved analogously. (Both are needed, logically.)

(6518 + (22} (w0) = 0 ) - (0,0) = (s @ = () (5 +- )0 + (6 y)u)
(?) (su+ zu —tv — yv, sv + zv + tu + yu) (T) ((su — tv) + (zu — yv), (sv + tu) + (zv + yu))
(?) (su — tv, sv + tu) + (zu — yv, zv + yu) (?) (s,t) - (u,v) + (z,9) - (u,v)
These equalities are justified as follows: (1) definition of sum; (2) definition of product; (3) distribu-
tive law in R; associativity of addition; (4) commutativity of addition (and associativity again); (5)
definition of sum; (6) definition of product; associativity of multiplication.

Hwk 14:

Continuing the previous problem, show that R[i] has an identity, if R has. Show also
that R[:] is commutative, if R is.

Assume that R is a field. Must R[i] necessarily be a field? If not, what condition must
be satisfied in R to guarantee that R[i] is a field?

Solution: (1,0) is an identity: (1,0) - (u,v) = (lu — Ov,1v 4+ Ou) = (u,v). This is because we
showed that O0a = 0 in any ring. An analogous proof applies to the reverse order of factors. (Both
are needed logically, unless R is commutative.)

If R is commutative, then (z,y) - (u,v) = (zu — yv, zv + yu) and (u,v) - (z,y) = (uz — VY, uy + vI)
coincide because uz = zu etc. (Commutativity of addition is also used.)



On top of the preceding properties, we now assume that R is a field, i.e., 1 # 0 and every a # 0 has
an inverse. Clearly, then (1,0) # (0,0). Let’s see, if every (a,b) has an inverse (except if a = b = 0):
We look for (z,y) such that (a,bd) - (z,y) = (1,0).

First we calculate (z,y), assuming such an (z,y) exists. Since it is not legitimate to make this
assumption, we then use the resulting formula and prove that it satisfies the required condition,
thus proving the existence of an inverse (under conditions about to be established during the
calculation).

The eqn (a,b) - (z,y) = (1,0) means az — by = 1 and ay + bx = 0. Unless b = 0, the second
equation implies £ = —ayb~!. Plugging this into the first equation, we conclude —aayb~! —by = 1,
and multiplying by —b, we get (aa + bb)y = —b. Assuming that aa + bb # 0, we find that
y = —b(aa + bb)~! and then from z = —ayb~! that z = a(aa + bb)~'. We omit discussion of the
case b = 0, since we have anyways only found a necessary condition for the inverse (as a motivation
to come up with the formula), but must show sufficiency of the heuristically found formula.

From this equation, we suspect, claim (and then prove):
Thm: If R is a field such that aa + bb # 0 for any a, b other than (a,b) = (0,0), then R[7] is a
field, and the inverse of (a,b) is (a(aa + bb) !, —b(aa + bb) 1).

Proof: The formula makes sense since aa + bb # 0. We check:
(a,b) - (a(aa +bb)~", —b(aa + bb)—l)
- (aa(aa 4 bb)~! — b(—b)(aa + bb)~", a(—b)(aa + bb)~! + ba(aa + bb)_1>
- ((aa + bb)(aa + bb) 1, (—ab + ba)(aa + bb)*l) = (1,0)

Note: The condition (1) ‘aa+ bb # 0 unless a = b= 0" in a field R is equivalent to the condition
(2) ‘zz + 1 = 0 has no solution’. The conclusion (1) = (2) is trivial. The converse ‘not(1) =
not(2)’ is true because, for a pair (a,b) # (0,0), either x1 = ab~! or zo = ba! is defined (maybe
both); and if aa + bb = 0 then whichever of x1, x5 is defined solves the equation 22 +1=0.

We now show the converse of our theorem:
Thm: If R is a field in which the equation aa + bb = 0 has solutions other than (0,0), then R[]
is NOT a field, but actually has zero divisors.

Proof: According to the note, this field R contains some z such that zz+1 = 0. Then however, the
element (1,z) € R[] has no inverse. This is because (1,z) - (1,—z) = (1-1—z(—xz),1(—z) + z1) =
(1+zz,0) = (0,0). If (1,z) had an inverse, then multiplying (1,z)(1, —z) = (0,0) with this inverse
would imply (1,z) = (0,0), a contradiction.

Hwk 15:

Continuing the previous problem, let R be a commutative ring with identity 1. In R[],
we’ll denote the element (0,1) with the special symbol i. (You start getting an idea
where R[i] got its name from.) Calculate i -7 (too easy...).

I claim that, for the case R = R, the field of real numbers, you should be at least vaguely
familiar with R[7] under a different name. Which one? Set up a complete translation
dictionary (it has only a few lines) that translates the notation set up in Problem 4 into
the more familiar one.

Show that R[4] is a field.

Solution: Since z2 + 1 has no solutions in R, we have just showed that R[:] is a field. With
i := (0,1), we calculate 7 -7 = (—1,0), the negative of the multiplicative identity in R[i]. So we
have found an i € RJi] satisfying i? = —1. (This 1 denotes an element of R[i] rather than of R.



We know R[i] under the name C as the field of complex numbers.

The real numbers a correspond to the complex numbers (a,0) € R[i], which are usually denoted as
a € C. This re-use of notation causes no confusion, since the product of complex numbers a and
b, i.e., (a,0) - (b,0) = (ab,0) does equal to the (real) product ab, interpreted as a complex number.
So the result is the same, whether you interpret the product in ab as a product in R or in R[], and
a similar remark applies to the sum a + b.

This way, R becomes a subset, actually a subring of R[i] = C.
The equation (a,b) = (a,0) - (1,0) + (b,0) - (0,1) allows to write (a,b) as a-1+b- 1, or a + bi.

The problem has therefore given an explicit construction of C, beginning with R. A similar comment
applies to RJ[i] for any ring R.

Hwk 16:

I claimed in class that the power set P(M) (which is the set of all subsets of M), together
with the operations A+ B := (A\ B)U (B \ A) and A- B := AN B is a commutative
ring with identity. Prove the distributive law (as far as not done in class yet) and the
associativity for + .

Solution: (1) Let’s prove the distributive law A(B + C) = AB + AC, which, in set theoretic
language, means AN ((B\C)U(C\ B))=((ANB)\(ANC)U(ANC)\ (AN B))

(1.1) First we prove the inclusion ‘C’: Solet z € AN ((B\ C)U(C\ B)). So z € A. Moreover
z € B\Corz e C\B. So z is in exactly one of the sets B, C. — Suppose z € B. Then
z ¢ C. Since z € A also, we have x € AN B. We clearly have x ¢ AN C, since z ¢ C. Hence
z € ((ANB)\(ANC)). The conclusion z € ((ANB)\(ANC))U((ANC)\(ANB)) is immediate. — If
instead = € C, then z ¢ B, and the same conclusion follows similarly through z € (ANC)\ (ANB).

(1.2) Next we prove the converse inclusion ‘O’: So assume z € ((ANB)\(ANC))U((ANC)\(ANB)).
This means z € (ANB)\(ANC)orz e (ANC)\ (AN B). — Suppose first that the former
is the case. Then x € AN B, but x € AN C. In particular from the first statement z € A, and
z € B. From the second statement x ¢ AN C we conclude, since we know already that z € A, that
x cannot also be in C. So z € B\ C, and a fortiori z € (B\ C)U (C \ B). Since also z € A, the
conclusion follows. — The other case, namely z € ((ANC)\ (AN B)), is handled analogously.

We have shown one distributive law. The other one doesn’t need to be proved, since the commu-
tative law for N holds.

(2) There is another way to prove the same thing: Rather than nesting case distinctions as in the
previous proof, we can start with eight cases right away, depending on whether z is or is not in A,
B, C, respectively. We then draw conclusions for each case in which set z is or is not. If the results
coincide for two sets in all eight cases, then we have proved equality of the said two sets. The cases
can be handled in tabular form.

We redo the proof of the distributive law: Compare the columns marked by arrows.

ze| A? B? C?||B\C C\B B+C|AB+C)|AB AC|AB+ AC

Yy oy oy n n n n y oy n
Yy oy n Y n Y Y y n Y
y noy n Y Y Y noy Y
y n n n n n n n n n
n oy oy n ) n n n ) n
noy n Y n Y n n n n
n n oy n Y Y n n ) n
n n n n n n n n n n

1 1




(3) For the associative law, it seems more transparent to use the second method with eight up-front
cases, so we only use this method for the proof. To simplify the table, note that z € A + B, if and
only if z is in exactly one, but not both of A, B.

zel||A? B? C?|A+B (A+B)+C B+C A+ (B+C)

y oy oy n Y n y
Yy Yy n n n Y n
y n oy y n Y n
y n o on| oy Y n y
noy vy y n n n
noy n| y Y Y y
n o n oy | mn Y Y y
n n n n n n n

T T

Hwk 17:

Suppose, in a ring, the extra property a - a = a is verified for every a. (The previous
problem is an example where this happens.) Show generally, that a ring satisfying that
extra property is automatically commutative: Since this is a bit tricky, I give you the
steps (the steps how I did it; I wouldn’t claim with certainty that there cannot be
another, shorter way):

(a) Show that b+ b = 0 for every b. You do this by calculating (b + b) - (b + b) in two
different ways.

(b) Show that beb = cbe for every b, c. You do this by calculating (b-c—c-b)-(b-c—c-b)
in two different ways.

(c) Conclude b-c¢ = ¢-b from part (b) by appropriate multiplications and by again using
a-a=a.

Each step needs to be justified by explicit reference to the ring axioms (or to conse-
quences thereof that were proved in class).

Solution: (a) By using the distributive law twice, we conclude (b+b)-(b+b) = b-(b+b)+b-(b+b) =
(b-b+b-b)+ (b-b+b-b). Using the property a-a = a for a := b, this simplifies to (b+b) + (b+b).
On the other hand, using the property a-a = a with a = b+ b, we conclude (b+b)-(b+b) =b+b.
Comparing the two, we have found (b+ b) + (b+ b) = (b + b) for every b. Subtracting (b+ b), we
find b+ b= 0.

To simplify language, let’s refer to a - a = a as the idempotence property. Let’s also omit the - for
multiplication.

(b) (bec — ¢b)(bc — ¢b) = (bc — cb) by the idempotence property. Now let’s evaluate the same
expression using the distributive law for — (which is an easy consequence of the distributive law
for +1): (bc— cb)(bc—cb) = (bc— cb)(bc) — (bc— cb) (cb) = ((be)(be) — (cb)(be)) — ((be) (cb) — (cb)(cb)).
Using the associativity of multiplication and then the idempotence, this simplifies to ((bc)(bc) —
c(bb)c) — (b(ec)b — (eb)(cb)) = (be — cbe) — (beb — cb).

As noted in the footnote, + and — are the same in this ring, due to (a). Equating the two results
and using associativity of +, we conclude bc + ¢b = bc + cbe + beb + ¢b, and adding appropriate
inverses, we get 0 = cbc + beb. Hence cbe = —(beb) = beb.

!We have seen a0 = 0 in class. From a(—c) + ac = a(—c + ¢) = a0 = 0, it follows that a(—c) = —(ac). Now
a(b—c) =a(b+ (—c)) = ab+ a(—c) = ab+ (—ac) = ab — ac. — In this particular example however, we do not need
the distributiv law for —, because b + b = 0 implies b = —b, so + and — are actually the same operation.



(c) Multiplying cbc = beb with b from the right and using associativity of multiplication, we get
(cb)(eb) = (bc)(bb). By idempotence, cb = beb. Similarly, multiplying cbe = beb by ¢ from the right
yields cbc = bc. Combining these two results with cbc = beb, we get ¢b = be.

You may wonder how I found this solution. Well, I said ‘if bc = cb is really true, that means
bc — ¢b = 0. So let me see if I can ‘simplify’ bc — ¢b to 0, using ring axioms and the idempotence
property. So I started bc — cb = (bc — cb)? = bebe — beeb — cbbe + cbeb = be — beb — cbe + ¢b. That
didn’t help too much, but I tried the same with bc + ¢b, began to multiply the obtained equations
with b or ¢ from either side, until I eventually discovered the a + a = 0 property.

Hwk 18:

Show: A ring with exactly 3 elements, {0, a, b} must be commutative. Hint: First show
a+a=b.

Solution: We know that 0+ a, a + a and b + a must be the elements 0, a, b in some order. Since
0 + a = a, there are only two choices left for a + a, namely 0 and b. But if a + a were 0, then
a + b would have to be b (the other results being ‘taken’ already). But this would imply a = 0, a
contradiction. So we must have a + a = b.

The commutative law comes in three cases, two of which are trivial: a0 = 0 = 0a and b0 = 0 = 0b.
We only have to show ab = ba: Indeed,

ab=a(a+a) =aa+aa = (a+a)a=ba

Hwk 19:

In the ring Z, find the ged of 43728 and 15360 (‘the’ ged: so make it a positive number),
and express this gcd in the form 43728k + 153604 with integers k. £.

Solution: We do repeated division with remainder (Euclidean algorithm):

a=gq- b+ T
43728 = 2- 15360 + 13008
15360 = 1- 13008 + 2352
13008 = 5- 2352+ 1248

2352 =1 1248 + 1104
1248 =1 1104+ 144
1104 =7 144+ 96
144=1- 964+ 48
96 =2 48+ 0

W N =

(S

NN AN AN N N N
=) >
N e e N N N

The gecd is the last nonzero remainder, 48. We now express 48 as a linear combination of the
corresponding a and b, beginning in line (8), backward line by line until the first one:

48 = 144 —1-96
(%144— 1-(1104 —7-144) =8-144 - 1-1104
(?)8 (1248 —1-1104) —1-1104 =8-1248 — 9-1104
%8 -1248 — 9- (2352 — 1-1248) = 17-1248 — 9 - 2352
E:?’jl?- (13008 — 5-2352) —9-2352 = 17- 13008 — 94 - 2352
(:2)17- 13008 — 94 - (15360 — 1-13008) = 111 - 13008 — 94 - 15360
(T)Hl - (43728 —2-15360) — 94 - 15360 = 111 - 43728 — 316 - 15360




So if you think it’s not so straightforward to write the gcd as a linear combination, you are right:
it is straightbackward!

Hwk 20:

In this problem, we’ll see that the division algorithm can be mimicked in the ring Z[i],
which consists of the numbers a+ bi where a,b € Z and i is the imaginary unit. You may
view this ring either as a subring of C, or as an instance of the class of rings constructed
in Problem 5.

Given a = a1 + agi € Z[i] and b = by + bei € Z[i] with b # 0, we want to find
g =q +qi € Z[i] and r = r; + r9i € Z[i] such that a = ¢b + r and r “smaller”
than b. We cannot require “0 < r < b” because we do not have an order in the ring
Z[i]; a statement “0 < r < b” would be meaningless. Instead we will use the absolute
value of complex numbers and require that |r| is smaller than |b|, or, equivalently:
r? 4+ 13 < b? + b2.

Given a = a; + agi € Z[i] and b = by + boi € Z[i] \ {0}, let 9 = 91 + 32 € C be
the exact quotient ¥ = a/b. Let g1 be an integer closest possible to ¥ (there may be
several equally good choices) and let g2 be an integer closest possible to ¥2. Let r be
the remainder making a = ¢b + r true

(a) To make sure you understand the principle, find g and r according to the prescription
of the preceding paragraphs in the case a = 517+ 2137, b = 11 +25i. Check that r? +r2
is indeed less than b% + b%.

(b) Write out explicitly what a = 9b means for ai,as, b1,be and 91,92. — Write out
explicitly what a = ¢b + r means for ai,as, b1,b2, q1,q2, 71,720. — What does your
prescription about the choice of ¢ imply about the size of g1 — 91, g0 — 927

(c) Express r1 and rg in terms of by, by, g1 —91, go—¥2 and conclude that r%—}—r% < b%—}—b%.

Solution:
9 — 517 + 21Z.’>z _ (517 + 215.’)1)(11 — 2?2) _ 11012 — 105823 _ 11012 — 105824 1476 — 14.18
11 + 254 (11 4 257)(11 — 257) 112 4 252 746
By going to the nearest integer respectively, we have ¢ = 15 — 14:s. From this, we calculate

r = (517 + 213i) — (15 — 144) (11 + 254) = 2 — 8i. So in this case indeed, |r|? = 68 < |b|2 = 746.
According to the rounding rule for general principle case, we note that |g1 —91| < % and |go—1¥| < %
From a = 9b, i.e., a1 = ¥91b1—192b2 and ag = ¥1b9+192b1, and from a = gb+7, i.e., a1 = g1b1—qoba+11
and ag = q1by + @q2by + 12, we conclude 7 = (9 — ¢)b, i.e., 1 = (91 — q1)b1 — (92 — ¢2)be and
ro = ('191 — Q1)b2 + (’192 — q2)b1.

Don’t try to move the inequalities in here yet: You wouldn’t get anything useful. Squaring and
adding (the mixed terms cancel) yields

1 1
ri 415 = ((?91 —q1)* + (92 — Q2)2)(b% +by)? < (Z + Z)(b% +b3) < b + b3

So indeed, the outlined algorithm yields an integer division in which the remainder is smaller than
the divisor.

Hwk 21:

In many rings that are not fields, it can happen that ab = 0 for certain a # 0 and b # 0.
The next problem gives a whole lot of examples, this one wants you merely to show:

In any ring, if ab = 0, but a # 0 and b # 0, then neither a nor b has a multiplicative
inverse.



Solution: If ¢ had an inverse ¢!, then multiplying ab = 0 from the left with a~! would give
b = 0. Similarly, if b had an inverse, multiplying ab = 0 with it from the right would yield a = 0.

Note: It makes no sense to talk of a multiplicative inverse, unless the ring has a 1. But that’s fine
for the problem: If the ring has no 1, then the claim is vacuously true.

Hwk 22:

Let me introduce a name: In a ring, whenever a # 0 and b # 0 satisfy ab = 0, then a
and b are called zero divisors. In this problem, you'll find zero divisors in various rings:

(a) The ring C°[0,1] of continuous, real-valued functions on the interval [0,1], with
the usual addition and multiplication of functions. (The proof of the ring properties is
straightforward, you are not required to write it out here.) Find a pair of zero divisors.
If you find this difficult, then the most likely source of your difficulty is that you are
shying away from piecewise defined functions.

(b) In the ring My(Z) = Z2*2 of 2 x 2 matrices with integer entries, find a pair of zero
divisors.

(c) In the direct sum Z @ Z, find a pair of zero divisors.

(d) In the ring P(M) described in Problem 16, where M = {0, {, %, A}, find a pair of
zero divisors.

(e) Bonus problem: How many pairs of zero divisors does the commutative ring in (d)
have, not counting pairs (4, B) and (B, A) as different?

Solution: (a) Let f(z) := (1 — 2z); = max{l — 22,0} and ¢(z) := (22 — 1)4 = max{2z — 1,0}.
Then f(z)g(z) = 0 for each z, since the first factor vanishes when z > % and the second factor
vanishes when z < % Neither f nor g is 0 (i.e., the constant-zero function, which is the additive

neutral in this ring). But the product fg is the 0 function (namely is identically 0).
01 01 00

() [0 0]'[0 0]_[0 0]

(C) (G,,O) : (03 b) = (G, -0,0- b) = (050)

(d) Remember that the 0 in this ring is the empty set §. A = {0, ¢} and B = {%} are an example
of zero divisors.

(e) The questions is how many pairs of disjoint nonempty subsets of a set of 4 elements can one
find? A and B both single element sets has (3) = 6 possibilities. A a set with a single element and
B a two element set has 4 - 3 = 12 possibilities. A a single element set and B with three elements
has 4 possibilities. A and B each two elements has 3 possibilities. Altogether 25 pairs.

Hwk 23:

Show that in a ring with identity that has more than one element, the multiplicative
identity is automatically different from the additive identity.

Solution: Note that the additive identity 0 is defined exclusively in terms of + axioms, whereas
the multiplicative identity 1 is defined exclusively in terms of - axioms. It seems impossible to
establish any relation between the two without using an axiom that connects + and -. This is the
distributive law.

We use the property a0 = 0 for all a, which follows from the distributive law: a0 = a(040) = a0+a0,
hence a0 = 0. We prove the contrapositive, namely: If in a ring R with identity it holds 1 = 0,
then R has only one element. Indeed, if 0 = 1 then 0 = a0 = al = a, so each element a would
equal zero.



Hwk 24:

In a ring with identity (not necessarily commutative!), assume that the elements a and
b each have a multiplicative inverse; we’ll call them a~! and b~! respectively. Show that
ab has a multiplicative inverse as well, and give a ‘formula’ for it, in terms of ¢~ and

bl

Solution: It is a good motivation, but a questionable (at best) proof to start with z(ab) = 1 and
solve for z, via right multiplication with b~! and then ¢ !. This argument only shows: If ab has
an inverse, it can only be b~la~!. But the existence of an inverse must be shown, not assumed!

So we simply claim and prove by direct calculation that b~'a~"' is inverse to ab. Both order of

factors must be checked because in a ring, right inverse does NOT imply left inverse.

(b~ ta Y(ab) =b ta ta)b=bl1b=b1b=1
(ab)(b~ta ) =ab)at=alat=aa"t =1

Hwk 25:

Let A be any subset of [0, 1] (think of finitely many numbers between 0 and 1). Within
the ring C?[0, 1] (defined in 22a above), consider the set

C%00,1] :={f | f(x) =0 forall z € A}
Show that CY[0, 1] is a subring of C°[0, 1].

Solution: We have to show that if f,g € C9[0, 1], then fg, f +g,—f € C4[0,1], and that the zero
function is in C9[0,1] (this latter is trivial). In other words, we have to show: if f(z) = 0 = g(z)
for all z € A, then f(z)g(z), f(z) + g(z),—f(z) = 0 for all z € A. This is trivial, b/c 0-0, 0+ 0
and —0 equal 0. Note: A simple theorem in the book states that it is sufficient to show that f — g
and fg are in the ring if f and g are. A proof that uses this result is just as easy as the one given
here.

Hwk 26:

Warning / Surprise: If R is a ring with identity 1z and S is a subring not containing
the element 1g, then S might still have an identity 1g different from 1z. In that case,
by the uniqueness of the identity, 1g could not serve as a multiplicative identity in R.
In this problem, you’ll see two examples:

(a) Take the ring Z & Z. Give its multiplicative identity. Show that the ring Z & {0} =
{(a,0) | a € Z} is a subring of Z @ Z. Show that it does have a multiplicative identity,
and exhibit it.

(b) In the ring P(M), where M = {{J,0,%, A}, what is the multiplicative identity?
Show that P(N), where N = {{J, %, A}, is a subring. What is its multiplicative identity?

Solution: (a) The multiplicative identity in R@® R is (1g, 1r). The closure properties of Z & {0}
are obvious: (a,0)(b,0) = (ab,0), (a,0) + (b,0) = (a + b,0), and —(a,0) = (—a,0). So Z & {0} is
indeed a subring. The original identity (1r,1g) is not contained in this ring. However, (1g,0) is
an identity in Z & {0} because (1g,0)(a,0) = (a,0) = (a,0)(1g,0) for all (a,0).

(b) In P(M), the multiplicative identity is M because M N A= AN M = A for every A C M. For
N C M, P(N) is a subset of P(M), because z € P(N) means z C N, which implies z C M and
hence z € P(M). Clearly, if A, B C N, then AN B and A + B are subsets of N, too; and so is —A



since —A = A in this ring. So P(N) is a subring. The mult’ identity M is NOT in P(N), if N is a
strict subset of M.

However, N is the (new) multiplicative identity in P(N).

Hwk 27:
Why can a similar substitution of the additive identity not happen?

Solution: Let S be a subring of R. Let Og be its additive neutral, i.e., 0g +a =a for all a € S.
This equation is an equation in the big ring R, too, and we can add —a to the equation in this
ring. So we get Os + a + (—a) = a + (—a) in R. But this means 0g = Op.

Hwk 28:

Divisibility by 11: To find the remainder of a number when divided by 11, for an
integer given in decimal notation, the following rule can be used with the digits: Add
the digits from right to left, with alternating sign. Add/subtract multiples of 11 as
needed or desired. The result (between 0 and 10) is the remainder of the given integer
upon division by 11.

Example: a = 357123946803; We calculate ¢ = 3—0+8—-64+4—9+3—2+1-7+5—-3 = -3

Add 11 to get 8 (between 0 and 10): The remainder of ¢ when divided by 11 is therefore
8.

Prove this rule by writing up a calculation in the ring Z1;

Solution: The number z = d,d,_1...d1dy (to be read as a sequence of digits d; in decimal
representation, not as a product of variables) is actually z = Y. ;d;10’. Now 10 = —1 mod 11.

]

So in the ring Z11, we have £ = Y1, d;(—1) .
Hwk 29:

Given an integer a, let Q(a) be the sum of its digits. E.g., Q(37491) = 3+7+4+49+1=
24. What is

Q(Q(Q(4444™4%))) 7

To answer the problem, give a rough estimate how large the number could be at most,
and use a calculation in Zg as a second piece of information.

Solution: We use two pieces of information: the first is modular arithmetic, which tells us that
z = Q(z) mod 9.

Q(Q(Q(44444444))) = 44444444 = Q(4444)4444 — 164444 = (_2)4444 — (_2)3-1481+1 —
= (-8 (—2) =187 =7 mod 9

This leaves still many possibilities for Q(Q(Q(4444****))): It could be 7 or 16 or 25 or 34 or . ...

The next piece of info is a size estimate: 4444%*%* < 10000*44* = 10*444. This means 44444444
has at most 4 - 4444 < 20000 digits. (Sharper info could be obtained, but will not be needed.)
Therefore QQ(4444****) < 20000 - 9 = 180000. In particular @Q(4444****) has at most 6 digits, and
unless it is actually at most five digits, the first digit is 1 and the second at most 7. This means
Q(Q(4444*41%)) < 45. Among numbers up to 45, it is 39 that has the lergest @, namely 12.

We have therefore concluded that Q(Q(Q(4444**4%))) < 12, and at the same time Q(Q(Q(4444%*4%*))) =
7 mod 9. Both together leave only one choice for the result, namely 7.



Hwk 30:

Show that 13 (which is a prime in Z of course) is not irreducible in the ring Z[i]. In
other words, find integers a, b, c,d such that (a + bi)(c + di) = 13, but neither of the
numbers a + bi, ¢ + di should be 1, —1, 7 or —i.

Solution: 13 =22 432 = (2 + 34)(2 — 3i).

Remember that the punchline is that neither factor is a unit, i.e., a divisor of 1 in the ring at hand.
The wording of the problem anticipates that the only units are +1 and +i.

We may wish to prove this claim, or else we just prove that neither of 2 + 3i is a unit in Z[i]. If
2 — 3% were a unit, we’d need (2 — 3i)(a + bi) = 1 for some a + bi € Z[i]. We can solve this equation
in the larger ring C (of which Z[i] is a subring), and then we see that a + bi = (2 + 3i)/13 & Z][i].

Alternatively, if we want to prove that £1 and +i are the only units, we notice that if (a+bi)(c+di) =
1, then by taking the absolute value squared of the equation we get (a?+b%)(c? +d?) = 1, So a® +b?
must be 1, and this leaves only the four said possibilities for a unit a + b.



