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Chapter 1

Logic, Set Theory, and the
Real Numbers

In this chapter we will briefly cover the fundamentals necessary to study real
analysis, including the basics of logic and set theory, and all of the axioms
for the real numbers. We would like to begin by reminding the reader of the
axiomatic method on which mathematics (and through it science) is based.
It is impossible to define all concepts in any logical system, any more than a
dictionary can define all words in a language without relying on some prior
linguistic knowledge of the user (or pictures or other non-lingual aids). After
all, what words would one use to write the “first” definition? The fact that any
mathematical system must begin with terms, such as “set” or “element”, that
must always remain undefined is actually an advantage, not a disadvantage.
After all, if we don’t specify exactly what elements and sets must be, then we
can apply our set theory to sets of numbers, sets of rabbits, sets of matrices, or
sets of atoms.
Likewise, not all statements in a mathematical system can be proved. Indeed

a proof is only a tool to determine that one statement follows logically from one
or more other given statements; one must start somewhere! The starting point
is a collection of statements involving the undefined terms, called axioms, that
are assumed to be true. Given a particular set of axioms, a whole area of
mathematics can be built up by proving statements that follow logically from
those axioms, using these statements to prove more statements (adding new
definitions when needed), ad infinitum. The axioms themselves are intended to
be as few and simple and natural as possible, making it as easy as possible to
check whether they are applicable in a given situation. Even a small number
of axioms can give rise to a powerful collection of theorems. For example, all
of the calculus that you have already learned, and much that you have not yet
learned, is deduced from only nine axioms (actually between eight and twelve,
depending on how you state them). While from the standpoint of mathematics
these axioms are simply assumed, and cannot be “verified,” their validity in
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2 CHAPTER 1. LOGIC, SET THEORY, AND THE REAL NUMBERS

science has been more than adequately justified by the powerful applications
that arise from them.
Traditionally, theorems are named “lemmas”, “propositions”, “theorems” or

“corollaries.” While there is no fixed convention about the use of these names,
a lemma is typically a statement with a relatively simple proof that is primarily
used (often frequently) to prove other, deeper statements. A proposition is of
greater importance as a statement by itself, and a theorem is usually a statement
of major depth and importance. A corollary is always a statement that follows
with only a small amount of proof from a theorem, proposition, or lemma.
Beyond their applicability to science, there is another reason why the ax-

ioms for the real numbers are likely the “right” ones. If one takes a subset of
the axioms for the real numbers, then there are many different systems that
satisfy them. For example, if one considers only the axioms concerning addition
of numbers, without the commutative law, then the axioms describe something
known in mathematics as a group. Groups are ubiquitous in mathematics and
science, and come in many forms, such as finite groups, matrix groups, and
vector spaces. Other subsets of the real number axioms give rise to other gen-
eral mathematical objects, such as semigroups, rings, fields, and ordered fields.
However, it can be proved that the real number system is the only number
system that satisfies all of the real number axioms together.
We will not actually show that the real numbers exist. As mentioned above,

we must start somewhere, and while it is possible to start with certain basic
axioms of set theory, construct the real numbers, and show that they satisfy
the axioms given later in this chapter, the methods used in this process are not
applied further in the study of basic real analysis. Therefore after a few basic
preliminaries about logic and set theory we will simply take the axioms for the
real numbers as our starting point, and assume that there is a set satisfying
those axioms. To reiterate: the real numbers can be constructed in a natural
way beginning with everyday observations about counting, they are uniquely
determined by their axioms, and they have powerful applications. They are
certainly worth studying.

1.1 Basic Logic

We will informally discuss the basics of logic and set theory. In fact we will
make no effort to develop set theory or logic in a rigorous fashion; as interesting
as these subjects are, a thorough discussion here would detract from the subject
at hand, not contribute to it. Such a “naive” approach to set theory will not
lead to trouble so long as we stick to the real numbers, its subsets, sets (or, as
we will often call them, collections) of such subsets, and sets constructed in very
concrete ways from the real numbers. An example of the sort of troublemaker
that we will avoid considering is “the set of all sets”, which confounds the
distinction between sets and their elements that our naive set theory would like
to maintain.
If A and B represent statements, then the statement “A and B” is true
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precisely if A and B are both true. For example, if A is the statement “in
the 20th century a meteor hit the earth” and B is the statement “in the 20th
century millions of people died,” both of which are true, then the statement “in
the 20th century a meteor hit the earth and millions of people died” is true.
(Our tendency to connect these two statements and read a cause-and-effect
relationship into this statement is not logical, and the mathematics student
needs to learn to be very careful to avoid this and other kinds of illogic.)
The statement “A or B” is true precisely if A, B, or both A and B are true.

For example, the statement “that animal is brown or that animal is a cow” is
true if the animal is a brown cat, a green cow, or a brown cow, but is false if
the animal is a black sheep. The latter example shows how one negates an “or”
statement. The negation of the statement “A or B” is “not A and not B” (in
the previous example, not brown and not a cow). Likewise the negation of the
statement “A and B” is “not A or not B”.
Logic has two quantifiers, “for all” and “there exists”. There are of course

logically equivalent grammatical variations of these quantifiers, such as “for
every” and “for some”, respectively. “For all” means for every one, without
exception, and “there exists” means for at least one (maybe many—or even all).
The negation of a “for all” statement is always a “there exists” statement, and
vice versa. For example, the negation of “all of my pencils are yellow” is “there
exists one of my pencils that is not yellow,” and the negation of “some French
movies are boring” is “all French movies are not boring”. Note that “for all” is a
kind of “super and” while “there exists” is a kind of “super or” in the following
sense. Consider statements A and B. The statement “A and B” is true precisely
if all of the statements in question (A and B) are true. The statement “A or
B” is true precisely if there exists a statement (among A and B) that is true.
While “and” and “or” can connect only two statements, “for all” and “there
exist” have no such restrictions. For example, if we let P (i) be the statement
1/i ≤ 1/2, where i is a natural number, then we could write “P (2) is true and
P (3) is true and P (4) is true,...” but it is much simpler (and more precise—what
does “...” really mean in this statement?) to write “P (i) is true for all natural
numbers i ≥ 2”. The parallels between “or” and “for some”, and “and” and
“for all” will appear again in the discussion of unions and intersections of sets
in the next section.
The statement “if A then B” is referred to as an implication, where A is the

hypothesis and B is the conclusion. The statement “if A then B” is false exactly
when A is true and B is not true. For example, the statement “if a car is in lot
B then the car is red” is false only if there is a car in lot B that is not red. In
particular, it is true if the hypothesis is “vacuous” in the sense that the parking
lot is empty! This bothers some students at first, but it really is consistent: if
the only way to show the above statement is false is to produce a nonred car
in lot B then why should it matter whether the failure to do so is the result
of an empty parking lot? It is also important to remember that an implication
is true whenever the hypothesis is false—regardless of whether the conclusion is
true. For example, the statement “if a is even then 3a is even” is true even
though 3a is odd when a is odd. This discussion can be summarized by stating
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that the negation of “if A then B” is “A and not B”. Very often implications
are equivalent to “for all” statements. For example, the above statement “if a
is even then 3a is even” is equivalent to the statement, “for all even a, 3a is
even.” The negation of this statement is “there exists some even a such that
3a is odd,” which makes more sense grammatically than “a is even and 3a is
odd.” Getting back to the general statement “if A then B”, which may also be
stated “A implies B” or “B only if A”, there are two associated statements,
the converse statement “if B then A” and the contrapositive statement “if not
B then not A”. For example, given the statement “if x = y then x2 = y2”,
the converse is “if x2 = y2 then x = y” and the contrapositive is “if x2 6= y2

then x 6= y.” The contrapositive of a given statement is true if and only if the
given statement is true; more succinctly, a statement and its contrapositive are
logically equivalent. Proving or disproving one proves or disproves the other.
On the other hand, there is generally no logical relationship between a statement
and its converse. In the preceding example (assuming x and y are real numbers)
the original statement is true, but its converse is false. Proving the converse of
a statement rather than a statement is one of the most common abuses of logic,
and is used routinely in politics and advertising. If both “A implies B” and “B
implies A” are true, then we say that A and B are (logically) equivalent; we
may also express this as “A if and only if B” or “A iff B”.
The previously stated basic rules for negation of statements are few and sim-

ple, but actually negating complex statements can take some practice. Consider,
for example, the statement

“For every natural number n there exist ε > 0 and δ > 0 such that
1

ε
≥ n−δ.”

(1.1)
which negates as “There exists an natural number n such that for every ε > 0
and δ > 0, 1ε < n−δ.” Why did we negate “1ε ≥ n”, but not “ε > 0” or “δ > 0”?
Why didn’t we change the “and” to an “or”? Note that the symbol “≥” stands
for “greater than or equal to” and so the negation of “1ε ≥ n − δ” is “1ε is
not greater than n and not equal to n− δ” which leaves as the only possibility
“1ε < n − δ”. With a little practice, negation of statements can become fairly
instinctive, as it must be to properly do mathematics.

Exercise 1 For each of the following, write down the negation, converse and
contrapositive. Based on your prior knowledge, state whether each statement
and its converse are true or false. You do not need to supply a proof!

1. If n > M then there exists some ε > 0 such that M + ε < n.

2. If n and m are integers then there exists some rational r such that n <
r < m.

3. If ai < k for all i and limi→∞ ai exists, then limi→∞ ai < k.

4. If f 0(x) ≤ g0(x) for all x such that 0 ≤ x ≤ 1 and f(0) = g(0) then
f(x) ≤ g(x) for all such x.
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There are certain commonly used symbols that represent basic components
of logic. “For all” is normally written as “∀,” “there exists” as “∃”, “such that”
as “Ä”, “if A then B” as “A⇒ B”, “A if and only if B” as “A⇔ B”, “A or B”
as “A ∨ B”, and “A and B” as “A ∧ B”. For example, the statement (1.1) is
abbreviated as “(∀n ∈ N)∃ (ε > 0 ∧ δ > 0) Ä ( 1ε ≥ n− δ)”. The parentheses are
included for clarity. Often the “Ä” symbol is not used; the presumption being
that the phrase following a “there exist” phrase is the “such that” phrase. This
makes the statement harder to parse at first, but one advantage of doing this
is that the process of negation is simplified (try it!), because the “such that”
doesn’t have to be relocated. With the exception of arrows for implications,
this simplified notation will rarely be used in this text, but every mathematics
student should be familiar with it.

1.2 Basic Set Theory

Sets and elements of sets are undefined terms. We write “x ∈ X” to express
“x is an element of the set X” and “x /∈ X” to express the negation of this
statement. Given sets A and B, the union of A and B is defined to be the set
of all x such that x ∈ A or x ∈ B; we will use the notation A∪B := {x : x ∈ A
or x ∈ B}. The intersection of A and B is defined by A ∩ B := {x : x ∈ A
and x ∈ B}, and the complement of B in A (more briefly “A take away B”)
is defined by A\B := {x : x ∈ A and x /∈ B}. The empty set, which is the set
with no elements, is denoted by ∅. If A ∩B = ∅ then A and B are said to be
disjoint. We say that A is a subset of B (written A ⊂ B) if whenever x ∈ A,
x ∈ B. We say that A is a proper subset of B if A ⊂ B and there exists some
x ∈ B such that x /∈ A. We denote this by A Ã B. If X is a set and A is a
subset of X, we define the complement of A in X by Ac := {x ∈ X : x /∈ A}.
To show two sets are equal, it is often convenient to show that one is a subset

of the other, and vice versa. We will illustrate this by showing that if A and
B are disjoint then A\B = A. We will begin by showing that A\B ⊂ A. Let
x ∈ A\B. Then by definition x ∈ A and x /∈ B. In particular, x ∈ A, which is
what we needed to prove. To show that A ⊂ A\B, suppose that x ∈ A. If x
were also an element of B we would have x ∈ A ∩B = ∅, which is impossible.
Therefore x /∈ B. Since we already had x ∈ A this shows that x ∈ A\B. The
above proof that x /∈ B is an example of a proof by contradiction, in which
one assumes the negation of what one wishes to prove, and then show that this
negation logically implies a false statement and therefore itself must have been
false. The usefulness of proof by contradiction is one of many reasons why the
mathematics student must be good at negating statements.
Elementary set theory is completely analogous to elementary logic, and basic

statements in logic have equivalents in set theory, and vice versa. Note the
similarity of the symbols for “and” and “intersect”, and “or” and “union”. For
example, the fact that the negation of an “and” statement is an “or” statement
is expressed in set theory by one of de Morgan’s laws:
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A\(B ∩ C) = (A\B) ∪ (A\C) (1.2)

We will only prove the inclusion ⊂. Let x ∈ A\(B ∩ C). By definition x ∈ A
and x /∈ B ∩ C. That is, it is not true that x ∈ B and x ∈ C, which means
x /∈ B or x /∈ C. When a proof involves an “or” statement it is often useful to
consider each of the two statements as a separate statement. For the present
proof suppose that x /∈ B. Since we already have x ∈ A, then by definition
x ∈ A\B, and therefore x ∈ (A\B) ∪ (A\C). In the preceding argument, if we
simply replace the letter “B” by the letter “C” then the exact same proof will
show that x ∈ A\C, and therefore x ∈ (A\B) ∪ (A\C). Rather than wasting
time writing this down we simply state that the proof of the case x /∈ C is
similar. We leave it to the reader to prove the opposite inclusion (⊃) and the
second de Morgan law:

A\(B ∪ C) = (A\B) ∩ (A\C) (1.3)

Exercise 2 Let A and B be sets with B ⊂ A. Prove that A\(A\B) = B. Give
an example to show that the statement is not true if we do not assume that
B ⊂ A.

There are other statements that we will use without going through the proofs,
mainly because they reduce to statements in logic that are best proved using
what are known as “truth tables,” which, although very basic, are outside the
scope of this text. The interested reader is urged to consult a book on basic
logic. Statements we will need are A ∩B = B ∩A, A ∩ (B ∩C) = (A ∩B) ∩ C
and the identical statements with “∩” replaced by “∪”. It follows (although
the proof is a tedious inductive argument that we will skip) that the order of
parentheses and sets themselves are irrelevant for any combination of unions
or any combination of intersections of sets. For example, it is unambiguous to
write A ∩B ∩ C. Mixing intersections and unions is a different story, however;
for example it is not generally true that (A ∩B) ∪ C = A ∩ (B ∪ C).
Although one can prove that a statement is false by showing that it logically

implies another statement already known to be false, often the best and simplest
way to show that a statement is false is to provide a concrete counterexample.
For example, to see why it is false that (A∩B)∪C = A∩ (B∪C) for all sets A,
B, C, let A = {1}, B = {2} = C. Then (A∩B)∪C = {2}, but A∩(B∪C) = ∅.
A common elementary mistake in trying to disprove a statement is to point

out that a particular attempt at a proof fails to work. This is like trying to
prove that it is impossible to drive from place P to place Q by showing that
one particular road from P leads to a dead end! Nonetheless, the failure of
an attempt at a proof, if carefully analyzed, can sometimes lead to a concrete
counterexample.
Another common mistake is to give a “counterexample” that is not concrete.

For example, let’s “disprove” the statement that x2 = −1 has no real solution.
Let x and y be real numbers such that y = 2x and y = x2 + 2x + 1. Then we
have 2x = x2 + 2x+ 1 or x2 + 1 = 0, or x2 = −1. Since x is a real number, the
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statement is false. The error, of course, is that the graphs of the real functions
y = 2x and y = x2 + 2x+ 1 do not intersect, so no such x and y exist. Trying
to find concrete real x and y with those properties would quickly have exposed
the error. As a rule, counterexamples, even simple ones, must be concrete.
We do have the following relations involving both unions and intersections

(called the set theory distributive laws) for all sets A,B,C:

A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C) and A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

Exercise 3 Prove or disprove for all sets A,B:

1. A\B = ∅ if and only if A = B

2. A = (A\B) ∪ (A ∩B)

3. A\(A\(A\A)) = ∅

LetX and Y be sets. The Cartesian product ofX and Y isX×Y := {(x, y) :
x ∈ X and y ∈ Y }. The elements of a Cartesian product are called ordered
pairs; the order of the elements in the pair is essential, and this distinguishes
the ordered pair (x, y) from the set {x, y}, in which order is unimportant. In
particular, the cartesian product is not “commutative”; X × Y and Y ×X are
different sets unless X = Y . The cartesian product is one of the most basic and
important ways to construct a new set from existing sets. For example, as the
reader knows, the Euclidean plane is the cartesian product of the real line with
itself.
Cartesian products can be used to make precise the idea of “labeling” a

collection of sets. An indexing set Λ for a collection A of sets is a subset of Λ×A
such that for each λ ∈ Λ there is exactly one ordered pair (λ,A). We normally
write Aλ rather than (λ,A) and denote the indexed collection by {Aλ}λ∈Λ.
Thus the indexing of A “assigns” to each λ a unique set Aλ in the collection A.
For example, we can consider the collection {(−n, n)}n∈N of all real intervals
(−n, n), where n is a natural number. Written more explicitly this is the set
{(−1, 1), (−2, 2), (−3, 3), ...}. In this example the indexing set is N. However,
we can consider sets indexed over any arbitrary set—e.g. {[−r, r]}r∈(0,1), which
consists of all closed intervals having endpoints [−r, r], where 0 < r < 1.
Given an indexed collection of sets {Aλ}λ∈Λ, we define the intersection of

the collection to be \
λ∈Λ

Aλ := {x : x ∈ Aλ for all λ ∈ Λ}

and the union of the collection to be[
λ∈Λ

Aλ := {x : x ∈ Aλ for some λ ∈ Λ}.
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Example 1 We will prove that for sets A and {Aλ}λ∈Λ we have the following
distributive law:

A ∩
Ã[
λ∈Λ

Aλ

!
=
[
λ∈Λ

(A ∩Aλ)

Now x ∈ A ∩
¡S

λ∈ΛAλ

¢
if and only if

x ∈ A and x ∈
[
λ∈Λ

Aλ

⇔ x ∈ A and x ∈ Aλ for some λ ∈ Λ

⇔ x ∈ A ∩Aλ for some λ ∈ Λ

⇔ x ∈
[
λ∈Λ

(A ∩Aλ) .

Exercise 4 Verify that if we have only two sets A1 and A2 (i.e. the indexing
set is Λ = {1, 2}) then

T
λ∈{1,2}Aλ = A1 ∩ A2 and

S
λ∈{1,2}Aλ = A1 ∪ A2.

Therefore our new more general definitions are consistent with the old ones.

Exercise 5 Let {Aλ}λ∈Λ be a collection of sets. Show that for each λ0 ∈ Λ,T
λ∈ΛAλ ⊂ Aλ0 ⊂

S
λ∈ΛAλ.

When Λ = N (or Λ is finite) we will often write, for example,
S∞
i=1Ai (orTm

i=1Ai).

Exercise 6 Find the intersections and unions of the following collections

1. {(−n, n)}∞n=1

2. {[−r, r]}r∈(0,1)

3. {(0, 1i ]}∞i=1

Exercise 7 Prove the following generalization of the de Morgan law (1.3) for
arbitrary intersections A\

¡S
λ∈ΛAλ

¢
=
T
λ∈Λ(A\Aλ). Formulate the appropri-

ate generalizations of (1.2) and the remaining distributive law, but don’t bother
to write down proofs.

Consider now the cartesian product of three sets A,B,C. Using our defini-
tion of the cartesian product of two sets we can form the products (A×B)×C
and A × (B × C). Elements of the first set are of the form ((a, b), c) and ele-
ments of the second are of the form (a, (b, c)). Strictly speaking these two sets
are different, and yet for all purposes it is useful to consider them as being the
same—moreover, we would like to use the simpler notation of triples (a, b, c), or,
for cartesian product of n sets, n-tuples.
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Definition 2 Let A1, ..., An be sets. The cartesian product of the sets is defined
to be

A1 × · · · ×An =
nY
i=1

Ai := {(a1, ..., an) : ai ∈ Ai} .

For any (a1, ..., an) ∈ A1 × · · · ×An, ai will be called the ith component (or
coordinate) of (a1, ..., an).

It is possible to consider cartesian products of arbitrary collections {Aλ}λ∈Λ,
but this important construction will not be used in this introductory text. If
the sets Ai are all the same set, i.e. Ai = B for some set B and all i, we will
write Bn rather than

Qn
i=1Ai. It will be useful in the future to be able to

make statements like A × (B × C) = A × B × C, which, as we have pointed
out above, is strictly speaking not true. But each of these two sets is simply
a relabeling of the other in a very natural way; the “difference” between these
sets is purely a matter of notation. We resolve this situation by stating that
we will henceforth “identify” the one set with the other, using the notation
established in Definition 2. Later, when we add further structures to the sets
Ai, we should pause for a moment to be sure that this identification that we
have made is consistent with the new structure. For example, in linear algebra
you have already worked with vectors expressed as n-tuples of real numbers,
and likely made this identification without even thinking about it when stating,
for example, that R4 “is” the direct sum of R2 and R2. Strictly speaking these
two vector spaces are different, but isomorphic as vector spaces via the natural
function (a1, a2, a3, a4) 7→ ((a1, a2), (a3, a4)). These kinds of identifications in
mathematics are inevitable and frequently encountered.

1.3 Functions

Definition 3 Let X and Y be sets. A function f from (or on) X to (or into)
Y is a subset of X × Y such that if (x, y) and (x, z) are in f then y = z.

Normally one assumes that X is the domain of the function, meaning that
for every x ∈ X there is some (x, y) ∈ f . Without further ado we will adopt the
standard notation for functions, writing f : X → Y (where X is the domain of
the function) y = f(x) rather than (x, y) ∈ f . The last condition in the above
definition then is clearly the familiar requirement that a function be single-
valued in the sense that if f(x) = y and f(x) = z, then y = z. Note that
the indexing of a collection of sets discussed in the previous section is in fact
a function. The set X is called the domain of f and the set of all y ∈ Y such
that y = f(x) for some x ∈ X is called the range of f . The function f is called
one-to-one (or 1-1, or an injection) if whenever f(x) = f(y), x = y, and onto
(or a surjection) if for every y ∈ Y there exists some x ∈ X such that y = f(x),
i.e. if Y is the range of X. A function that is both 1-1 and onto is called a
bijection (or one-to-one correspondence).
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Given functions f : X → Y and g : Y → Z, we define the composition of f
and g to be g ◦ f : X → Z, where (g ◦ f)(x) = g(f(x)) for all x ∈ X.

Exercise 8 Let f : X → Y and g : Y → Z be functions.

1. Show that if both f and g are 1-1 (respectively onto) then g ◦ f is 1-1
(respectively onto). Note: the “(respectively onto)” indicates that this is
really two statements, one without these parenthetical phrases, which is
about 1-1 functions, and a second statement in which “onto” replaces “1-
1” in each instance. You should prove both. In the future we will often
abbreviate, using “resp.”

2. Show that if g is 1-1 and g ◦ f is onto then f is onto.

If f : X → Y is both 1-1 and onto then there exists a uniquely determined
function f−1 : Y → X, called “f inverse” defined by f−1(y) = x where x is the
unique element of X such that f(x) = y. By definition, f−1 ◦ f(x) = x and
f ◦ f−1(x) = x, and according to Exercise 8, f−1 is 1-1 and onto. In addition,
(f−1)−1 = f . The function idX : X → X defined by idX(x) = x is called
the identity function on X. In this notation we can write f−1 ◦ f = idX and
f ◦ f−1 = idY .
If f : X → Y is a function and A ⊂ X we define f(A) = {y ∈ Y : y = f(x)

for some x ∈ A}, called the image of A. If B ⊂ Y , we define f−1(B) = {x ∈
X : f(x) ∈ B}, called the inverse image of B. Note that f−1(B) makes sense
even if f is not 1-1 or onto.

Example 4 Let f(x) = x2. Determine the following sets (no proof needed):
f({1,−1}), f−1((0, 1)), f(f−1({−1})), f−1(f({−1})).

Exercise 9 Let f : X → Y be a function. Prove that

1. A ⊂ f−1(f(A)) and f(f−1(B)) ⊂ B

2. f is 1-1 if and only if for every A ⊂ X, f−1(f(A)) = A.

3. f is onto if and only of for every B ⊂ Y , f(f−1(B)) = B.

We list now list various statements involving images and inverse images of
functions.

f

Ã[
λ∈Λ

Aλ

!
=
[
λ∈Λ

f(Aλ) and f

Ã\
λ∈Λ

Aλ

!
⊂
\
λ∈Λ

f(Aλ) (1.4)

f−1

Ã[
λ∈Λ

Aλ

!
=
[
λ∈Λ

f−1(Aλ) and f−1

Ã\
λ∈Λ

Aλ

!
=
\
λ∈Λ

f−1(Aλ) (1.5)

f−1(A\B) = f−1(A)\f−1(B) and f(A)/f(B) ⊂ f(A/B) (1.6)
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Exercise 10 Prove the statements (1.4-1.6).

Note that it is easy to check that the inclusions in Formulas 1.4 and 1.6, are
equalities when f is 1 − 1. .Let f : X → Y be a function and A ⊂ X. The
restriction of f to A is the function f |A: A → Y defined by f |A (x) = f(x)
for all x ∈ A. That is, f |Ais simply f , but its domain has been restricted to A.
This simple concept is more useful than it may seem at first, and will be used
frequently.
Finally, we consider functions into cartesian products of sets. LetA,A1, ..., An

be sets and f : A→
Qn

i=1Ai be a function. For any a ∈ A, f(a) is of the form
(a1, ..., an) for some ai ∈ Ai. In other words, to each a ∈ A we assign, using
f , some ai ∈ Ai. That is, the function f gives rise to a uniquely determined
set of functions fi : A → Ai, where f(a) = (f1(a), ..., fn(a)); the function fi
is called the ith component function of f . For example, the first component of
f(t) = (t2 + 1, t, 2) is f1(t) = t2 + 1 and the third component is the constant
function f3(t) = 2. Conversely, if we are given functions gi : A → Ai for all
i, then there is a uniquely determined function g : A →

Qn
i=1Ai defined by

g(a) = (g1(a), ..., gn(a)).
Now suppose that f :

Qn
i=1Ai → A is a function. We will adopt the notation

commonly used in calculus, writing f(a1, ..., an) rather than the strictly correct
notation f((a1, ..., an)).

Definition 5 For any j = 1, ..., n, the function πj :
Qn

i=1Ai → Aj defined by
πj(a1, ..., an) = aj is called the jth projection of

Qn
i=1Ai.

Exercise 11 Let f : A→
Qn

i=1Ai be a function.

1. Prove that, for every i, fi = πi ◦ f .

2. Prove that if every component function fi : A → Ai is 1-1 then f is 1-1.
Verify that the function f(t) = (t, t2) from R into R2 is a counterexample
to the converse of this statement.

3. Prove that if f is onto then every component fi : A → Ai is onto. Prove
or disprove the converse of this statement.

1.4 The Field and Order Axioms
The axioms in this section are familiar to most students from before high school.
They are quite natural. Many of them, such as the distributive and associative
laws, can be observed in simple concrete situations, such as counting apples,
and have been understood and accepted for thousands of years. Others, such as
the existence of 0, or the existence of additive inverses, which leads to negative
numbers, have been readily accepted only more recently. After all, even if you
accept that one can physically have 0 apples, −5 apples is a little harder to vi-
sualize. However, whether or not −5 apples makes physical sense, we now know
that negative numbers are extremely useful in many situations. Rather than



12 CHAPTER 1. LOGIC, SET THEORY, AND THE REAL NUMBERS

denying their existence generally, as some mathematicians and scientists (and
religious leaders!) have tried to do in previous centuries, we simply recognize
that, in the process of translating from an application to mathematics, solving
the problem, and translating back, we must be on the lookout for extraneous
solutions, or solutions that don’t make sense in terms of the original problem.
A field is a set F having two operations + and · (addition and multiplication)

satisfying the following axioms:

1. (Associative Laws) (a + b) + c = a + (b + c) and a(bc) = (ab)c for all
a, b, c ∈ F

2. (Commutative Laws) a+ b = b+ a and ab = ba for all a and b in F

3. (Additive and Multiplicative Identities) There exist elements 0 and 1 in F
with 1 6= 0, such that a+ 0 = a and 1 · a = a for all a ∈ F

4. (Additive and Multiplicative Inverses) For all a ∈ F there is some −a ∈ F
such that a+ (−a) = 0 and if a 6= 0 there exists some a−1 ∈ F such that
aa−1 = 1

5. (Distributive Law) a(b+ c) = ab+ ac for all a, b, c ∈ F.

Although there are many important fields, in this text we will be only con-
cerned with the real and complex numbers. The complex numbers will be intro-
duced later. From these five axioms can be deduced all the algebraic theorems
that the reader has used since childhood. For example, a quite tedious induc-
tion argument can be used to prove that the associative law implies that sums
and products of any length are independent of arrangement of parentheses—e.g.
a(b(cd)) = (ab)(cd) for any real numbers a, b, c, d. There is also a “right-sided”
distributive law in which the single element is multiplied on the right, which
can be proved using the distributive and commutative laws. We will not dwell
further on these kinds of theorems, which are fairly simple to prove, and which
are found in a typical abstract algebra course (in the more general setting of
groups and rings). The reader is not expected to cite each axiom or even show
more steps than would be expected in a calculus course. However, the idea of
uniqueness has a fairly important role in mathematics, and we will spend a little
time proving some basic uniqueness results.

Proposition 6 For all a, b in a field, the equation a + x = b has a unique
solution x.

By now basic algebra has become fairly “automatic” to the reader, and he
or she might give the following argument

a+ x = b (1.7)

0 + x = (−a) + b

x = b− a
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Here we have used the standard convention of denoting b+(−a) by b− a. Does
this mean that x really is a solution to our original equation? Does this show
that x is unique? A careful look at the axioms shows that what we in fact
have here is three equivalent statements. It is clear that the top line implies the
second one by adding −a to each side and using the axiom about the additive
inverse. But we can also go from the second line to the first by adding a to
each side and applying a couple of axioms as well. In other words, using our
axioms we can show that the first line implies the second, and that the second
line implies the first, hence they are equivalent. The reader should also check
that the second and third lines are equivalent, and therefore the first and third
lines are equivalent.

What have we proved? Consider first the statement “If a + x = b then
x = b− a.” This is actually the uniqueness of the solution—if there is a solution
x then it must be of the form b − a. The converse statement “If x = b − a
then a+ x = b” is actually the statement that a solution exists, namely b− a.
Therefore we have proved that there is a unique solution, and it is of the form
x = b−a. One can actually check that x = b−a is a solution by “plugging it in”
but this is not needed. Likewise one can prove uniqueness in the following way:
Suppose that x1 and x2 are solutions to a+ x = b. Then a+ x1 = b = a+ x2.
Adding −a to each side we obtain that x1 = x2. While this is the standard
framework for proving uniqueness of solutions, again this is unneeded in the
present case because we have carefully checked our logic. Therefore careful
analysis of one’s logic can be a great time saver. Such analysis can also prevent
errors. Consider, for example, the following “proof” that 1 = 2.

1 = 2 (1.8)

1 · 0 = 2 · 0
0 = 0

This example plays on the common (and logically incorrect) strategy learned
in high school algebra of starting with the statement that one wants to verify,
and manipulating it algebraically to obtain a true statement. In high school
algebra this plan generally worked because the algebraic manipulation always
produced logically equivalent statements. However, we will more and more
consider steps that do not produce logically equivalent statements, and in these
cases the strategy is clearly backwards. To prove a statement one must start
with something known to be true and deduce the statement, not the other
way around. In the above example the first line implies the second line, which
implies the third line—but that only serves to illustrate that a false statement can
logically imply a true statement! Of course the second statement does not imply
the first; in order to go this way one would have to multiply by the multiplicative
inverse of 0, and our axioms do not provide for such a thing. From this point
on, all arguments of this sort, which we will refer to as “parallel” arguments
because they involve a list of statements in parallel, must have an indication of
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which way the logic goes. Therefore the argument 1.7 should be

a+ x = b

⇔ 0 + x = (−a) + b

⇔ x = b− a

and the argument 1.8 should be

1 = 2

⇒ 1 · 0 = 2 · 0
⇔ 0 = 0

Applying Proposition 6 to the equation a + x = a we see that 0 is the unique
additive identity, and applying it to a+ x = 0 we see that each a has a unique
additive inverse. In fact, we could have replaced the two axioms concerning the
additive inverse and identity by a single one asserting the existence of a unique
solution to all equations of the form a+ x = b (see Exercise 13 below).

Exercise 12 State and prove a theorem about the existence and uniqueness of
solutions of equations of the form ax = b for a, b, x in a field.

Exercise 13 Suppose we are given that a+ x = b has a unique solution for all
a, b∈ R. Use this fact, and only the associative and commutative laws, to show
that there exists an additive identity. Hint: Let 0a be the unique solution to
a+ x = a. Next show that for any b ∈ R, b+ 0a is a solution to a+ x = a+ b.

Henceforth we will take for granted all algebraic theorems about the real
numbers, using them without reference. We finish the discussion of algebraic
properties with a few comments about powers of real numbers. For quite some
time we will not need to know anything about powers except for integer powers
and square roots. For any x 6= 0 we define xn for n ≥ 0 iteratively: x0 is
defined to be 1 and for any n, xn is defined to be xn−1 · x. For n < 0 we define
xn = (x−n)

−1. Some rather tedious checking verifies the usual powers rules:
xnxm = xn+m and (xm)n = xmn. We will discuss square roots in the next
section.
We will now add the order axioms to our collection. We assume that there

is a subset L of R×R, the elements of which will be denoted by a < b (rather
than (a, b)), such that the following axioms are satisfied for all a, b, c ∈ R:

1. (Transitivity) If a < b and b < c then a < c.

2. (Trichotomy) Exactly one of the following is true: a < b, b < a or a = b.

3. (Additive Property) If a < b then a+ c < b+ c.

4. (Multiplicative Property) If a < b and c > 0 then ac < bc.
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From these three axioms and the algebraic axioms follow all the basic alge-
braic theorems that the reader has learned previously, including, for example,
the fact that multiplication by a negative number reverses inequalities, 0 < 1,
and so on. We will not give the proofs of such statements, which are elemen-
tary (if sometimes tricky), and will use all of these statements without further
reference.
A very common method for showing that a = b is to show both a ≤ b and

b ≤ a. Then by the trichotomy, the only possibility is a = b. A useful basic
technique for showing that a ≤ b is given by the following exercise.

Exercise 14 Let a, b ∈ R.

1. Show that if a ≤ b+ ε for every ε > 0, then a ≤ b.

2. Prove or disprove: If a < b+ ε for every ε > 0 then a ≤ b.

3. Prove or disprove: If a < b+ ε for every ε > 0 then a < b.

1.5 Completeness

For any x ∈ R we define the absolute value of x to be |x| = x if x ≥ 0 and
|x| = −x if x < 0. It is easy to check the four necessary cases to verify that
|xy| = |x| |y| for all x, y ∈ R.

Proposition 7 (Triangle Inequality) For any x, y ∈ R we have

|x+ y| ≤ |x|+ |y|

The proof of the triangle inequality involves a series of simple steps, the first
of which is the following useful lemma:

Lemma 8 For all x ∈ R and M ≥ 0, |x| ≤M if and only if −M ≤ x ≤M .

Exercise 15 Prove the above lemma and use it to show that for all x, y ∈ R,
−(|x|+ |y|) ≤ x+ y ≤ |x|+ |y|. Use the lemma again to finish the proof of the
triangle inequality.

Definition 9 A subset A of R is bounded above if there exists some M ∈ R
(called an upper bound of A) such that x ≤M for all x ∈ A. If there exists an
upper bound S of A such that S ≤ M for all upper bounds M of A then S is
called the supremum (or sup—with a long “u”) of A, denoted supA. If supA ∈ A
then supA is called the maximum of A, denoted maxA. Lower bound, infimum
and minimum are defined similarly. A real subset that is bounded above and
below is simply called bounded.

Exercise 16 Show that A ⊂ R is bounded if and only if there exists someM ≥ 0
such that for all x ∈ A, |x| ≤M .
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Definition 10 The extended reals are defined to be the set E := R∪ {∞,−∞},
where ∞ and −∞ are symbols that satisfy the following conventions:

1. For every real x, ∞ > x (resp. −∞ < x) and ∞ (resp. −∞) is an upper
(resp. lower) bound for any subset of E.

2. If A ⊂ R is not bounded above (resp. below) or A ⊂ E contains ∞ (resp.
−∞) then we write supA =∞ (resp. inf A = −∞).

3. x +∞ = ∞ for any extended real x > −∞ and x ·∞ = ∞ (resp. −∞)
for any extended real x > 0 (resp. x < 0), with analogous conventions for
−∞+ x and x · (−∞).

We are not actually defining operations of addition and multiplication on E
(for example we will not consider the combination ∞ + (−∞)), but it will be
useful to have statements about sums and products of infs and sups (and, at a
later time, limits and integrals) that are true also for infinite values. Of course
when proving such statements we will have to check the infinite cases separately
(see for example Lemmas 13 and 14 below). It is important to realize that these
theorems only apply to those operations defined in Definition 10 and they tell
us nothing, for example, if one encounters something like 0 ·∞.

Exercise 17 Show that every real number is an upper bound for ∅ and explain
why it would be reasonable to define sup∅ = −∞. We will not do so, mainly
because it is simpler to only consider non-empty sets when dealing with suprema
and infima than it is to treat the empty set as a separate case in every proof
involving suprema.

Exercise 18 Prove that if A 6= ∅ then supA is unique. Be sure to address the
case when A is not bounded above.

The final axiom for the real numbers states:

Axiom 11 (Completeness) Every nonempty subset of the real numbers has
a supremum.

The above formulation includes our convention about unbounded sets: a
subset of the reals is bounded above or not. If it is bounded above then according
to the completeness axiom it has a supremum; if it is unbounded then it has
a supremum of ∞ by definition. One can argue without much difficulty that
the completeness axiom also implies that every subset of the real numbers has
an infimum. In fact, a set A is bounded above if and only if −A is bounded
below; a number M ≥ 0 is an upper bound for A if and only if −M is a lower
bound for −A; and the previous statement follows from lots of negating and “un-
negating” of sets and numbers. We will see later that a much more useful kind
of completeness is true: the completeness axiom implies that every real sequence
that “should” converge to something because the terms get “closer and closer
together” (we will define this precisely later!) actually does have a limit. This
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is a statement that is taken for granted in modern elementary calculus and was
taken for granted in a limited sense by mathematicians for centuries prior to
the 19th century when the need to formulate the axiom was realized. Without
the completeness axiom, familiar calculus—and even Euclidean geometry—break
down. For example, the rational numbers are an ordered field in the sense that
they satisfy all the axioms for the real numbers except completeness. But if one
works only with the rational numbers then a square with sides of length 1 has a
diagonal of undefined length; lines in the “rational plane” with different slopes
may not intersect; the polynomial x2 − 2 has no zeros. The real numbers can
be constructed by “completing” the rational numbers—essentially inserting all
the missing suprema in a process known as Dedekind cuts—but there are also
many other ordered fields that are quite unlike the rational numbers. These
“non-Archimedean” fields contain the integers, just like the rational numbers,
but the integers are bounded! However, as we have mentioned previously there
is one and only one complete ordered field, namely R.
The following lemma formalizes what the reader may already have instinc-

tively realized about a finite supremum s of a set A: that s is an upper bound
of A and there are elements of A that are arbitrarily close to s. This “analytical
description” of the supremum, and an analogous description of the infimum that
we will not state, is extremely useful.

Lemma 12 (Approximation Property for the Supremum) Let A be a nonempty
set of real numbers such that supA < ∞. Then s = supA if and only if s is
an upper bound of A and for every ε > 0 there exists some x ∈ A such that
x > s− ε.

Proof. First suppose that s = supA. Then by definition s is an upper
bound of A. If the second statement is false then there exists some ε > 0
such that for all x ∈ A, x ≤ s− ε. But then s− ε is an upper bound of A and
s−ε < s = supA, a contradiction. Conversely, assume that s is an upper bound
of A and for every ε > 0 there exists some x ∈ A such that x > s−ε. If s 6= supA
then by definition there exists some upper bound M of A such thatM < s. Let
ε := s−M . Then there is some x ∈ A such that x > s− ε = s− (s−M) =M ,
which contradicts the fact that M is an upper bound of A.
Our first application of the Approximation Property is the following state-

ment, the proof of which uses of Lemma 12 four times. The reader is invited to
try to come up with a proof that does not use Lemma 12 or some version of its
proof (several times)!

Lemma 13 Let {Aλ}λ∈Λ be a collection of nonempty sets of real numbers.
Then

sup

([
λ∈Λ

Aλ

)
= sup {supAλ}λ∈Λ .

Proof. Let s := sup {supAλ}λ∈Λ. Suppose first that s = ∞. If ∞ /∈
{supAλ}λ∈Λ then for every M ≥ 0 there exists some λ ∈ Λ such that supAλ ≥
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M + 1
2 . By Lemma 12 there exists some x ∈ Aλ such that x ≥ M . Since x ∈S

λ∈ΛAλ this proves that
S
λ∈ΛAλ is not bounded above, so sup

©S
λ∈ΛAλ

ª
=

∞. On the other hand, if∞ = supAλ for some λ ∈ Λ then for anyM ≥ 0 there
is some x ∈ Aλ such that x ≥M , and the proof follows as in the previous case.
If s < ∞, let x ∈

S
λ∈ΛAλ. Then x ∈ Aλ for some λ, and so x ≤

supAλ ≤ sup {supAλ}λ∈Λ. Therefore s := sup {supAλ}λ∈Λ is an upper bound
for

S
λ∈ΛAλ. Let ε > 0; then ε/2 > 0. By the Lemma 12 there exists some

x ∈ {supAλ}λ∈Λ, i.e. x = supAλ for some λ ∈ Λ, such that x > s− ε/2. Now
by Lemma 12 there exists some y ∈ Aλ such that

y > x− ε/2 > s− ε/2− ε/2 = s− ε.

Since y ∈
S
λ∈ΛAλ it now follows from Lemma 12 that s = sup

©S
λ∈ΛAλ

ª
.

Exercise 19 Let {Aλ}λ∈Λ be a collection of sets of real numbers such thatT
λ∈ΛAλ 6= ∅.

1. Show that sup
©T

λ∈ΛAλ

ª
≤ inf {supAλ}λ∈Λ and give an example to show

that these two numbers may not be equal.

2. Prove or disprove the following statement. If each Aλ has a maximum thenS
λ∈ΛAλ has a maxumum and max

©S
λ∈ΛAλ

ª
= max {maxAλ}λ∈Λ.

Exercise 20 Write down, but do not prove, the corresponding statements for
infima to Lemmas 12 and 13, as well as the first part of Exercise 19.

Let X be a set, f : X → R be a function, and A ⊂ X. Then f is said to be
bounded on A if the set f(A) is bounded. Define supA f := sup f(A). If f(A)
has a maximum then we denote the maximum by maxA f . When X = A we
may simply use the terms sup f and max f .

Exercise 21 Prove or disprove the following statements:

1. If f(x) < g(x) for all x ∈ A then supA f < supA g.

2. If f(x) ≤ g(x) for all x ∈ A then supA f ≤ supA g.

3. If f and g have a maximum on A and f(x) < g(x) for all x ∈ A then
maxA f < maxA g.

If f, g : A → R are functions, we define f + g : A → R by (f + g)(x) =
f(x) + g(x).

Lemma 14 Let X be a set, f, g : X → R be functions, and A ⊂ X. Then
supA(f + g) ≤ supA f + supA g.

Proof. If supA f or supA g is∞ then it doesn’t matter whether supA(f +g)
is finite or infinite; the inequality still holds. Therefore we can suppose that
supA f and supA g are finite; i.e., f and g are bounded. Then f + g is also
bounded. By definition of supremum we need only show that supA f +supA g is
an upper bound of {f(x) + g(x) : x ∈ A}. Suppose x ∈ A. Then f(x) ≤ supA f
and g(x) ≤ supA g, so f(x) + g(x) ≤ supA f + supA g.
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Exercise 22 State and prove the analog of Lemma 14 for infima and show by
example that supA(f + g) < supA f +supA g can occur even if all quantities are
finite.

Proposition 15 For any a > 0, there is a unique real number b > 0 such that
b2 = a.

Proof. First suppose that a > 1 and consider the set A := {x > 0 : x2 < a}.
Then 1 ∈ A 6= ∅. If x ≥ a > 1 then x2 > a2 > a; in particular, A is bounded
above and s := supA satisfies 1 ≤ s < a. Suppose s2 > a. Setting ε := a−s

2 > 0
we have that

(s− ε)2 = s2 − 2sε+ ε2 > s2 − 2s(a− s

2
) = sa ≥ a.

Since s− ε < s, this contradicts s = supA.
Now suppose s2 < a. Let ε > 0 be less than 1 and a−s2

2s+1 . In particular,
ε2 < ε. Now

(s+ ε)2 = s2 + 2sε+ ε2 < s2 + ε(2s+ 1) < a2

which also contradicts s = supA. Therefore s2 = a. Uniqueness follows from
the field and order axioms; for example if 0 < x < s then x2 < s2 = a. If a = 1
there is nothing to prove, and if a < 1 then by what we proved above there
is some c such that c2 = 1

a . Let b =
1
c and apply the field axioms to see that

b2 = a.
As usual we will denote the number b in the above proposition by

√
a or

a1/2. It follows from the field and order axioms that if a < b then
√
a <

√
b.

With more effort one can prove the existence of nth roots of positive numbers,
and use this to define rational powers of positive numbers, followed by very
tedious checking to verify the powers rule. However, we will have no need for
these more general powers until much later in the text. Arbitrary real powers
of positive numbers can be quite easily defined using the exponential function,
once we have the mathematical machinary built to understand it (see the end
of Section 3.8).
We conclude with what may seem at first like a surprising consequence of

completeness, namely the Archimedean Principle.

Theorem 16 For every positive a, b ∈ R there exists a natural number n such
that na > b.

Proof. If a > b then we are done, letting n = 1. Otherwise, the set E of
all n ∈ N such that na ≤ b contains 1 and is therefore non-empty. In addition,
any n ∈ E satisfies n ≤ b

a , and so E is bounded above. Therefore s := supE
exists and is finite. By the approximation property there exists some m ∈ E
such that m > supE − 1. Now n := m+ 1 is a natural number that is greater
than supE, which implies that n /∈ E. But by definition that means na > b,
which is what we wanted to prove.
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Corollary 17 The natural numbers are not bounded above.

Frequently beginning mathematics students, if given the problem of proving
that the natural numbers are not bounded above, will attempt to prove this
“obvious” fact without using the completeness axiom. All such attempts are
doomed to fail because there exist so-called non-Archimedean ordered fields,
which satisfy all the real number axioms except completeness, but for which
the Archimedean principle and unboundedness of the natural numbers fail to
be true.

Exercise 23 Prove that for any two real numbers r1 < r2 there exits a rational
number p

q such that r1 <
p
q < r2. Hint: For q large enough, q(r2 − r1) > 1.

1.6 Sequences and subsequences
Definition 18 If A is a set, a sequence in A is a function a : N→ A.

We use the following notation for sequences, denoting a(n) by an and indi-
cating an entire sequence by (a1, a2, ...) or (an)∞n=1, or simply (an) if no con-
fusion will result. We use this notation to distinguish between the sequence
(an) and the image of the sequence, which is the set {an}. In a sequence the
order is essential and duplicate values are listed. For example the sequence
(−1, 1,−1, 1, ...) has image set {1,−1}. While we have quickly abandoned the
“function notation” for sequences, the fact that they are functions allows us to
use all definitions and theorems that we have previously been given concerning
functions. For example, we know automatically what it means for a sequence
to be bounded since we know what it means for a function to be bounded.
The number an is called the nth term of the sequence. We will not be strict

about the requirement that the domain of a sequence be N. In fact we will
frequently consider sequences starting with the 0th term, or the kth term for
some k > 1.

Example 19 The simplest sequence is a constant sequence defined by an := a
for some fixed a ∈ A and all n ∈ N. Note that this sequence still has infinitely
many terms even though they all have the same value.

Sequences are often defined iteratively. One is given a “starting term”, often
s0 or s1, and a procedure for determining sn with n > 1 based on s1, ..., sn−1.
For example, one may let s1 := 1, s2 := 1 and let sn := sn−2 + sn−1 for n > 2.
We have s3 := 1 + 1 = 2, s4 = 1 + 2 = 3,s5 := 2 + 3 = 5 and so on. This
sequence is called the sequence of Fibonacci numbers. As another example, let
s1 := 1 and sn := sn−1 + n for n > 1. That is, sn = 1 + 2 + ... + n = n(n+1)

2

(the latter formula is easily proved by induction). The formula sn =
n(n+1)

2 is
called the “closed form” for the sequence; it allows one to compute sn directly
from n without using the values of s1, ..., sn−1.

Exercise 24 Define a sequence iteratively by s1 :=
√
3 and sn :=

p
3 +
√
sn−1.
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1. Write out decimal expansions for the first 4 terms of this sequence.

2. Prove that sn < 3 for all n.

3. Prove that sn > sn−1 for all n > 1.

Example 20 Consider the sequence ( 1n)
∞
n=1. This sequence has the property

that for every ε > 0 there exists some natural number N such that if n ≥ N
then 1

n < ε. In fact, for any ε > 0, 1ε is also positive. Applying the Archimedean
principle to the numbers 1 and 1

ε , there exists some N ∈ N such that N = N ·1 >
1
ε . But then if n ≥ N then n > 1

ε and
1
n < ε.

Exercise 25 Show that the sequence (n+1n )∞n=1 has the following property: For
every ε > 0 there exists some N ∈ N such that if n ≥ N then

¯̄
n+1
n − 1

¯̄
< ε.

You may not use theorems from calculus that have not been proved in this text
so far!

Example 21 Let A be an unbounded subset of R. Then there is a sequence (ai)
in A such that |ai| ≥ i for all i ∈ N. In fact, since A is unbounded, for any i
there exists some x ∈ A such that |x| ≥ i. Let ai := x. Then (ai)∞i=1 is certainly
a sequence and satisfies |ai| ≥ i by construction. In the future, for constructions
of this sort we will eliminate the intermediate naming of the point x. In this
particular case we would shorten the above argument to: “...by definition for
any i there exists some ai ∈ A such that |ai| ≥ i...”

A subsequence (ank)
∞
k=1 of (an)

∞
n=1 is the restriction of the function (an)

∞
n=1

to an infinite subset {n1, n2, ...} = {nk}∞k=1 of the natural numbers such that
n1 < n2 < ..... So a subsequence is an infinite selection of terms of the original
sequence. Note that every sequence is a subsequence of itself: let n1 := 1, n2 :=
2, etc. In addition, a subsequence is a sequence in its own right; the kth term
of the subsequence is the element ank in A. We can also take a subsequence of
a subsequence (which one might call a subsubsequence!), which is of the form
(ankj )

∞
j=1. One may continue this process indefinitely.

Example 22 Consider the sequence ( 1n)
∞
n=1 = (1, 12 ,

1
3 , ...). If we let n1 := 2,

n2 := 4, n3 := 6, and in general nk := 2k, then the corresponding subsequence
is (12 ,

1
4 ,

1
6 , ...). If we define nkj := 2nk = 4k then we have defined the subsubse-

quence (14 ,
1
8 ,

1
12 , ...).

Example 23 The sequence (−1, 1,−1, 1, ...) has a subsequence (−1,−1, ...) (odd
terms) and a subsequence (1, 1, 1, ...) (even terms).

Example 24 Suppose that an ≥ n for every n ∈ N. Then (an) has no bounded
subsequence. Suppose that (ank) were a bounded above by M . By the archime-
dian principle there is some n such that an ≥ n ≥ M . Since the set of {nk} is
infinite there is some nk > n ≥M and therefore ank > M , a contradition.



22 CHAPTER 1. LOGIC, SET THEORY, AND THE REAL NUMBERS

Iterative constructions are not only used to construct concrete sequences.
In a proof an iterative construction can be used to construct a sequence (xn)
such that each xn has some property P (n) in a process very reminiscent of
mathematical induction. We first show how to obtain x1 satisfying P (1) and
then suppose that we have constructed x1, ..., xm for some m ≤ 1 such that
xn has property P (n) for all 1 ≤ n ≤ m. We then show how to construct
xm+1 having property P (m+ 1) and it follows by induction that there exists a
sequence (xn)∞n=1 such that xn has property P (n) for all n. We will illustrate
this process in proofs below.

Lemma 25 If (ai)∞i=1 is an unbounded sequence of real numbers then there is
a subsequence (aik)

∞
k=1 such that |aik | ≥ k for all k ∈ N.

Proof. To prove this we must proceed more carefully than in Example
21. We cannot simply construct our sequence by stating that for every k there
exists some aik such that |aik | ≥ k. This is a true statement, of course, but
we are ignoring the requirement that i1 < i2 < i3 < · · ·. While the indices
ik must eventually get large, without more effort it is impossible to be sure
that they are chosen in the proper order. To make sure of this we will proceed
iteratively. Since {ai} is unbounded there exists some an such that |an| ≥ 1.
Let i1 := n. Before doing the iterative step we will consider the construction
of ai2 . The problem is that, for example, it might also be true that |an| ≥ 2,
but we certainly don’t want to choose i2 = n = i1. To be sure that i2 > i1
we do the following. Let M1 := maxj≤i1{|aj |}+ 1 and let M2 := max{M1, 2}.
Since {ai} is unbounded there exists some am such that |am| ≥ M2. Since
|am| ≥ M2 > maxj≤i1{|aj |}, we know that m 6= j for any j ≤ i1 and therefore
m > i1. Let i2 := m. Then i2 > i1 and by construction |ai2 | ≥M2 ≥ 2. To finish
the proof suppose that we have chosen i1 < · · · < ik such that for all 1 ≤ j ≤ k
we have

¯̄
aij
¯̄
≥ j. Let M3 := maxj≤ik{|aj |} and M4 := max{M3, k}+ 1. Then

as in the above proof of k = 2 there exists some aik+1 such that
¯̄
aik+1

¯̄
≥M4 and

hence ik+1 > ik and
¯̄
aik+1

¯̄
≥ k + 1. This completes the iterative construction

of the subsequence (aik).

Exercise 26 Show that if (an) is a real sequence and every subsequence of (an)
has a bounded subsequence then (an) is bounded.

Lemma 26 Let (ai) be a sequence in a set A and let B ⊂ A. If B contains
infinitely many terms of (ai) then there is some subsequence (aik) of (ai) such
that aik ∈ B for all k.

Proof. Let ai1 be any term in B. Now suppose we have found i1 < · · · < ik
such that aij ∈ B for all 1 ≤ j ≤ k. Since B contains infinitely many terms
there must be some aik+1 ∈ B with ik+1 > ik. This completes the iterative
construction.

Corollary 27 Let (ai) be a sequence in a set A and suppose that A = ∪kj=1Aj.
Then there is some j such that a subsequence of (ai) lies entirely in Aj.
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Proof. Since there are only finitely many sets Aj , at least one of them
must contain infinitely many terms of the sequence and hence must contain a
subsequence of (ai) by Lemma 26.
Given a sequence (ai)∞i=1 there is a special kind of subsequence of (ai) called

a tail, namely a subsequence (ak, ak+1, ...) = (ai)
∞
k=1 for some k ≥ 1. We will

sometimes use the notation k-tail to specify the index of the first term. So the 1-
tail of (ai) is simply the entire sequence (ai). Although tails are subsequences, we
will rarely use double subscripts to index them. For example, strictly speaking,
the 3-tail of a sequence is constructed using i1 := 3, i2 := 4, and in general
ik := k+2, i.e., the first term in the tail is a3, the second is a4, and so on. But
it is usually easier to just use the original indices starting at k instead of 1.

Exercise 27 Let X = A ∪ B and suppose (ai) is a sequence in X. Prove or
disprove:

1. There is some tail of (ai) that lies entirely in A or entirely in B.

2. If a tail of (ai) lies entirely in A then at most finitely many terms of (ai)
lie in B.
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Chapter 2

Metric spaces

In this chapter we will introduce a class of abstract mathematical objects called
metric spaces. The reader who is familiar with abstract algebra will recognize
the general idea. We suppose that we have a set satisfying some basic axioms,
then prove theorems using those axioms. At the same time we will discuss
specific examples, such as the real numbers and Euclidean spaces, and find
some applications in these special cases.

2.1 Basic Definitions and Examples
Definition 28 A metric space consists of a pair (X,d), where X is a set and
d : X ×X → R is a function, called the metric or distance function, such that
the following hold for all x, y, z ∈ X

1. (Symmetry) d(x, y) = d(y, x)

2. (Positive Definiteness) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y

3. (Triangle Inequality) d(x, z) ≤ d(x, y) + d(y, z)

The letter d is the default for metric spaces; often we will simply state
“let X be a metric space” rather than specifying (X, d). In addition, we will
sometimes even use d to represent distances in different metric spaces in the
same discussion; when there is danger of confusion we will be more careful, e.g.
using dX for the distance on X and dY for the distance on Y . We will often
refer to elements of a metric space as “points”.
The definition of a “metric” captures the most important and basic elements

of what a “distance” should be. The distance from x to y should be the same as
that from y to x; different points should be at positive distance from one another,
but a point should be at distance 0 from itself, and travelling between two points
via an arbitrary third point should not be shorter than the distance between
the original two. Many metrics have stronger properties—for example, between
every two distinct points in the real line (or Euclidean space) there is a unique

25
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midpoint. However, the theory of spaces satisfying only these three axioms is so
powerful and pervasive in mathematics that it is worthwhile to study them in
their own right. In addition, nearly all of the proofs in this chapter would be no
simpler (and would sometimes be notationally more complicated) if we proved
them in the very restricted setting of Euclidean spaces. Therefore nothing is
lost and much is gained by proceeding in this very general setting. We begin
with a familiar example:

Example 29 We define the distance between points x, y ∈ R by d(x, y) =
|x− y|. Let’s check that this makes R a metric space. Symmetry follows from
the definition: d(x, y) = |x− y| = |y − x| = d(y, x). We also know from the
definition of absolute value that |x− y| ≥ 0. For the second part of positive
definiteness note that by the definitions of distance and absolute value,

d(x, y) = 0⇔ |x− y| = 0⇔ x− y = 0⇔ x = y.

For the triangle inequality we use the “other” triangle inequality (Proposition
7):

d(x, z) = |x− z| = |(x− y) + (y − z)| ≤ |x− y|+ |y − z| = d(x, y) + d(y, z)

Exercise 28 Use the triangle inequality for the distance to prove the triangle
inequality for the absolute value. Hint: Use the fact that x+y = x−(−y). This,
together with the proof in Example 29 shows that, for the real numbers, the two
triangle inequalities are logically equivalent.

Example 30 Let X be any set. For all x, y ∈ X, define d(x, y) = 1 if x and
y are distinct (i.e. different), and d(x, x) = 0. It is easy to check that d is
a metric, called the trivial or discrete metric. This metric is of little interest
except as a very simple example and counterexample to certain statements. It is
also useful to help strip away any preconceived notions about metric spaces that
one might have picked up from working with the real numbers or the plane. For
example, there are no “midpoints” in a discrete metric space.

Example 31 Let C be the set of continuous functions f : [0, 1]→ R and define
d(f, g) := max[0,1]{|f(x)− g(x)|}. We will check that (C, d) is a metric space
using some facts from elementary calculus that we will later prove in greater
generality. First, since f and g are continuous, so is |f − g|, and therefore
|f − g| does have a maximum on the closed bounded interval [0, 1], and the
maximum is clearly non-negative. If f 6= g then for some x0, f(x0) 6= g(x0),
which means |f(x0)− g(x0)| > 0. But then

max
[0,1]

{|f(x)− g(x)|} ≥ |f(x0)− g(x0)| > 0.

Since d(f, f) is clearly 0, we have proved positive definiteness. Symmetry is an
immediate consequence of the definition. To prove the triangle inequality, note
that for f, g, h ∈ C we have

d(f, h) = max
[0,1]

{|f(x)− h(x)|} = max
[0,1]

{|f(x)− g(x) + g(x)− h(x)|}
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≤ max
[0,1]

{|f(x)− g(x)|+ |g(x)− h(x)|}

≤ max
[0,1]

{|f(x)− g(x)|}+max
[0,1]

{|g(x)− h(x)|} = d(f, g) + d(g, h)

by Lemma 14.

Exercise 29 Let f(x) = x2 and g(x) = x, both defined on [0, 1]. Find two
different continuous functions that are “midpoints” between f and g; a midpoint
is a function h such that d(f, h) = d(g, h) = 1

2d(f, g) (there are actually infinitely
many midpoint functions). For this exercise you may use your knowlege about
continuous real functions from calculus.

Exercise 30 Let f be a function that has derivatives of all orders at all points.
Suppose that there exists some M > 0 such that every nth derivative f (n) sat-
isfies

¯̄
f (n)(x)

¯̄
≤M for all x ∈ [0, 1]. Use Maclaurin’s formula with remainder

to prove that for every ε > 0 there is a polynomial g such that d(g, f) < ε. You
may use facts that you have learned in basic calculus.

Definition 32 Let x be a point in a metric space X, and r > 0. We define the
(open) ball centered at x of radius r to be B(x, r) := {y ∈ X : d(x, y) < r}.

For the metric space R, we have

B(x, r) = {y ∈ X : d(x, y) < r}

= {y ∈ X : |x− y| < r} = {y ∈ X : x− r < y < x+ r}
which is simply the open interval (x − r, x + r) of length 2r centered at x.
(An interval doesn’t “look” like a ball, but such preconceived images need to
be abandoned—or replaced with other intuitive images.) Conversely, given any
bounded open interval (a, b) in R,

(a, b) =

µ
a+ b

2
− b− a

2
,
a+ b

2
+

b− a

2

¶
and so (a, b) = B(x, r), where x = a+b

2 and r = b−a
2 .

Exercise 31 Let x be a point in a metric space X, and suppose r > r0 > 0.
Show that B(x, r0) ⊂ B(x, r).

Exercise 32 Let x, y be distinct points in a metric space X, and let r = d(x, y).
Use the triangle inequality to prove by contradiction that B(x, r/2) and B(y, r/2)
are disjoint.

Exercise 33 Let X be a non-empty set with the trivial metric (see Example
30), and let x ∈ X. Describe the following: B(x, 2), B(x, 12), B(x, 1).

Definition 33 A subset A of a metric space X is said to be bounded if there
exists some x ∈ X and r > 0 such that A ⊂ B(x, r).
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Note that, in the special case when the metric space in question is R, our
new definition of “bounded” is equivalent to our old one. In fact,we have already
noted that open balls in R are simply open intervals; therefore A ⊂ R is bounded
if and only if A ⊂ (a, b) for some open interval (a, b), which is equivalent to
a < x < b for some a, b ∈ R and all x ∈ A, which is equivalent to A being
bounded in the sense of Definition 9. However, in a general metric space X,
“x < b” makes no sense, so a new definition is required.

Exercise 34 Show that a nonempty set A ⊂ X is bounded if and only if there
exists some r > 0 such that for any x, y ∈ A, d(x, y) < r.

Exercise 35 Show that if A ⊂ X is bounded and nonempty then for any x ∈ X
there exists an r > 0 such that A ⊂ B(x, r).

2.2 Open and Closed Sets
Definition 34 A subset A of a metric space X is called open if for every x ∈ A
there exists some r > 0 such that B(x, r) ⊂ A. A subset C of X is called closed
if Cc is open.

Exercise 36 Prove that, for a metric space X, X itself and the empty set are
subsets of X that are both open and closed.

In other words, unlike a door, a set can be both open and closed. As we
will see later, sets can also be neither. We will frequently use the next lemma,
the proof of which is an exercise. Since Definition 34 is logically equivalent to
the second statement in the lemma, we could have used either of these for our
definition; some texts use the statement of Lemma 35 as the starting point. We
will use this lemma so often that we will often not refer to it by number.

Lemma 35 A subset A of a metric space X is open if and only if for every
x ∈ A there exists some ε > 0 such that if d(x, y) < ε then y ∈ A.

Exercise 37 Prove Lemma 35.

Lemma 36 If X is a metric space and x ∈ X then {x} is closed.

Proof. We need to show that {x}c is open. If y ∈ {x}c then y 6= x. By
the positive definiteness of the metric, d(y, x) = r for some r > 0. But then
x /∈ B(y, r), and hence B(y, r) ⊂ {x}c. This proves that {x}c is open and so
{x} is closed.
A set containing a single point is often called a singleton set. Note that the

number r > 0 in Lemma 35 may depend on x—that is, if y is closer to x then
we need to use a smaller r. Similarly, it is not completely trivial that B(x, r),
which we have already named an “open ball”, is in fact open according to our
definition. That is, every y ∈ B(x, r) is contained in an open ball centered at x,
namely B(x, r), but is every y ∈ B(x, r) contained in an open ball centered at
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y that is contained in B(x, r)? This is what we need to show in order to verify
that B(x, r) is open. We will check this now. Let y ∈ B(x, r). By definition,
d(x, y) < r. Let ε := r − d(x, y) > 0 and suppose that d(z, y) < ε. Then by the
triangle inequality

d(z, x) ≤ d(x, y) + d(y, z) < d(x, y) + (r − d(x, y)) = r,

and by definition z ∈ B(x, r). That is, B(y, ε) ⊂ B(x, r) and B(x, r) is an open
set. Therefore “open ball” is an appropriate name.

Example 37 From the preceding discussion we know that in R open intervals,
which we have already observed are open balls, are open sets. Are closed intervals
closed according to the above definition? Let a ≤ b. We need to show that [a, b]c

is open. Let x /∈ [a, b] and suppose first that x < a. Define r := a − x > 0. If
y ∈ B(x, r), y < x + r < a, hence y /∈ [a, b]. That is, B(x, r) ∩ [a, b] = ∅, or
B(x, r) ⊂ [a, b]c. A similar argument holds if x > b.

Exercise 38 For x an element of a metric space X and r > 0, define the closed
ball of radius r centered at x by C(x, r) := {y ∈ X : d(x, y) ≤ r}. Prove that
C(x, r) is a closed set. The preceding example about closed intervals is a special
case of this statement.

Proposition 38 Let X be a metric space and {Aλ}λ∈Λ be a collection of open
sets in X. Then

S
λ∈ΛAλ is open in X.

Proof. Let x ∈
S
λ∈ΛAλ. Then x ∈ Aλ for some λ. Since Aλ is open there

exists some r > 0 such that B(x, r) ⊂ Aλ ⊂
S
λ∈ΛAλ. Hence

S
λ∈ΛAλ is open.

Conversely, every open set A in X is a union of open sets—open balls, in fact.
To see this, note that by definition, for each x ∈ A there is some rx > 0 and
Ax := B(x, rx) such that Ax ⊂ A. Clearly A =

S
x∈AAx.

Exercise 39 Let X be a set with the trivial metric. Show that every subset of
X is both open and closed. Hint: show that every subset {x} with x ∈ X is
open.

Proposition 39 If A1, ..., An are open sets in a metric space X then ∩ni=1Ai

is open.

Proof. Let x ∈ ∩ni=1Ai. For each i there exists some εi > 0 such that if
d(x, y) < εi then y ∈ Ai. Then ε := min{ε1, ..., εn} is positive. If d(x, y) < ε
then d(x, y) < εi for all i, and hence y ∈ Ai for all i. By definition, y ∈ ∩ni=1Ai.

Example 40 The above proof fails for infinitely many sets Ai, since infinite
sets may not have minima—and even if we took the infimum of some infinite col-
lection of epsilons, the infimum could well be 0. To see concretely that Propo-
sition 39 is only valid for finitely many sets, consider the collection of open
intervals {(−1/n, 1/n)}∞n=1. The intersection of this collection is {0}, which we
already know is closed. But it is also not open, because it is nonempty and does
not contain any open interval at all!
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Exercise 40 Use de Morgan’s laws to show that the intersection of any col-
lection of closed sets is closed, and the union of finitely many closed sets is
closed.

Definition 41 Let A be a subset of a metric space X. The closure A of A is
defined to be the set of all x ∈ X such that for every r > 0, B(x, r) ∩A 6= ∅.

Put another way, A is the set of all points x in X such that there are points
in A that are arbitrarily close to x. Note that certainly A ⊂ A since for every
r > 0, if x ∈ A then x ∈ B(x, r) ∩ A. The next lemma has a satisfying ring to
it. It says that closed sets are precisely those that are equal to their closures.

Lemma 42 A is a closed subset of a metric space X if and only if A = A.

Proof. Suppose A is closed. Since A ⊂ A we need only show the opposite
inclusion, which we will prove by contrapositive: Suppose x /∈ A. Since Ac is
open there exists an r0 > 0 such that B(x, r0) ∩A = ∅. But then by definition
x /∈ A and A ⊂ A is proved.
To prove the converse, suppose that A = A and let x ∈ Ac = A

c
. By

definition of closure there exists some r > 0 such that B(x, r) ⊂ A
c
= Ac and

Ac is open; hence A is closed.

Remark 43 Since A is always a subset of A, a very useful strategy to prove
that a set A is closed is to choose a point x ∈ A and show that x ∈ A.

Exercise 41 Let A be a subset of a metric space X.

1. Show that if C is any closed set in X containing A then A ⊂ C.

2. Show that A is the intersection of all closed sets containing A. In other
words, the closure of A is the “smallest” closed set containing A.

Exercise 42 Let X be a trivial metric space with at least two points. Show that
B(x, 1) Ã C(x, 1); that is the closure of an open ball may not be equal to the
closed ball of the same radius.

Definition 44 Let A be a subset of a metric space X. The interior Ȧ of A is
defined to be the set of all x ∈ A such that for some r > 0, B(x, r) ⊂ A.

Lemma 45 A is an open subset of a metric space X if and only if Ȧ = A.

Exercise 43 Prove the above lemma.

Exercise 44 State and prove two statements for interior that are analogous to
those for closure in Exercise 41.

Exercise 45 Prove that if A is a subset of a metric space, Ȧ = (Ac)c.

Note that the interior of any subset of a metric space always exists, although
it may well be the empty set. In fact we have already observed that the set {0}
in R contains no open interval and hence has empty interior.
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2.3 Sequences in Metric Spaces
The following definition of limit points should be familiar from elementary cal-
culus.

Definition 46 If X is a metric space, we say that x ∈ X is the limit point of
(xn), written x = limxn or xn → x, if for every ε > 0 there exists some natural
number N such that for all n ≥ N , d(x, xn) < ε, or equivalently, xn ∈ B(x, ε). If
(xn) has a limit point then (xn) is said to be convergent. If necessary for clarity
(e.g. if there are several variables involved) we will write x = limn→∞ xn.

We will now justify the article “the” of the preceding definition. Suppose
that x and x0 are limit points of (xn), and x 6= x0. By positive definiteness,
d(x, x0) = r > 0. By definition of limit there exist natural numbers N and N 0

such that for all n ≥ N , d(x, xn) < r/2 and for all n ≥ N 0, d(x0, xn) < r/2.
Now suppose n ≥ max{N,N 0}. Then we have

r = d(x, x0) ≤ d(x, xn) + d(xn, x
0) < r/2 + r/2 = r

which is a contradiction. Therefore x = x0; this shows that a sequence can have
at most one limit point.

Example 47 Let X be a metric space and let xn := a for all n. Then for any
ε > 0, d(xn, a) = d(a, a) = 0 < ε and hence xn → a.

Exercise 46 Prove the following lemma:

Lemma 48 Let (xn) be a sequence in a metric space X. Then x ∈ X is a limit
point of (xn) if and only if x is a limit point of every subsequence of (xn).

Given any sequence (xn) in a metric space X and x ∈ X there is a sequence
of real numbers, the nth term of which is the number d(xn, x). By definition,
xn → x if and only if for every ε > 0 there exists some N ∈ N such that for
all n ≥ N , d(x, xn) < ε. Equivalently, for every ε > 0 there exists some N ∈ N
such that for all n ≥ N , |d(x, xn)− 0| < ε. But this is precisely what it means
for d(x, xn) → 0 in R. We will use this observation frequently, and so state it
as a lemma:

Lemma 49 Let (xn) be a sequence in a metric space X. Then x ∈ X is a limit
point of (xn) if and only if d(x, xn)→ 0.

Lemma 50 Let (xn) be a sequence in a metric space X. Then x ∈ X is a limit
point of (xn) if and only if for every open set U containing x there exists some
N such that for all i ≥ N , xi ∈ U .

Proof. If we know that for every open set U containing x there exists some
N such that for all i ≥ N , xi ∈ U , then in particular letting U be the open set
B(x, ε), it follows from the definition that xi → x. Conversely, let xi → x and
let U be an open set containing x. Then by definition of open there exists an
ε > 0 such that B(x, ε) ⊂ U . Since xi → x there exists an N such that for all
i ≥ N , xi ⊂ B(x, ε) ⊂ U .
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Exercise 47 Prove the “Sandwich Theorem” for real sequences: Let (xi), (yi), (zi)
be sequences of real numbers such that xi ≤ yi ≤ zi for all i. If xi → x and
zi → x then yi → x.

The above exercise will be used frequently without specific reference. The
reader will recall from calculus that not every sequence, even a bounded se-
quence, has a limit point, for example e.g. (1,−1, 1,−1, ...). A related, weaker
concept is obtained by modifying the definition of limit point to require not that
every xn with sufficiently large n be be close to x, but only that there exist xn
with arbitrarily large n that are close to x. More precisely:

Definition 51 Let (xn) be a sequence in a metric space X. A point y ∈ X is
called a cluster (or accumulation) point of (xn) if for every ε > 0 and N ∈ N
there exists some n ≥ N such that d(y, xn) < ε.

Example 52 The sequence (1,−1, 1,−1, ...) has two cluster points, but no limit
point. The number 1 is a cluster point: given any ε > 0 and N ∈ N let n be the
next odd number greater than N . Then xn = 1 and d(xn, 1) = d(1, 1) = 0 < ε.
Likewise −1 is a cluster point. However, the sequence has no limit point. In
fact, if a were a limit point of the sequence then by Lemma 48 a would have
to be a limit point of the subsequence of even terms and the subsequence of odd
terms, which is impossible.

Exercise 48 Show the following:

1. The sequence (1, 2, 3, ...) has no cluster points. We will see later that every
bounded real sequence must have at least one cluster point.

2. The sequence (1, 12 , 2,
1
3 , 3,

1
4 , ...) has exactly one cluster point, and that

cluster point is not a limit point.

Example 53 There exists a real sequence having every real number as a cluster
point. In fact, since the rational numbers are countably infinite, by definition
there exists a surjective function f : N→ Q, which is by definition a sequence
such that for every rational number q there is some n such that xn = q. Let r
be any real number, and ε > 0 and N ∈ N be given. Choose δ > 0 such that
δ ≤ ε and

δ ≤ min{d(xk, r) : k < N and xk 6= r}
According to Exercise 23, there exists some q ∈ Q such that r − δ < q < r and
q = xn for some n. By the choice of δ, n ≥ N and we have d(xn, r) < δ ≤ ε.
This proves that r is a cluster point of (xn).

The relationship between cluster points and limit points is further clarified
by the next lemma.

Lemma 54 Let (xn) be a sequence in a metric space X. A point x ∈ X is a
cluster point of (xn) if and only if there is a subsequence (xnk) of (xn) such that
xnk → x.



2.3. SEQUENCES IN METRIC SPACES 33

Proof. Suppose that x is a cluster point of (xn). We will iteratively con-
struct a subsequence (xnk) such that d(xnk , x) < 1

k for all k. Since x is a
cluster point of (xn) there exists some xj such that d(xj , x) < 1. Let n1 := j.
The xn1 satisfies d(xn1 , x) < 1 = 1

1 . Now suppose that we have constructed
xn1 , ..., xnm for some m ≥ 1 such that n1 < · · · < nm and d(xnk , x) <

1
k for all

1 ≤ n ≤ m. Since x is a cluster point, letting N := nk + 1 there exists some
j ≥ N = nk + 1 > nk such that d(x, xj) < 1

k+1 . Letting nk+1 := j finishes the
construction of the subsequence, which converges to x since d(xnk , x) → 0 by
the Sandwich Theorem. The converse is an exercise.

Exercise 49 Finish the proof of the above lemma.

From Lemmas 48 and 54 we immediately obtain:

Corollary 55 Let (xn) be a convergent sequence in a metric space X. Then x
is the limit point of (xn) if and only if x is the only cluster point of (xn).

Exercise 50 Give an example of a sequence having a single cluster point that
is not convergent.

Corollary 56 Let (xn) be a sequence in a metric space X. If a is a cluster
point of a subsequence of (xn) then a is a cluster point of (xn).

Proposition 57 Let A be a subset of a metric space X. Then

A = {x ∈ X : there exists a sequence (xn) in A such that xn → x}.

Proof. Suppose that x ∈ A. Then for every i ∈ N we can choose some
point xi ∈ B(x, 1i ) ∩ A. Then 0 ≤ d(x, xi) ≤ 1

i , and by the Sandwich Theorem
d(x, xi)→ 0 and therefore xi → x .
Conversely, suppose that there is a sequence (xi) in A such that xi → x ∈ X.

If r > 0 then by definition of convergence there exists some xi ∈ B(x, r) and
therefore x ∈ A.

Corollary 58 A subset A of a metric space is closed if and only if A contains
every cluster point of every sequence in A.

Exercise 51 Let A ⊂ R be bounded above and non-empty. Prove that supA ∈
A. Therefore if A is closed, A has a maximum. (Of course a similar statement
is true when A is bounded below.)

Exercise 52 Let (xi) be a convergent sequence in R.

1. Show that if for some k ∈ R, xi ≤ k for all i, then limxi ≤ k. Hint: Prove
this by contradiction.

2. Prove or disprove the statement in the first part if each “≤” is replaced by
a “<”.
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We will now prove a couple of theorems about real sequences that we will
use later. These results are more specialized because they involve the ordering
of the reals, and so do not apply to metric spaces in general. Nonetheless they
are very important for analysis.

Definition 59 A sequence (xi) of real numbers is called increasing (resp. de-
creasing) if for every i ≥ 1, xi ≤ xi+1 (resp. xi ≥ xi+1). If (xi) is either
increasing or decreasing then (xi) is simply called monotone.

Exercise 53 Prove that (xi) is increasing if and only if whenever 1 ≤ i ≤ j
we have xi ≤ xj. We can write this shorthand as x1 ≤ x2 ≤ .... A similar
statement holds for decreasing sequences.

Proposition 60 If (xi) is an increasing (resp. decreasing) real sequence that
is bounded above (resp. below) then (xi) converges to sup{xi} (resp. inf{xi}).
More succinctly, every bounded, monotone real sequence is convergent.

Proof. We will only consider the increasing case; the other case is similar.
Since (xi) is bounded above, s := sup{xi} < ∞. Let ε > 0. By the Approxi-
mation Property there exists some N such that xN > s − ε. But since (xi) is
increasing it must be true that xi ≥ xN > s − ε for all i ≥ N . Since we also
have xi ≤ s for all i, we have that d(xi, s) = |xi − s| < ε for all i ≥ N .

Notation 61 If (xi) is a decreasing sequence converging to x ∈ R, we will write
xi & x, with similar notation for an increasing convergent sequence.

Note that a sequence is both increasing and decreasing if and only if it is
constant.

Proposition 62 Let A ⊂ R be bounded above. Then s = supA if and only if
s is an upper bound for A and there exists some sequence (xi) in A such that
xi → s. A similar statement holds for the infimum.

Proof. That xi → s means, by definition, that for every ε > 0 there exists
some i such that |xi − s| < ε, which is equivalent to s − ε < xi < s + ε. If s
is an upper bound for A then in fact xi ≤ s and the proof is done by Lemma
Lemma 12. Conversely, suppose that the Approximation Property holds and s
is an upper bound of A. Using ε := 1

i we have that for every i there xi ∈ A
such that s− 1

i < xi ≤ s, which implies |xi − s| < 1
i . By Lemma 49, xi → s.

2.4 Limits and continuity of functions

The definitions of limits and continuity for metric spaces are essentially the same
as those that the reader encountered in calculus, and as we will see, many ideas
and theorems involving continuity from basic calculus—such as the intermediate
value and max-min theorems—are true in a more general form for metric spaces.
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Definition 63 Let f : A → Y be a function, where A is a subset of a met-
ric space X and Y is another metric space. Suppose x0 ∈ A. We say that
lim
x→x0

f(x) = y ∈ Y if for every ε > 0 there exists a δ > 0 such that if x ∈ A and

0 < d(x, x0) < δ then d(f(x), y) < ε. If x0 ∈ A, we say that f is continuous at
x0 if f(x0) = lim

x→x0
f(x). If f is continuous at every x0 ∈ A then we simply say

that f is continuous (on A).

It is easy to check that the limit of a function, if it exists, is unique. Note
that 0 < d(x, x0) requires that x 6= x0, which means that lim

x→x0
f(x) by itself has

nothing to do with the functional value of f at x0. In fact f may not even be
defined at x0 since x0 is only required to be in A and not necessarily in the set
A where f is defined. That f not be required to be defined at x0 is particularly
important for certain kinds of limits. For example, the derivative in elementary
calculus is defined by the limit

f 0(x) := lim
h→0

f(x+ h)− f(x)

h

and the function f(x+h)−f(x)
h is never defined at 0. The reader may recall that

in the setting of elementary calculus the requirement for defining lim
x→x0

f(x) is

usually that f is defined in some interval (x0 − ε, x0 + ε), except possibly at
x0. This may more simply be expressed that f is defined on A := (x0− ε, x0)∪
(x0, x0+ ε) (which does not exclude the possibility that f is defined on a bigger
set, such as (x0−ε, x0+ε). In either case x0 ∈ A so the conditions of Definition
63 are also satisfied, and the rest of our definition is equivalent to the one from
calculus. However, in the setting of calculus one must start over with a new
definition for “one-sided” limits; for a left limit, for example, the function must
be defined on some interval (x0 − ε, x0] except possibly at x0. Our definition
works just fine with a choice of A = (x0−ε, x0), and all theorems that we prove
for limits with some unspecified A will be valid for both left and right limits. In
fact, all of these limit notions from elementary calculus, and many more general
limits that are necessary for analysis are taken care of by the single abstract
Definition 63, with a suitable choice of A.
Why do we not permit x0 to lie outside A? If x0 does not lie in A then

by definition there exists a small ball B(x0, δ) that does not intersect the set A
where f is defined. In this case the statement “if x ∈ A and 0 < d(x, x0) < δ
then d(f(x), y) < ε” is vacuously true for every y! We avoid this unpleasant
situation by requiring that x0 be in A when discussing limits, so that there is
always some such x in this statement. Less formally, if we think of a limit as
representing what happens to f(x) when x “approaches” x0, then x should at
least be able to approach x0 from within A.
When considering continuity the picture is considerably simpler because we

require that x0 be inA and so the issues discussed in the previous two paragraphs
are not relevant. Therefore we normally will state theorems about continuity
only in terms of functions f : X → Y , eliminating A from the picture altogether.
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Later, when we discuss the subspace metric, we will see that there is no loss
in generality in doing this (see Proposition 100). The simplified picture for
continuity is codified in the following lemma, which will often be used without
reference. The reader should especially note that the statement includes the
inequality d(x, y) < δ and not 0 < d(x, y) < δ.

Lemma 64 Let f : X → Y be a function between metric spaces X and Y .
Then f is continuous at a point x ∈ X if and only if for every ε > 0 there exists
a δ > 0 such that if d(x, y) < δ then d(f(x), f(y)) < ε. Equivalently, for every
ε > 0 there exists a δ > 0 such that f(B(x, δ)) ⊂ B(f(x), ε).

Exercise 54 Prove Lemma 64.

Exercise 55 Prove that if f(x) = a + bx, where a, b, x are real numbers, then
f is continuous at every point x.

There are two other equivalent formulations of continuity that are less trivial
to prove, but quite important. First we need another characterization of limits:

Proposition 65 Let f : A→ Y be a function, where A is a subset of a metric
space X and Y is another metric space. Suppose x0 ∈ A. Then lim

x→x0
f(x) =

y ∈ Y if and only if for every sequence (xi) in A\{x0} such that xi → x0,
f(xi)→ y.

Proof. Suppose first that lim
x→x0

f(x) = y and let xi → x0 where xi ∈ A\{x0}.
Suppose ε > 0. By definition there exists some δ > 0 such that if x ∈ A and
0 < d(x, x0) < δ then d(f(x), y) < ε. Since xi → x0 there exists some N such
that for all i ≥ N , 0 < d(xi, x0) < δ. But then d(f(xi), y) < ε for all i ≥ N and
we have shown f(xi)→ y.
The converse is a bit more tricky; we will suppose that it is not true that

lim
x→x0

f(x) = y and construct a sequence (xi) in A\{x0} such that xi → x0

but (f(xi)) does not converge to y. If it is not true that lim
x→x0

f(x) = y then

there exists an ε > 0 such that for all δ > 0 there is some z ∈ X such that
0 < d(x0, z) < δ and d(f(z), y) ≥ ε. Since 1

i > 0 for any i ∈ N, we can use
1
i for δ and for each i ∈ N we can find some xi such that 0 < d(xi, x0) <

1
i

and d(f(xi), y) ≥ ε. Since d(xi, x0) → 0 it follows that xi → x0, but since
d(f(xi), y) ≥ ε > 0 for all i it is not possible that f(xi)→ y.

Corollary 66 Let f : X → Y be a function, where X and Y are metric spaces.
For any x ∈ X, f is continuous at x if and only if for every sequence xi → x
in X, f(xi)→ f(x), or, stated another way, f(limxi) = lim f(xi).

Corollary 67 Let f : A → Y and g : Y → Z be functions, where X, Y , and
Z are metric spaces and A ⊂ X, and let x0 ∈ A. If limx→x0 f(x) = y and g is
continuous at y, then

g( lim
x→x0

f(x)) = g(y) = lim
x→x0

g(f(x)).

In other words, the limit can be “pulled through" the continuous function g.
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Proof. Let xi → x0, where xi ∈ A\{x0}. Then applying the Proposition 65
and Corollary 66 we have

lim
i→∞

g(f(xi)) = g( lim
i→∞

f(xi)) = g( lim
x→x0

f(x)) = g(y).

Proposition 65 now implies that

lim
x→x0

g(f(x)) = lim
i→∞

g(f(xi)) = g(y).

If f is also continuous at y in the above Corollary then we may replace y by
f(x0) and we obtain the following corollary:

Corollary 68 Let f : X → Y and g : Y → Z be functions, where X, Y , and Z
are metric spaces. Suppose that f is continuous at x ∈ X and g is continuous
at y := f(x). Then g ◦ f : X → Z is continuous at x.

Corollary 69 Let f : X → Y and g : Y → Z be continuous functions, where
X, Y , and Z are metric spaces. Then g ◦ f is continuous.

Proposition 70 A function f : X → Y between metric spaces X and Y is
continuous if and only if for every open set U in Y , f−1(U) is open in X.

Proof. First suppose that f is continuous and let U be open in Y . Let
x ∈ f−1(U); by definition f(x) ∈ U . Since U is open there exists some ε > 0
such that B(f(x), ε) ⊂ U . Since f is continuous at x, by Lemma 64 there exists
some δ > 0 such that

f(B(x, δ)) ⊂ B(f(x), ε) ⊂ U .

By definition B(x, δ) ⊂ f−1(U), which proves f−1(U) is open.
Conversely, suppose that f−1(U) is open for every open U in Y . Let x ∈ X

and ε > 0. Then B(f(x), ε) is open in Y and therefore V := f−1(B(f(x), ε)) is
open in X and contains x by definition. Since V is open and contains x there
is some δ > 0 such that B(x, δ) ⊂ V . But then

f(B(x, δ)) ⊂ f(V ) = f(f−1(B(f(x), ε))) ⊂ B(f(x), ε)

which proves that f is continuous at x.

Corollary 71 A function f : X → Y between metric spaces X and Y is con-
tinuous if and only if for every closed set A in Y , f−1(A) is closed in X.

Proof. First note that X\f−1(A) = f−1(Y )\f−1(A) = f−1(Y \A). There-
fore f−1(A) is closed for every closed set A in Y if and only if f−1(Y \A) is open
for every closed set A in Y , which is true if and only if f−1(U) is open for every
open set U in Y .
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Example 72 Any function f : X → Y , where X has the trivial metric and
Y is any metric space, is continuous. In fact, in Exercise it was shown that
every subset of X is open. Therefore for any set U in Y (whether it is open or
not!), f−1(U) is open. On the other hand, functions from a metric space into
a trivial metric space are often not continuous because there are simply “too
many” open sets in the trivial metric. For example, suppose that f : X → Y is
a continuous 1-1 function between metric spaces, where Y has the trivial metric.
Let x ∈ X. Then since Y has the trivial metric, {f(x)} is an open set in Y ,
and hence f−1({f(x)}) is open in X. But since f is 1-1, f−1({f(x)}) = {x},
which shows that every set {x} in X is open. Since every subset A of X can be
written as A = ∪x∈A{x} it follows from Proposition 38 that every subset of X
is open, and hence every subset of X is closed. So while X may not have the
trivial metric, like the trivial metric every subset of X is both open and closed.
So, for example, there can be no continuous 1-1 function from R into a trivial
metric space.

Exercise 56 Prove that a function f : X → Y between metric spaces X and Y
is continuous if and only if for every y ∈ Y and r > 0, f−1(B(y, r)) is open in
X.

Exercise 57 Let f : X → Y be a constant function f(x) = y0, where y0 is a
fixed element of Y . Prove that f is continuous in the following ways:

1. Using the definition of continuity.

2. Using Corollary 66.

3. Using Proposition 70.

Exercise 58 Prove that the identity function f : X → X given by f(x) = x,
where X is a metric space, is continuous.

We consider one final function in this section. This function is obtained
by fixing a single point x in a metric space X. Then the distance from this
fixed point assigns to each point y ∈ X a non-negative real number. The next
proposition shows that this function is continuous; that is, as a point y “moves
about” in X, the distance from the fixed point x varies continuously.

Proposition 73 Let X be a metric space and x ∈ X. The function dx : X → R
defined by dx(y) = d(x, y) is continuous.

Proof. Let y ∈ X and ε > 0. Let δ := ε > 0. If d(y, z) < δ then by the
triangle inequality,

d(x, y) ≤ d(x, z) + d(y, z)

or
dx(y)− dx(z) ≤ d(y, z) < ε.

Likewise from
d(x, z) ≤ d(x, y) + d(y, z)
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we obtain
dx(y)− dx(z) ≥ −d(y, z) > −ε

and it follows that

d(dx(y), dx(z) = |dx(y)− dx(z)| < ε.

Corollary 74 If yi → y in a metric space X then for any x ∈ X, d(yi, x) →
d(y, x).

Exercise 59 Prove or disprove the converse to Corollary 74.

2.5 Compactness
Definition 75 A subset A of a metric space X is called compact if every se-
quence in A has a cluster point in A.

It is important to note that the above definition of compactness is not the
traditional definition (see Remark 86). For metric spaces the two definitions
are logically equivalent (although it requires some work to prove this) but the
definition we are using, normally referred to as “sequential compactness”, is
much more intuitive and simple to work with. The traditional definition is
necessary in the more general setting of topological spaces, where these two
definitions are not equivalent, and sequential compactness is too weak to prove
the most important theorems.
Note that the empty set is compact since the hypothesis is vacuous. Recall

that a sequence has a cluster point if and only if it has a convergent subsequence.
Therefore A is compact if and only if every sequence in A has a subsequence
that converges to a point in A. If A = X we can more succinctly state: X is
compact if and only if every sequence in X has a convergent subsequence.

Proposition 76 If A is a compact subset of a metric space X then A is closed
and bounded.

Proof. Note that the statement is vacuously true if A is the empty set.
Suppose A is compact and x ∈ A. By Proposition 57 there is a sequence (xi)
in A such that xi → x. Since A is compact there is a cluster point y ∈ A of
(xi). But since (xi) is convergent, the cluster point y must be equal to the limit
point x (by Corollary 55); i.e., x ∈ A. This shows A ⊂ A and so A is closed.
Suppose now that A is not bounded, and fix a point x ∈ X. Then for every

i ∈ N there exists some point xi ∈ A such that xi /∈ B(x, i), i.e., d(x, xi) ≥ i.
We claim that the sequence (xi) cannot have a convergent subsequence, which
will finish the proof by showing that A is not compact. Suppose, to the contrary
that there is a subsequence xik → y ∈ A. But d(y, xik) ≥ d(x, xik)− d(x, y) ≥
ik − d(x, y)→∞, a contradiction.
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The converse of the above proposition is false in general (as we will see an
example later) but is true if X is the real numbers. This theorem is called the
Heine-Borel Theorem, and will be proved after a couple of preliminaries that
are useful in their own right.

Proposition 77 If A is a compact subset of a metric space X and B ⊂ A is
closed then B is compact.

Proof. Let (xi) be a sequence in B. Then (xi) is also a sequence in A, so
has a cluster point y in A. But B is closed and hence contains all cluster points
of (xi), and so y ∈ B.

Exercise 60 Let {Aλ}λ∈Λ be a collection of compact subsets of a metric space
X. Show

T
λ∈ΛAλ is compact.

Exercise 61 Let X be a metric space and x ∈ X. Show any singleton set {x}
is compact.

Proposition 78 (Bolzano-Weierstrass Theorem) Every bounded sequence of
real numbers has a cluster point.

Proof. Let (xi) be a bounded sequence of real numbers. For all n let
An := {xi}i≥n; then An is non-empty and bounded. Let sn := supAn. Now
{sn} is bounded below. In fact, if L is a lower bound of {xi} then we have
sn ≥ xn ≥ L. In addition, since An+1 ⊂ An for all n, {sn} is decreasing, and
hence by Proposition 60, sn → x := inf{sn}. We will show that x is a cluster
point of (xi). Let ε > 0 and N ∈ N. Since sn & x there exists some N 0 such
that

for all n ≥ N 0, x ≤ sn < x+ ε. (2.1)

Let M = max{N,N 0}. By the approximation property there exists some xi ∈
AM such that

sM − ε < xi ≤ sM . (2.2)

Since M ≥ N 0 we can combine Formulas (2.1) and (2.2) to obtain

x− ε ≤ sM − ε < xi ≤ sM < x+ ε

which is equivalent to |x− xi| < ε. Finally, since xi ∈ AM , by definition
i ≥M ≥ N and we have shown that x is a cluster point of (xi).

Theorem 79 (Heine-Borel Theorem) A subset of the reals is compact if and
only if it is closed and bounded.

Proof. Proposition 76 is one direction. Conversely, let A ⊂ R be closed
and bounded. Then any sequence (xi) in A is a bounded sequence, so by the
Bolzano-Weierstrass Theorem (xi) has a cluster point. Since A is closed, the
cluster point must be in A.
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The Bolzano-Weierstrass and Heine-Borel theorems are actually logically
equivalent (in fact we will later, in the setting of Rn, prove the Heine-Borel
Theorem first and use it to prove the Bolzano-Weierstrass theorem). In fact,
these theorems are logically so close to one another that they are given separate,
named statements only for historical reasons. The reader will therefore be for-
given for always referring to the Heine-Borel Theorem (which is the “cleaner” of
the two statements) when extracting a convergent subsequence from a bounded
real sequence. Some texts do not mention the names “Bolzano-Weierstrass” at
all.

Theorem 80 Let X and Y be metric spaces, A be a compact subset of X, and
f : X → Y be continuous. Then f(A) is a compact subset of Y .

Proof. Let (yi) be a sequence in f(A). By definition, for each i there exists
some xi ∈ A such that f(xi) = yi. Since A is compact, there is a subsequence
(xij ) of (xi) such that xij → x for some x ∈ A. By Proposition 66, we have that
yij = f(xij ) → f(x) and by definition f(x) ∈ f(A), so (yi) has a convergent
subsequence in f(A).
We will verify later that the function f(x) = ex : R→ R takes R (which is

closed) to (0,∞), which is not closed in R. That is, a real continuous function
need not take closed sets to closed sets. We will also later show that the natural
log function is continuous, but it takes (0, 1), which is bounded, to (−∞, 0),
which is not. However, the following is an immediate corollary of Theorem 80
and the Heine-Borel Theorem:

Corollary 81 If f : R→ R is continuous and A ⊂ R is closed and bounded
then f(A) is closed and bounded.

Here is a powerful application of our results so far:

Theorem 82 (Max-min Theorem) Let A be a nonempty compact subset of a
metric space X and f : X → R be continuous. Then f has a maximum and a
minimum on A.

Proof. By Theorem 80, f(A) is compact, hence a closed, bounded nonempty
set. But then by Exercise 51, f(A) has a maximumM . In other words, for some
x ∈ A, f(x) =M ; by definition M is the maximum of f on A The proof that f
has a minimum is similar.
The next theorem is also useful.

Theorem 83 Let {Ai}∞i=1 be a collection of non-empty compact subsets of a
metric space X that is nested, in the sense that if i < j then Aj ⊂ Ai. ThenT∞
i=1Ai 6= ∅.
Proof. Since each Ai is nonempty there is some xi ∈ Ai. Since xi ∈ Ai ⊂ A1

for all i and A1 is compact, (xi) has a cluster point x in A1. We will show that
x ∈ An for all n. By definition of cluster point, for each n, x is also a cluster
point of the tail (xi)∞i=n of the sequence (xi). Since the sets are nested, the tail
(xi)

∞
i=n lies entirely in the compact, hence closed, set An, and hence all of its

cluster points, including x, are contained in An.
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Example 84 The collection
©
(0, 1i )

ª
consists of bounded, nested sets, but

T∞
i=1(0,

1
i ) =

∅. The collection {[n,∞)} consists of closed, nested sets, but also has empty
intersection.

Exercise 62 Prove or disprove: If f : X → Y is continuous, where X and Y
are metric spaces, and A ⊂ Y is compact, then f−1(A) is compact.

Definition 85 Let A be a subset of a metric space X. An open cover of A is a
collection of open subsets {Uλ}λ∈Λ in X such that X ⊂ ∪λ∈ΛUλ.

Remark 86 The usual definition of compactness is: Every open cover of A has
a finite subcover—that is a finite subcollection, the union of which contains A. A
significant part of the proof that these two definitions are equivalent for metric
spaces is the following proposition, which will also be very useful for us. A full
proof of the equivalence may be found in most topology texts (e.g. [1]).

Proposition 87 Let X be a compact metric space and suppose that {Uλ}λ∈Λ
is an open cover of X. Then there exists an ε > 0, called the Lebesgue number
for the open cover, such that if x, y ∈ X and d(x, y) < ε then there is some Uλ
such that both x and y are elements of Uλ.

Proof. Suppose not. Using ε = 1
i for all i we can find sequences (xi) and

(yi) in X such that d(xi, yi) < 1
i , and for all λ and i, xi /∈ Uλ or yi /∈ Uλ. Since

X is compact there is a cluster point x ∈ X of (xi). Since {Uλ}λ∈Λ is an open
cover, x ∈ Uλ for some λ. Since Uλ is open there exists some r > 0 such that
B(x, r) ⊂ Uλ. Since x is a cluster point of (xi) there exists some i > 2

r such
that xi ∈ B(x, r2). But then we have d(xi, yi) <

r
2 and d(xi, x) <

r
2 . It follows

from the triangle inequality that yi ∈ B(x, r) ⊂ Uλ. Since xi is also in Uλ, this
is a contradiction.

Lemma 88 Let X be a metric space and {Aj}nj=1 be a finite collection of com-

pact subsets of X. Then
nS
j=1

Aj is compact.

Proof. Let (xi) be a sequence in
nS
j=1

Aj . By Corollary 27 there are some j

and a subsequence (xik) of (xi) such that (xik) lies entirely in Aj . Since Aj is

compact, (xik) has a cluster point in Aj , and hence in
nS
j=1

Aj . But this cluster

point is also a cluster point of the original sequence by Corollary 56.

Exercise 63 Show by example that the union of infinitely many compact subsets
of X need not be compact.

We finish with some theorems that will be useful later. First we need a
definition.
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Definition 89 Let A be a subset of a metric space X and ε > 0. The ε-
neighborhood of A is the set

N(A, ε) := {x ∈ X : d(x, y) < ε for some y ∈ A}.

Note that N({x}, ε) = B(x, ε). It follows from basic set theory that N(A, ε)
is the union of all open balls of radius ε centered at points in A; that is,

N(A, ε) =
[
x∈A

B(x, ε),

and therefore N(A, ε) is open.

Proposition 90 If C is a compact subset of a metric space X and U is an open
set in X containing C then for some ε > 0, N(C, ε) ⊂ U .

Proof. Suppose not. Using ε = 1
i for all i there exists a sequence {xi}

such that xi /∈ U and xi ∈ N(C, 1i ). That is, for each i there is some yi ∈ C
such that d(xi, yi) < 1

i . Since C is compact {yi} has a cluster point y ∈ C.
Since U is open there is some B(y, r) ⊂ U . But there also exist i > 2

r such
that yi ∈ B(y, r2). We have d(xi, y) ≤ d(xi, yi) + d(yi, y) <

r
2 +

r
2 = r. In other

words, xi ∈ B(y, r) ⊂ U , a contradiction.

Exercise 64 Use the interval (0, 1) to show that Proposition 90 is false if C is
not compact.

Proposition 91 Let C be a compact subset of a metric space X and suppose
that x /∈ C. Then there exists some ε > 0 such that x /∈ N(C, ε).

Proof. According to Proposition 73 the function dx is continuous and hence
achieves a minimum on the compact set C. That is, there exists some y ∈ C
such that dx(y) is the minimum of d(x, y). Now if d(x, y) = 0 then x = y ∈ C,
a contradiction. Therefore d(x, y) = ε for some ε > 0. Since y is at minimal
distance from x in C, d(x, z) ≥ ε for all z ∈ C and x /∈ N(C, ε).

Exercise 65 Let C be a compact subset of a metric space X.

1. Show that N(C, ε) is bounded for any ε > 0.

2. Show that C =
\
ε>0

N(C, ε).

3. Show that if U is any open set containing C then there is some ε > 0 such
that N(C, ε) ⊂ U .

Definition 92 A function f : X → Y between metric spaces is called uniformly
continuous if for every ε > 0 there exists a δ > 0 such that for all x, y ∈ X such
that d(x, y) < δ, d(f(x), f(y)) < ε.
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As we have seen, for continuity the number δ > 0 in the definition may
depend on both ε and the point in question, whereas for uniform continuity a
single δ > 0 will do the job “uniformly”, i.e. for every x ∈ X.

Proposition 93 Let f : X → Y be a continuous function between metric
spaces. If X is compact then f is uniformly continuous.

Proof. Let ε > 0. Consider the collection of all sets of the form Uy :=
f−1(B(y, ε2)), where y ∈ Y . Each of these sets is open since f is continuous,
and these sets form an open cover of X. In fact, if x ∈ X then x ∈ Uy where
y = f(x). Let δ > 0 be the Lebesgue number for this open cover. By definition,
if d(x,w) < δ, then x and w both lie in some Uy and therefore f(x) and f(w)
both lie in B(y, ε2). From the triangle inequality we obtain d(f(x), f(w)) < ε.

Exercise 66 Let f(x) := 1
x on the interval (0, 1]. Show that f is not uniformly

continuous.

2.6 Subspaces and isometries

Definition 94 Let (X, d) be a metric space and A be a subset of X. The
subspace metric on A is the restriction of the metric d to the set A×A ⊂ X×X.

In other words, we are considering A as a metric space in its own right,
measuring the distance between two points x and y in A in the same way it is
measured in X. Since we are restricting the function d to A, this function still
satisfies all the requirements of a metric, and so does make A a metric space.
Moreover, if {xi} is a sequence in A and x ∈ A then xi → x in X if and only
if d(xi, x) → 0, which is true if and only if xi → x in A. That is, as long as a
given sequence and point both lie in A, then convergence in A means the same
thing as convergence in X.
While the subspace metric may seem at first to be a trivial concept, it is

in fact quite important, and the properties of the metric space A can be quite
distinct from those of the larger space X. The most basic difference has to do
with open balls. Given x ∈ A and r > 0, we have two possibilities: the open
ball of radius r centered at x in the metric space X, and the open ball of radius
r centered at x in the metric space A. In order to keep them straight we will
refer these two balls as BX(x, r) and BA(x, r), respectively. How are these open
balls related?

BA(x, r) = {y ∈ A : d(y, x) < r)} = {y ∈ X : y ∈ A and d(x, y) < r} = A∩BX(x, r)

That is, the open ball in the subspace is the intersection of subspace with the
open ball of the same radius in the ambient space.
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Example 95 Consider the interval A := (0, 1] ⊂ R with the subspace metric.
What do some metric balls look like? Certainly

BA(
1

2
,
1

4
) = (0, 1] ∩ (1

4
,
3

4
) = (

1

4
,
3

4
) = BR(

1

2
,
1

4
),

but
BA(

1

4
,
1

2
) = (0, 1] ∩ (−1

4
,
3

4
) = (0,

3

4
) 6= BR(

1

4
,
1

2
).

At least this open ball in A is an open interval, but this is not always the case;
for example the reader can easily check that BA(1,

1
2) = (

1
2 , 1]. Now (

1
2 , 1], being

an open ball in the metric space A, is an open set in the metric space A, which
means that its complement in A, (12 , 1]

c = (0, 12 ] is a closed subset of the metric
space A. In addition, (0, 12 ] is certainly a bounded subset of A, and yet it is
not compact, since the sequence (1i ) has no cluster point in (0,

1
2 ]. This shows

that the Heine-Borel and Bolzano-Weierstrass Theorems are not true for metric
spaces in general.

The above example illustrates that for subsets of A, being “open” is a relative
concept; a subset of A can be open in A with the subspace metric but not open
in the larger metric space X. Therefore we need to distinguish notationally
between open (resp. closed) subsets of the metric space X that happen to be
contained in A and subsets of A that are open (resp. closed) with respect to
the subspace metric of A. From now on, the former will be referred to as open
(resp. closed) in X and the latter will be referred to as open (resp. closed)
in A. Some authors use the notation open (resp. closed) relative to A, which
admittedly is less likely to lead to confusion, but is a bit cumbersome and may
contribute the the student avoiding the idea that A is a metric space in its own
right. Likewise, if B ⊂ A we will refer to the closure of B as a subset of the
metric space A as the closure of B in A.

Example 96 Revisiting Example 95 with our new terminology we have: (14 ,
3
4)

and (0, 34) are both open in R and in A. In fact, both sets are open balls in both
metric spaces, although (0, 34) = BA(

1
4 ,

1
2), while (0,

3
4) = BR(

3
8 ,

3
8). The set

(0, 1] is both open and closed in A, but neither open nor closed in R.

The next proposition completely characterizes sets that are open or closed
in the subspace metric.

Proposition 97 Let X be a metric space and A ⊂ X have the subspace metric.
Then a set B ⊂ A is open (resp. closed) in A if and only if B = V ∩A for some
V ⊂ X that is open (resp. closed) in X.

Proof. Suppose first that B = V ∩ A where V is closed in X. Let x be
in the closure of B in A. So x ∈ A and there is some sequence (xi) in B with
xi → x. But (xi) is also a convergent sequence in V , and since V is closed in X,
x ∈ V . That is, x ∈ V ∩ A = B and so B is closed in A. Conversely, suppose
that B is closed in A. Let V be the closure of B in X. We need to show that
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B = V ∩A. Certainly B ⊂ V ∩A; to prove the opposite inclusion let x ∈ V ∩A.
By definition, x ∈ A and there is some sequence (xi) in B such that xi → x.
But since x ∈ A and B is closed in A, x ∈ B.
We have proved the proposition in the case of closed sets. Now suppose

that B is open in A. Then A\B is closed in A, so (by what we proved above)
A\B = W ∩ A for some W that is closed in X and if we let V := X\W , V is
open in X. Then

B = A\(A\B) = A\(W ∩A) = (A\W )∪ (A\A) = A\W = A∩ (X\W ) = A∩V

The converse statement is an exercise.

Exercise 67 Let X be a metric space and A ⊂ X have the subspace metric.

1. Use de Morgan’s law to finish the proof of Proposition 97.

2. Prove using only the definitions that if V is open in X then V ∩A is open
in A.

Remark 98 Give a few moments’ thought to the idea of directly proving that
if B is open in A then B = V ∩ A for some set V open in X. While certainly
possible, constructing such an open set V requires dealing with complements
and requires more steps than the construction of the appropriate closed set in
the proof of Proposition 97. This is why we chose to work first with closed sets
and use de Morgan’s law to obtain the result for open sets, rather than the other
way around.

Example 99 Let the integers Z ⊂ R have the subspace metric, and let n ∈ Z.
Then BZ(n,

1
2) = (n−

1
2 , n+

1
2)∩Z = {n}; in other words every set containing a

single integer is open in Z. It follows (as in the case of the trivial metric) that
every subset of Z is both open and closed. Note that the subspace metric on Z is
not the trivial metric (e.g. d(1, 3) = 2), but still has the same open and closed
sets as the trivial metric.

Exercise 68 Prove or disprove: Let Q ⊂ R be the rational numbers with the
subspace metric. Then every subset of Q is open and closed.

Another question that needs to be sorted out is the following. If a continuous
function f : X → Y is restricted to a subset A ofX, is it continuous with respect
to the subspace metric on A? This simple question is important because we have
already defined what it means for f to be continuous on A, and we would like
to be sure that this means the same thing as being continuous when restricted
to the metric space A. The next proposition verifies this.

Proposition 100 Let f : X → Y be a function between metric spaces and let
x ∈ A ⊂ X. If f is continuous at x then then f |A : A→ Y is continuous at x,
when A is given the subspace metric.
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Proof. Let (xi) be a sequence in A with xi → x ∈ A. Then (xi) is
also a sequence in X and xi → x in X. Since f is continuous at x we have
f(xi)→ f(x), which is what we needed to prove.

Exercise 69 Let X be a metric space and A ⊂ X. We can consider A as a
metric space with the subspace metric. The inclusion of A into X is the function
i : A→ X defined by i(x) = x for all x ∈ A. Show that i is continuous in three
different ways: Using Lemma 64, using Proposition 65, and using Proposition
70.

The next lemma can be useful if we happen to know that the image of the
function f lies in some set B that is smaller than Y . Then without affecting
continuity we may replace Y by B with the subspace metric.

Lemma 101 Let f : X → Y be a function between metric spaces and B be a
subset of Y such that f(X) ⊂ B. Then f is continuous if and only if for every
set A that is open (resp. closed) in B, f−1(A) is open (resp. closed) in X.

Exercise 70 Prove the above lemma. You need only prove it for open sets; the
other case is similar.

We know already that “closed” is a relative concept; a set can be closed in
A ⊂ X but not closed in X. Is compactness similarly relative? As the next
proposition shows, the answer is “no”, and we don’t need to bother with phrases
like “compact in A”.

Proposition 102 Let X be a metric space and A ⊂ X have the subspace met-
ric. Then B ⊂ A is a compact subset of A if and only if B is a compact subset
of X. In particular, A is a compact subset of X if and only if A is a compact
metric space with the subspace metric.

Proof. B is compact as a subset of A if and only if every sequence (xi) in
B has a cluster point in B. But this is exactly what it means for B to be a
compact subset of X!

Definition 103 Let X and Y be metric spaces. A function f : X → Y is called
an isometry if f is onto and for every x, y ∈ X, dX(x, y) = dY (f(x), f(y)). If
there exists an isometry f : X → Y then X and Y are said to be isometric.

Exercise 71 Let f : X → Y be an isometry between metric spaces.

1. Prove that f is 1− 1.

2. Prove that f−1 is an isometry.

3. Prove that f is continuous.
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An isometry, therefore, “identifies” the metric space X with the metric space
Y ; they are indistinguishable except for the names of their elements. In general,
bijective functions that show that two sets have an identical structure are very
important in mathematics. For example, in abstract algebra a function that
identifies two groups as having the exact same group structure is called a group
isomorphism (and there are also ring and field isomorphisms, and linear iso-
morphisms that show that two vector spaces have the exact same vector space
structure). Given metric spaces X and Y , we can ask whether X and Y are
“the same” in terms of the open sets they possess, even if they have “different”
metrics. For example, we have already seen that the integers can be given two
different metrics—the trivial metric and the subspace metric—that give rise to
exactly the same open sets (see Example 99). Since many questions, like con-
vergence and continuity, are really determined by open sets and not specifically
what the metric is, the following concept is very important:

Definition 104 Let X and Y be metric spaces. A function f : X → Y is called
a homeomorphism (or topological isomorphism) if f is a bijection and both f
and f−1 are continuous. If there exists a homeomorphism f : X → Y then X
and Y are said to be homeomorphic.

Lemma 105 If f : X → Y is a continuous bijection and X is compact then f
is a homeomorphism.

Proof. To show f−1 is continuous we need to show that for every closed
subset A of X, (f−1)−1(A) is closed in Y . But (f−1)−1(A) = f(A) and A
is a closed subset of the compact space X, and therefore is compact. But by
Theorem 80 f(A) is compact and hence closed in Y .

Exercise 72 Prove that Z with the trivial metric is homeomorphic to Z with
the subspace metric.

Exercise 73 Show that if f : X → Y is a continuous bijection then f is a
homeomorphism if and only if for every open U in X, f(U) is open in Y .

Exercise 74 Show that

1. every isometry is a homeomorphism,

2. the inverse of any homeomorphism is a homeomorphism,

3. the composition of two homeomorphisms is a homeomorphism.

2.7 Product Metrics
The reader should recognize that the next construction is a generalization of
how the usual distance in Euclidean space Rn is constructed from the distance
on R. Some topology texts call the “product metric” what we later refer to as
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the “max” metric. As we will see, the max metric has the same open and closed
sets as the product metric and is simpler to use in some situations, although
the max metric is geometrically less familiar. For example, the product metric
on Rn gives rise to classical Euclidean geometry, whereas the max metric gives
rise to a different geometry in which, for example, there are infinitely many
midpoints between any two points (see Exercise 77).

Definition 106 Let (X1, d1), ..., (Xn, dn) be a collection of metric spaces. We
define the product metric on the cartesian product X1 × · · · ×Xn by

d((x1, ..., xn), (y1, ..., yn)) =
¡
d1(x1, y1)

2 + · · ·+ dn(xn, yn)
2
¢ 1
2 . (2.3)

Of course we need to check that this formula really defines a metric. But
first we point out that, if Xi = R with the standard metric for all i then the
metric defined in this way on Rn is given by the familiar formula

d((x1, ..., xn), (y1, ..., yn)) =
¡
(x1 − y1)

2 + · · ·+ (xn − yn)
2
¢ 1
2 . (2.4)

Therefore the product metric on the cartesian product of metric spaces is a
generalization of the usual distance formula for Euclidean spaces. We will refer
to this metric as the standard or Euclidean metric.
Positive definiteness of (2.3) is easily checked: Certainly the distance is non-

negative, and is 0 if and only if all of the distances di(xi, yi) are 0, which
is equivalent to xi = yi for all i (since each di is positive definite), which is
equivalent to (x1, ..., xn) = (y1, ..., yn).

Exercise 75 Prove the symmetry of (2.3).

Proving the triangle inequality is more difficult. We will show by induction
on n that if we are given

x = (x1, ..., xn), y = (y1, ..., yn), z = (z1, ..., zn) ∈ X1 × · · · ×Xn

then d(x, z) ≤ d(x, y)+ d(y, z). The case n = 1 is simply the triangle inequality
in the metric space X1. We will now prove the statement for n = 2. To simplify
the proof, let a := d(x1, y1), b := d(y1, z1), c := d(x2, y2), d := d(y2, z2). Then
by the triangle inequality for d1 and d2,

d(x, z)2 = d1(x1, z1)
2 + d2(x2, z2)

2 ≤ (a+ b)2 + (c+ d)2

= a2 + b2 + c2 + d2 + 2(ab+ cd).

On the other hand,

(d(x, y) + d(y, z))2 =
³p

a2 + c2 +
p
b2 + d2

´2
= a2 + c2 + b2 + d2 + 2

p
(a2 + c2) (b2 + d2)



50 CHAPTER 2. METRIC SPACES

and the problem reduces to showing that

(ab+ cd)2 ≤
¡
a2 + c2

¢ ¡
b2 + d2

¢
⇔ 2abcd ≤ c2b2 + a2d2 ⇔ (ab− cd)2 ≥ 0

which is always true. Now suppose that the triangle inequality has been proved
for some n ≥ 2. In particular, we know that the product metric is in fact a
metric on X1×·· ·×Xn. Since we have shown the case n = 2, we also know that
the triangle inequality is valid in the product metric space (X1×···×Xn)×Xn+1,
the metric for which we will denote by ∆. But (X1 × · · · ×Xn)×Xn+1 is the
same set as X1 × · · · ×Xn+1 (see the comments surrounding to Definition 2).
Moreover, the function d on X1 × · · · × Xn+1 is computed in the exact same
way as ∆: Given

x = (x1, ..., xn, xn+1) and z = (z1, ..., zn, zn+1) in X1 × · · · ×Xn+1.

d(x, z)2 =
n+1X
i=1

di(xi, zi)
2 =

nX
i=1

di(xi, zi)
2 + dn+1(xn+1, zn+1)

2

=

⎛⎝vuut nX
i=1

di(xi, zi)2

⎞⎠2

+ dn+1(xn+1, zn+1)
2

= ∆ (((x1, ..., xn), xn+1), ((z1, ..., zn), zn+1))
2 .

That is, the two functions are the same and hence d also satisfies the triangle
inequality.
Note that as a consequence of this computation we see that, for example,

(A× B) × C with the product metric is naturally identified with A× (B × C)
via the function f((a, b), c)) = (a, (b, c)), which is in fact an isometry between
these two metric spaces.
There is a useful alternative metric on the cartesian product of metric spaces,

defined as follows:

Definition 107 Let (X1, d1), ..., (Xn, dn) be a collection of metric spaces. We
define the max metric on the cartesian product X1 × · · · ×Xn by

dmax((x1, ..., xn), (y1, ..., yn)) = max{d1(x1, y1), ..., dn(xn, yn)}.

It is somewhat easier to check that this metric is indeed a metric.

Exercise 76 Check that the max metric is symmetric and positive definite.

For the triangle inequality we use the triangle inequality for the spaces Xi

and Lemma 14:

dmax((x1, ..., xn), (z1, ..., zn)) = max{d1(x1, z1), ..., dn(xn, zn)}
≤ max{d1(x1, y1) + d1(y1, z1), ..., dn(xn, yn) + dn(yn, zn)}

≤ max{d1(x1, y1), ..., dn(xn, yn)}+max{d1(y1, z1), ..., dn(yn, zn)}
= dmax((x1, ..., xn), (y1, ..., yn)) + dmax((y1, ..., yn), (z1, ..., zn)).
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Example 108 The product and max metrics are not the same in general. For
example, in the plane we have d((1, 1), (0, 0)) =

√
2 and dmax((1, 1), (0, 0)) = 1.

Exercise 77 Find the set of all “midpoints” between the points (−1, 0) and
(1, 0) in the plane with the max metric. That is, find all points (x, y) in the
plane such that

dmax((x, y), (−1, 0)) = dmax((x, y), (1, 0)) = 1

This shows that, geometrically speaking, the max metric and the usual Euclid-
ean metric (with which every pair of points has a unique midpoint), are quite
different.

Why do we need a second metric on the cartesian product of metric spaces?
In many ways the max metric is simpler to work with than the product metric
and, as we will see shortly, from standpoint of convergence and continuity they
can be used interchangeably. To make this idea precise, we need the following
notion:

Definition 109 Let X be a space with two metrics, d1 and d2. We say that the
two metrics are topologically equivalent if the identity function idX : (X, d1)→
(X, d2) is a homeomorphism.

As an immediate consequence of the exercises in the preceding section, we
have the following two lemmas:

Lemma 110 (X, d1) and (X,d2) are topologically equivalent metric spaces if
and only if the following statement holds: For every sequence (xi) in X and
x ∈ X, xi → x with respect to the metric d1 if and only if xi → x with respect
to the metric d2.

Lemma 111 (X, d1) and (X,d2) are topologically equivalent metric spaces if
and only if given any U ⊂ X, U is open with respect to d1 if and only if U is
open with respect to d2.

The above two lemmas show that two metrics on the same set are equivalent
if and only if convergence of sequences is the same in both metrics; equivalently
the two metrics define the same open (and hence closed) subsets. This means
that any definition that depends only on convergence or openness of sets is either
satisfied or not satisfied simultaneously for both metrics For example, if X has
two topologically equivalent metrics d1, d2 then a function from X into another
metric space (or from another metric space into X) is continuous with respect
to d1 if and only if it is continuous with respect to d2. And a subset of X is
compact with respect to d1 if and only if it is compact with respect to d2.

Example 112 Consider the metric space R with the usual metric d and the
trivial metric, which we will denote for this exercise by dt. In a previous exercise
it was shown that every subset of a set with the trivial metric is open, whereas
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there are certainly subsets of R with the usual metric that are not. This means
that if idX is the identity map from (R, d) to (R, dt) then idX is not continuous,
although id−1X is continuous. So d is not topologically equivalent to dt. On the
other hand, the trivial metric and the subspace metric on Z are topologically
equivalent (cf. Exercise 72).

Definition 113 A function f : X → Y is called Lipschitz if there exists some
λ > 0 such that for all x, y ∈ X, dY (f(x), f(y)) ≤ λd(x, y).

A Lipschitz function does not “stretch” any distances by a factor of more
than λ. Note that to prove that a function is Lipschitz, we do not need to
consider the case when x = y, since then f(x) = f(y) and d(f(x), f(y)) = 0.

Example 114 Any constant function is Lipschitz for every λ.

Exercise 78 Prove that every Lipschitz function is uniformly continuous.

Exercise 79 Let f : X → Y be Lipschitz. Prove that if A is a bounded subset
of X then f(A) is a bounded subset of Y .

Exercise 80 Prove or disprove whether or not each of the following functions
is Lipschitz.

1. f(x) = x2 from R to R.

2. f(x) = x2 from [0, 1] to [0, 1].

3. f(x) =
√
x from [0, 1] to [0, 1].

Proposition 115 Let (X1, d1), ..., (Xn, dn) be a collection of metric spaces.
Then for every x, y ∈ X := X1 × ...×Xn, dmax(x, y) ≤ d(x, y) ≤ √ndmax(x, y).

Proof. Let (x1, ..., xn), (y1, ..., yn) ∈ X1 × · · · ×Xn. Then

dmax((x1, ..., xn), (y1, ..., yn)) = max{d1(x1, y1), ..., dn(xn, yn)}

= (max{d1(x1, y1)2, ..., dn(xn, yn)2})
1
2 ≤

¡
d1(x1, y1)

2 + · · ·+ dn(xn, yn)
2
¢ 1
2

= d((x1, ..., xn), (y1, ..., yn)) =
¡
d1(x1, y1)

2 + · · ·+ dn(xn, yn)
2
¢ 1
2

≤ (nmax
i
{di(xi, yi)2})

1
2 =
√
ndmax((x1, ..., xn), (y1, ..., yn)).

This proposition shows that the identity map from (X, d) to (X, dmax) is
Lipschitz with λ = 1 and so is continuous. Likewise, inverse, which is the
identity map from (X,dmax) to (X, d) is Lipschitz with λ =

√
n. Therefore the

identity map from (X, d) to (X, dmax) is a homeomorphism. In other words,

Corollary 116 Let (X1, d1), ..., (Xn, dn) be a collection of metric spaces. Then
the product and max metrics on X := X1× ...×Xn are topologically equivalent.
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Corollary 117 Let (X1, d1), ..., (Xn, dn) be a collection of metric spaces. Then
A ⊂ X := X1 × ... ×Xn is bounded with respect to the max metric if and only
if A is bounded with the product metric.

Definition 118 A function between metric spaces having the property that both
it and its inverse are Lipschitz is called bilipschitz, and the metric spaces are
said to be bilipschitz equivalent.

Note that a bilipschitz function is always a homeomorphism. In general,
if we are given a collection of metric spaces (X1, d1), ...,(Xn, dn) then unless
otherwise stated we will always assume that X1 × · · · × Xn has the product
metric. However, in proofs of purely topological properties (depending only on
convergence or open sets) we will sometimes use the max metric because it is
considerably simpler in certain situations. The next lemma shows that the open
and closed balls in the max metric have a particularly simple structure:

Lemma 119 Let (X1, d1), ..., (Xn, dn) be a collection of metric spaces and X :=
X1 × · · ·Xn with the max metric. Then for every (x1, ..., xn) ∈ X and r > 0,

Bmax(x, r) = BX1(x1, r)× · · · ×BXn(xn, r)

and
Cmax(x, r) = CX1(x1, r)× · · · × CXn(xn, r).

Proof. We prove only the case for the open ball; the case for the closed ball
is similar.

Bmax(x, r) = {(y1, ..., yn) ∈ X : dmax((y1, ..., yn), (x1, ..., xn)) < r}

= {(y1, ..., yn) ∈ X : max{d1(y1, x1), ..., dn(yn, xn)} < r}

= {(y1, ..., yn) ∈ X : di(yi, xi) < r for all i}

= {(y1, ..., yn) ∈ X : yi ∈ BXi(xi, r) for all i}

BX1(x1, r)× · · · ×BXn(xn, r)

Exercise 81 Let (X1, d1), ..., (Xn, dn) be a collection of metric spaces and Ui ⊂
Xi be open, for all i. Show that U := U1×···×Un is open in X := X1×···×Xn

with the max metric, and hence with the product metric.

We will see later (Exercise 85) that an open ball in X with the product
metric need not be the cartesian product of open sets Ui in Xi.

Exercise 82 Let (X1, d1), ..., (Xn, dn) be a collection of metric spaces and let
X := X1 × · · · ×Xn.Let U ⊂ X. Show that U is open in X if and only if U is
a union of open sets of the form U1 × · · · × Un for some open Ui ⊂ Xi.
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Exercise 83 Let X be a metric space with distance d. Prove that the distance
function d : X ×X → R is continuous. Hint: Use the max metric on X ×X
and Proposition 73.

Exercise 84 Let (X1, d1), ..., (Xn, dn) be a collection of metric spaces. Define
a metric on the cartesian product X1 × · · · ×Xn by

d+((x1, ..., xn), (y1, ..., yn)) = d1(x1, y1) + · · ·+ d(xn, yn).

Prove that d+ is a metric, and that it is topologically equivalent to the product
and max metrics. Hint: Being topologically equivalent is transitive; decide which
of the product or max metrics would be the easiest to work with.

2.8 Euclidean spaces

We now consider the special case of Euclidean space Rn = R×· · ·×R, with the
Euclidean metric. The elements of Rn are n-tuples (x1, ..., xn) where each xi is
a real number and we will refer to these elements as vectors or n-vectors. Note
that R1 = R, and we do not denote elements of R as “1-tuples”. To simplify
notation we will often denote elements of Rn using a single boldface character
(e.g. x = (x1, ..., xn)). As is traditional, will often denote vectors in R2 by (x, y)
and those in R3 by (x, y, z).
When n = 1, as we have already observed, open balls are simply open

intervals. When n = 2, the open ball centered at (x, y) of radius r is

B((x, y), r) = {(x1, y1) : (x1 − x)2 + (y1 − y)2 < r2}

which of course is the region inside the circle of radius r centered at (x, y).
Likewise, when n = 3 open balls are the interiors of spheres, and so on. In Rn
we will denote (0, 0, ..., 0) simply by 0 (the reader needs to be vigilant because
the same (unbold) symbol is used to represent the real number 0).

Exercise 85 Prove that B(0, 1) ⊂ R2 is not the cartesian product of two subsets
of R. Hint: Show that if B(0, 1) were equal to some set U1 × U2 then the point
(34 ,

3
4) would have to lie in B(0, 1).

Recall that Rn is a vector space with addition given by

(x1, ...xn) + (y1, ..., yn) = (x1 + y1, ..., xn + yn)

and scalar multiplication given by

k(x1, ..., xn) = (kx1, ..., kxn) for k ∈ R.

We will not discuss the basic properties of vector spaces; these properties are
very natural and easy to check for Rn and the reader likely uses them instinc-
tively at this point.
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We have already seen that there are two (equivalent) versions of the triangle
inequality for R: the triangle inequality for the metric and that for the absolute
value (Proposition 7). For Rn the situation is analogous; first, the absolute
value is replaced by the norm, which is defined as follows:

Definition 120 For any x = (x1, ..., xn) ∈ Rn we define the norm of x by

kxk := d(x,0) =

vuut nX
i=1

x2i .

Note that in Rn
d(x,y) = kx− yk

and that for n = 1 the norm is the same as the absolute value. A vector v
such that kvk = 1 is called a unit vector. We will continue to use the absolute
value notation in connection with real numbers (especially when they are used
for scalar multiplication of vectors), but the norm notation is also legitimate for
R and will be used when making statements about Rn in general, as in the next
exercise.

Exercise 86 Show that, for x ∈ Rn and c ∈ R,

1. kxk = 0 if and only if x = 0

2. kcxk = |c| kxk

Theorem 121 (Triangle inequality) For any x,y ∈ Rn,

kx+ yk ≤ kxk+ kyk .

Proof. Applying the triangle inequality for the distance to the points
x,y,0 ∈ Rn we obtain

kx+ yk = kx− (−y)k = d(x,−y) ≤ d(x,0) + d(0,−y)

= kx− 0k+ k0− (−y)k = kxk+ kyk .

Recall that the dot product in Rn is defined, for x = (x1, ..., xn) and y =
(y1, ..., yn) by

x · y :=
nX
i=1

xiyi.

The dot product satisfies the following properties, which can be proved simply
using the definition:

1. (Symmetry) x · y = y · x for all x,y in Rn

2. (Bilinearity) (kx+ y) · z = k(x · z) + y · z for all x,y, z in Rn and k ∈ R
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3. (Positive definiteness) x · x ≥ 0 and x · x = 0 if and only if x = 0 for all
x ∈ R

4. kxk2 = x · x, for all x ∈ R.

The following important theorem is logically equivalent to the triangle in-
equality (see Exercise 87).

Theorem 122 (Cauchy-Schwarz Inequality) For any x,y ∈ Rn, we have

|x · y| ≤ kxk kyk

Proof. By the triangle inequality,

(kxk+ kyk)2 ≥ kx+ yk2 = (x+ y) · (x+ y) = kxk2 + 2x · y + kyk2

while we also have

(kxk+ kyk)2 = kxk2 + 2 kxk kyk+ kyk2 .

Combining these formulas leads to

x · y ≤ kxk kyk

Applying this formula to x and −y leads to

−(x · y) = x · (−y) ≤ kxk k−yk = kxk kyk

The theorem is now proved by Lemma 8.

Exercise 87 Use the Cauchy-Schwarz inequality to prove the triangle inequality
for the norm in Rn. Hint: Start with kx+ yk2 = kxk2+2x ·y+ kyk2 as in the
above proof and use the fact that x · y ≤ |x · y|.

Let’s take a moment to examine the max metric on Rn. We have the formula

dmax((x1, ..., xn), (y1, ..., yn)) = max{|x1 − y1| , ..., |xn − yn|}

For R this formula simply reduces to the standard metric.

Example 123 In R2 we see from Lemma 119 that the max metric open ball
centered at (x, y) of radius r > 0 is the interior of a square with sides parallel
to the x- and y-axes having side length 2r. In R3 such an open ball is the
interior of a cube, and so on. That is, the open ball of radius r > 0 centered at
(x1, ..., xn) ∈ Rn with respect to the max metric is equal to the cartesian product

(x1 − r, x1 + r)× · · · × (xn − r, xn + r).

For closed balls we simply replace the open intervals in the product with closed
intervals of the same radius.
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Exercise 88 Describe the open balls in R2 with the metric d+ (see Exercise
84).

Definition 124 A norm on a (real) vector space V is a function kk that assigns
to each v ∈ V a real number kvk such that

1. kvk ≥ 0 and kvk = 0 if and only if v = 0.

2. for any c ∈ R, kcvk = |c| kvk

3. for any v,w ∈ Rn, kv +wk ≤ kvk+ kwk.

In Definition 120 we defined the standard norm on Rn, showing in Exercise
86 and Theorem 121 that it satisfies the above definition. As another example,
let kvkmax denote dmax(v,0). It is easy to check that the first two conditions of
Definition 124 are satisfied; the proof of the triangle inequality is identical to the
proof of Theorem 121. Likewise the metric d+ from Example 84 defines a norm,
but not every metric on Rn gives rise to a norm in this way (see Exercise 90).
As we will see below every norm on a vector space does give rise to a metric,
moreover a very special kind of metric.

Definition 125 A metric d on a vector space V is called (translation) invariant
if for all x,y, z ∈ V , d(x,y) = d(x+ z,y+ z).

Exercise 89 Prove that a metric d on a vector space V is invariant if and only
if for every y ∈ V , the function Ty : V → V defined by Ty(x) := y+ x is an
isometry.

Invariance of metrics on vector spaces is an extremely important concept be-
cause it establishes a compatibility between the algebraic (vector space) struc-
ture and metric structure. Not all metrics on Rn are invariant, but in this text
we will not be concerned with metrics that are not. Some of the most important
metrics on Rn are given by the following proposition:

Proposition 126 Let kk be a norm on a vector space V . Defining d(x,y) :=
kx− yk always defines an invariant metric, called the metric induced by the
norm.

Proof. Symmetry and positive definiteness are immediate consequences of
the definitions of metric and norm. For any x,y, z ∈ V ,

d(x, z) = kx− zk = kx− y + y− zk ≤ kx− yk+ ky− zk = d(x,y) + d(y, z).

Finally,

d(x+ z,y+ z) = kx+ z− (y+ z)k = kx− yk = d(x,y).

Since kxk = d(x, 0), from Proposition 73 we now obtain:
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Corollary 127 Let kk be a norm on a vector space V . Then the function
f : V → R defined by f(x) = kxk is continuous.

Corollary 128 Let Y be a metric space, V be a normed vector space, and
f : Y → V be a continuous function. If f(y) 6= 0 then there exists some r > 0,
such that if d(x, y) < r then f(x) 6= 0.

Proof. The function g defined by g(x) := kf(x)k : Y → R is the composition
of continuous functions and is hence continuous, and g(y) = kf(y)k > 0. Then
there exists some r > 0 such that if d(x, y) < r then |kf(x)k− kf(y)k| =
|g(x)− g(y)| < kf(y)k

2 , which implies kf(x)k > kf(y)k − kf(y)k
2 = kf(y)k

2 > 0,
and hence f(x) 6= 0.

Exercise 90 Show that if dt denotes the trivial metric on Rn then dt is invari-
ant, but defining kvkt := dt(v,0) does not define a norm. In other words, every
norm on Rn defines an invariant metric, but the converse is not true.

Exercise 91 Let kk be any norm on Rn. Show that the identity map

i : (Rn, kkmax)→ (Rn, kk)

is Lipschitz. Hint: Let ni := keik, where ei := (0, ..., 0, 1, 0, ..., 0) with “1” in
the ith coordinate. Express any v ∈Rn as v =

Pn
i=1 viei.

We will need the following proposition somewhat later.

Proposition 129 If U ⊂ Rn is open then U is a countable union of open balls
in the product metric (resp. the max metric).

Proof. First note that the set

Q(U) := {(y1, ..., yn) ∈ U : yi ∈ Q for all i}

is countable. Now consider the countable collection

Bmax := {Bmax(q, r) : q ∈ Q(U), r ∈ Q and Bmax(q, r) ⊂ U}.

Certainly the union of all such open balls (in either metric) is contained in U .
To show that U is contained in this union, let x = (x1, ..., xn)∈U . Since U is
open there exists some Bmax(x, ρ) ⊂ U . Let r be rational such that 0 < r < ρ

2 .
For all i, choose some rational qi such that |qi − xi| < r. Then y :=(y1, ..., yn)
satisfies dmax(x,y) < r and so y ∈Bmax(x, r) ⊂ Bmax(x, ρ) ⊂ U . Therefore
y ∈ Q(U) and B(y, r) ∈ Bmax. On the other hand, since dmax(x,y) < r implies
x ∈ B(y, r) ∈ Bmax, and so x lies in the union of all balls in Bmax. The proof
for the product metric is an exercise.

Exercise 92 Finish the proof of Proposition 129.
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2.9 Sequences and compactness in product spaces

Throughout this section, let X1, ...,Xn be metric spaces and denote the product
metric space by X := X1× ...×Xn. At this point there should be no confusion
if we denote the metrics in all of these spaces, as well as the product metric, by
d. Note that all results in this section are equally valid for the max metric, since
it is topologically equivalent to the product metric. We will also have occasion
to use the max metric in certain proofs.
The first thing that we need to consider is the behavior of sequences, and

here there is potential for confusion, since we are using subscript notation for
both sequences and components of elements of X. We will resolve this problem
by using double subscripts. Each term in a sequence (yj)∞j=1 in X has n compo-
nents; we will write yj = (yj1, yj2, ..., yjn) where each yji ∈ Xi. If we fix some
i, then we obtain a sequence (yji)∞j=1 in Xi, which is called the ith component
sequence of (yj)∞j=1. Many of the properties of a sequence in X are completely
determined by the properties of its components. For example, the following
proposition generalizes a familiar theorem from calculus of three variables.

Proposition 130 If (yj)∞j=1 is a sequence in X = X1×···×Xn, then yj → a =
(a1, ..., an) in X if and only if for all i, yji → ai. In other words the components
of the limit are the limits of the components.

Proof. Since the product metric and the max metric are topologically equiv-
alent, we can prove this proposition for convergence in the max metric, which is
simpler to work with. Suppose first that yj → a. Equivalently, this means that
dmax(yj , a)→ 0. But for all i,

0 ≤ d(yji, ai) ≤ max{d(yji, ai)} = dmax(yj , a)

and so d(yji, ai) → 0 for all i by the Sandwich Theorem. Conversely, suppose
that d(yji, ai)→ 0 for all i. Then for every ε > 0 and every i there exists an Ni

such that if j ≥ Ni then d(yji, ai) < ε. Therefore if N = max{N1, ...,Nn} and
j ≥ N then

d(yj , a) = max{d(yji, ai)} < ε.

This proves that dmax(yj , a)→ 0 and therefore yj → a.

Example 131 In R2, the sequence (1i , 1−
1
i ) converges to (0, 1) because

1
i → 0

and 1− 1
i → 1.

The reader has already learned a special case of the next corollary in calculus—
that a vector valued function is continuous if and only the component functions
are continuous.

Corollary 132 Let Y be a metric space and f : Y → X := X1 × · · · × Xn

be a function. Then f is continuous at y ∈ Y if and only if each component
fi : Y → Xi is continuous at y.
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Proof. Let (yj)∞j=1 be a sequence in Y such that yj → y. If each fi is
continuous at y, then for all i, (fi(yj))→ fi(y). Since fi(yj) is the ith component
of f(yj), this implies f(yj)→ f(y) and f is continuous at y. The converse is an
exercise.

Exercise 93 Finish the proof of Corollary 132.

Corollary 133 For all i, the projections πi : X → Xi are continuous.

Exercise 94 Apply Corollary 132 to the identity map idX : X → X to prove
the above corollary.

Exercise 95 Let (yj)∞j=1 be a sequence in X = X1×···×Xn. Prove or disprove
the following:

1. A point a = (a1, ..., an) is a cluster point of (yj)∞j=1 in X if and only if ai
is a cluster point of (yji)∞j=1 in Xi for all i.

2. The sequence (yj)∞j=1 is bounded in X if and only if (yji)∞j=1 is bounded
in Xi for all i.

3. The sequence (yj)∞j=1 is unbounded in X if and only if (yji)∞j=1 is un-
bounded in Xi for every i.

We would like to take this opportunity to introduce a notational shortcut
used frequently in mathematics. From now on the phrase “for all large n” will
replace the statement “there exists an N such that for all n ≥ N .” This notation
can save quite a bit of effort. For example, in the proof of Proposition 130, rather
than choosing all those Ni’s and then taking the maximum, we could simply
have stated the following: “Then for every ε > 0 and every i, d(yji, ai) < ε for
all large j.” The idea is that if finitely many statements are each true for all
large i then all the statements are simultaneously true for all large i. As another
example, we can restate the definition of xi → x as “for any ε > 0, d(xi, x) < ε
for all large i”. Likewise, we will replace the statement “for every N ∈ N there
exists an i ≥ N” by “for some large i”. Therefore the definition that x is a
cluster point of a sequence (xi) can be stated as “for every ε > 0, d(x, xi) < ε
for some large i”. Now the difference between limit point and cluster point is
much more clear: one simply changes an “all” to a “some”. Warning: unlike
the case with all large i, it is possible that finitely many statements may be true
for some large i, but they are not all simultaneously true for some large i. For
example, if xn = (−1)n then xn = 1 for some large n and xn = −1 for some
large n. But certainly it is not true that xn = 1 and xn = −1 for some large n.

Theorem 134 If each Xi is a compact metric space then X = X1 × · · · ×Xn

is compact.

Proof. We will prove the theorem by induction in n. For n = 1 there is
nothing to prove; suppose n = 2 and (yj)∞j=1 be a sequence in X = X1 ×X2.
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We will construct a convergent subsequence of (yj)∞j=1. Since X1 is compact,
there is a subsequence (yjk1) of (yj1) such that yjk1 → a1 ∈ X1. Now consider
the subsequence (yjk)

∞
k=1. Since X2 is compact, (yjk2)

∞
k=1 has a subsequence

yjkm2 → a2 in X2, and since (yjkm1) is a subsequence of (yjk1), we still have
yjkm1 → a1. Finally, the sequence (yjkm )

∞
m=1 is a subsequence of (yj) such that

yjkm1 → a1 and yjkm2 → a2, and by Proposition 130, yjkm → (a1, a2).
Now suppose that we have proved the theorem for some n ≥ 2. As we have

previously observed, X1×· · ·×Xn+1 is naturally isometric to (X1×· · ·×Xn)×
Xn+1. By the inductive hypothesis, X1 × · · · ×Xn is compact, and by the case
n = 2 that we have just proved, (X1 × · · · ×Xn)×Xn+1 is also compact.

Exercise 96 Prove or disprove the converse of Theorem 134.

Theorem 135 (Heine-Borel Theorem) A subset A of Rn is compact if and only
if A is closed and bounded.

Proof. If A is bounded in the product metric then A bounded in the max
metric and so by definition is contained in a closed ball B in the max metric.
But such a ball, according to Example 123 is the cartesian product of closed
bounded intervals, and by the Heine-Borel Theorem for the real numbers and
Theorem 134 B is compact. Therefore A is a closed subset of a compact set and
hence compact. The converse is Proposition 76.

Corollary 136 If f : A→ R is a continuous function defined on a subset A of
Rn and B ⊂ A is closed and bounded then f has a maximum and a minimum
on B.

Since every bounded sequence in Rn is contained in a closed bounded (hence
compact) ball, we immediately obtain:

Corollary 137 (Bolzano-Weierstrass Theorem) Every bounded sequence in Rn
has a cluster point.

Definition 138 The unit sphere in Rn is the set Sn−1 := {x ∈ Rn : kxk = 1}.

Note that the sphere is, in a sense that is intuitively clear but more difficult
to define, of one dimension lower than the space in which it lives, hence the
“n− 1” superscript.

Exercise 97 For any n, prove Sn−1 is compact. You may not use any sequences
in your proof! A similar argument shows that Sn−1max := {v ∈Rn : kvkmax = 1}
is compact. Hint: {1} is closed in R.

Exercise 98 For this exercise you will need Exercise 91. Let k·k be a norm on
Rn.

1. Show that there is some m > 0 such that kvk ≥ m for all v ∈Rn such that
kvkmax = 1.
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2. Prove that for every v ∈Rn, kvk ≥ m kvkmax.

3. Show that the metric spaces of these two norms are bilipschitz equivalent
and hence topologically equivalent.

The above exercise in fact proves the following important statement, which
shows that when it comes to topological issues in Rn, one may choose the most
convenient norm for a given purpose. We will see later that the same statement
is not true for norms on an infinite dimensional vector space. As the proof
shows, what is essential about Rn is that the set of unit vectors is compact.

Theorem 139 Any two norms on Rn are bilipschitz equivalent (hence topolog-
ically equivalent), in the sense that they induce bilipschitz equivalent metrics.

2.10 Connected Metric Spaces
The definition of connected set may seem a bit strange and abstract at first;
however, applications such as the Intermediate Value Theorem should increase
the reader’s appreciation of this definition.

Definition 140 A metric space X is said to be connected if X is not the union
of two disjoint non-empty open sets.

Note that the empty set is connected. Definitions involving negatives can
be tricky to work with; often one proceeds by contradiction. There are various
direct approaches to showing that a space X is connected. For example, one
can suppose that X = U ∪V , suppose that U and V are disjoint, and prove that
U or V is empty. Or one can use an approach given by the following exercises:

Exercise 99 Prove that a metric space X is connected if and only if the only
subsets of X that are both open and closed are X and ∅. As a consequence we
see that any metric space having at least two points, with the trivial metric, is
not connected.

Exercise 100 Prove that a metric space X is connected if and only if whenever
X = U∪V where U and V are disjoint and open, if U is non-empty then X ⊂ U .

Proposition 141 Let f : X → Y be a continuous function between metric
spaces. If X is connected then f(X) is connected (with the subspace metric).

Proof. We will use Exercise 99. Let Z be a closed and open subset of f(X).
Since f is continuous, f−1(Z) is an open and closed subset of X (see Lemma
101) and hence is either X or ∅. In the first case, Z = f(X) and in the second
case Z ⊂ f(f−1(Z)) = ∅.

Proposition 142 Let {Aλ}λ∈Λ be a collection of connected subsets of a metric
space X (with the subspace metric) such that X =

S
λ∈ΛAλ and

T
λ∈ΛAλ 6= ∅.

Then X is connected.
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Proof. Let x ∈
T
λ∈ΛAλ and suppose that X = U ∪ V , where U and V are

open in X and disjoint; then x lies in one of these sets, say x ∈ U . We will show
that X ⊂ U and apply Exercise 100. Since X =

S
λ∈ΛAλ we need only show

that for every λ ∈ Λ, Aλ ⊂ U . This follows from Exercise 100, since U ∩Aλ and
V ∩Aλ are disjoint, open in Aλ, their union is Aλ, and x ∈ U ∩Aλ.

Lemma 143 If A is a connected subset of a metric space X and B is a subset
of X such that A ⊂ B ⊂ A then B is connected.

Proof. Suppose B = U ∪ V where U and V are open in B, disjoint and
nonempty. Then U ∩ A and V ∩ A are open in A and disjoint. Since A is
connected, one of them is empty; say V ∩ A = ∅. But V is non-empty and so
there is some x ∈ V ⊂ B. But x ∈ A implies V ∩A 6= ∅, a contradiction.

Example 144 The set A := (0, 1) ∪ (1, 2) is a union of two disjoint open sets,
and hence is not connected. However, A = (0, 2) is an interval and, as we will
see below, is connected. Therefore the converse of the above lemma is false.

We are now in a position to completely characterize the connected subsets
of R.

Theorem 145 A nonempty subset S of R is connected if and only if S is an
interval.

Proof. Consider first an open interval (a, b). Suppose that (a, b) = U ∪ V
where U and V are open in (a, b) (and hence in R), disjoint, and nonempty.
Without loss of generality we can suppose that there exist x ∈ U and y ∈ V
with x < y. Let A = U ∩ [x, y] and let s = supA. Then a < x ≤ s ≤
y < b, so s ∈ (a, b). Moreover, since V is open there exists some ε > 0 such
(y − ε, y + ε) ⊂ V and therefore (y − ε, y + ε) ∩ U = ∅. In particular, y 6= s,
i.e. s < y. We will obtain a contradiction by showing both s /∈ U and s /∈ V .
Suppose s ∈ U . Then since U is open and s < y there exists some s0 ∈ U such
that s < s0 < y. This contradicts the fact that s is an upper bound of A and
proves s /∈ U . Now suppose s ∈ V . Since V is open there is some ε > 0 such
that (s− ε, s+ ε) ⊂ V and therefore (s− ε, s+ ε) ∩ U = ∅, which contradicts
the approximation property, so s /∈ V and the proof that (a, b) is connected is
finished.
Every bounded interval is contained in the closure of some interval (a, b)

and so is connected by Lemma 143. Unbounded intervals can be handled by
Proposition 142. For example, an interval (a,∞) is a union of the intervals
(a, a+ n), for n ∈ 2, 3, ..., which are all connected and contain the point a+ 1.
Conversely, suppose that S is a nonempty connected subset of R. Let a :=

inf S and b := supS, where a and b are extended real numbers. If a = b then
S = {a} and we are finished. If a < b we will show that (a, b) ⊂ S. Suppose, to
the contrary, there is some c /∈ S such that a < c < b. Letting U := S ∩ (a, c)
and V := S ∩ (c, b) we have that each of U and V is open in S, and the two sets
are disjoint. In addition, if U were empty then the interval (a, c) would contain
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no element of S, which would contradict a = inf S. Therefore U 6= ∅. A similar
proof shows V 6= ∅, which contradicts the connectedness of S. Since (a, b) ⊂ S
and a = supS and b = supS, S consists of (a, b) together with possibly a and/or
b and therefore is an interval.

Theorem 146 (Intermediate Value Theorem) Let f : X → R be a continuous
function, where X is a connected metric space. For any a, b ∈ X such that
f(a) < f(b), and for any k ∈ (f(a), f(b)), there exists some c ∈ X such that
f(c) = k.

Proof. Since X is connected, f(X) is connected, and hence is an interval
I. Therefore, since f(a) and f(b) lie in I, so does k—i.e., k ∈ f(X). But then
by definition k = f(c) for some c ∈ X.

Corollary 147 (Intermediate Value Theorem for Real Functions) Let f : A→
R be a continuous function, where A ⊂ R is connected. For any a < b (resp.
b < a) in A such that f(a) < f(b), and for any k ∈ (f(a), f(b)), there exists
some c such that a < c < b (resp. b < c < a) and f(c) = k.

Proof. We suppose a < b; the other case is similar. Since A is connected, A
is an interval and hence contains the interval [a, b]. Applying the Intermediate
Value Theorem to the restriction of f to [a, b] means there exists some c ∈ [a, b]
such that f(c) = k. Since k is not equal to f(a) or f(b) c cannot be equal to a
or b, and hence c ∈ (a, b).

Definition 148 A real function f : A→ R is called increasing (resp. decreas-
ing, strictly increasing, strictly decreasing) on A if for every x < y in A we have
f(x) ≤ f(y) (resp. f(x) ≥ f(y), f(x) < f(y), f(x) > f(y)).

Corollary 149 Let f : [a, b] → R be continuous and one-to-one, where a < b.
Then f is either strictly increasing or strictly decreasing.

Proof. Since f is one-to-one, either f(b) > f(a) or f(b) < f(a); suppose
the first. Let y ∈ [a, b) and x ∈ (a, b] with y < x. If f(x) > f(b) then by the
intermediate value theorem there must be some c ∈ (a, x) such that f(c) = f(b),
a contradiction. This proves f(x) ≤ f(b) and similarly f(a) ≤ f(x). If f(y) >
f(x) then as before there must be some d ∈ (a, y) such that f(d) = f(x), a
contradiction. Since f(y) 6= f(x), the only possibility is f(y) < f(x).
Connectedness can be difficult to verify; it is often easier to verify the fol-

lowing condition:

Definition 150 A metric space X is called arcwise connected (or path con-
nected) if there exists some x ∈ X such that for every y ∈ X there is a continu-
ous function α : [0, 1]→ X (called a curve, path or arc) such that α(0) = x and
α(1) = y.

Proposition 151 Any arcwise connected metric space is connected.
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Proof. Let X be arcwise connected; so there exists an x ∈ X such that
for every y ∈ X there exists a continuous function αy : [0, 1] → X such that
αy(0) = x and αy(1) = y. Let Ay := αy([0, 1]); then Ay is a connected subset of
X that contains both x and y. In particular, X =

S
y∈X Ay and x ∈

T
y∈X Ay.

By Proposition 142, X is connected.

Example 152 In Rn, every B(x, r) is an arcwise connected metric space. In
fact, given any y ∈ B(x, r) define fy(t) = x+ t(y − x). If x = (x1, ..., xn) and
y = (y1, ..., yn) then in component form

fy(x1, ..., xn) = (x1 + t(y1 − x1), ..., xn + t(yn − xn))

and each component is a real linear function, hence, by Exercise 55, continuous.
Therefore fy is continuous. Certainly fy(0) = x and fy(1) = y. Finally, for
all t we have

kfy(t)− xk = kx+ t(y − x)− xk = |t| ky− xk < tr ≤ r

Therefore fy(t) ∈ B(x, r) for all t and by definition fy : [0, 1] → B(x, r). It
follows from Proposition 151 that B(x, r) is connected; the reader should give a
few moments’ thought to the difficulty of proving this fact using the definition
of connected. Certainly the proof would be significantly more difficult than the
first part of the proof of Theorem 145, which is the special case when n = 1.

Exercise 101 Prove or disprove: If f : X → Y is a continuous function be-
tween metric spaces and f(X) is connected then X is connected.

Exercise 102 Prove or disprove: If f : X → Y is a continuous function be-
tween metric spaces and X is arcwise connected then f(Y ) is arcwise connected.

Remark 153 There exist metric spaces that are connected, but not arcwise
connected. One example consists of the union of {0} × [−1, 1] with graph of
f(x) = sin 1

x for x ∈ (0, 1] in the plane (see [1], p. 157 for a proof).

2.11 Metric Completeness

The completeness axiom for the real numbers depends entirely on the existence
of an ordering, and yet many frequently encountered metric spaces, including
the spaces Rn for n > 1, do not have a natural ordering. Therefore it is useful
to have a notion of metric completeness that does not involve an ordering. The
general idea is that a metric space is complete if every sequence that “should”
have a limit point, really does have a limit point. The following definition makes
precise the notion of a sequence that “should” have a limit point.

Definition 154 A sequence (xi) in a metric space X is called Cauchy if for
every ε > 0 there exists an N ∈ N such that for all i, j ≥ N , d(xi, xj) < ε.
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More simply we can simply state that a sequence (xi) is Cauchy if for every
ε > 0, d(xi, xj) < ε for all large i and j. Convergent sequences behave this way:

Lemma 155 If (xi) is a convergent sequence in a metric space X then (xi) is
Cauchy.

Proof. Suppose xi → x and let ε > 0. Then for all large i, d(xi, x) < ε
2 . By

the triangle inequality, if i, j are large we have that

d(xi, xj) ≤ d(xi, x) + d(x, xj) <
ε

2
+

ε

2
= ε.

On the other hand, a Cauchy sequence need not converge. Let X be the
metric space (0, 1] with the subspace metric. Note that the sequence (1i ) is
Cauchy because it is convergent in R. But it is not convergent in the metric
space X because 0 /∈ X. Put another way, the sequence ( 1i ) “should” converge
to a point, but that point is “missing” from X.

Lemma 156 If a Cauchy sequence (xi) has a cluster point x then xi → x.

Proof. Let ε > 0. Since (xi) is Cauchy there exists some N ∈ N such that
if i, k ≥ N , d(xi, xk) < ε

2 . Since x is a cluster point of (xi), for some k ≥ N ,
d(xk, x) <

ε
2 . By the triangle inequality, for all i ≥ N we have

d(xi, x) ≤ d(xi, xk) + d(x, xk) <
ε

2
+

ε

2
= ε.

Exercise 103 Prove that every Cauchy sequence in a metric space is bounded.

Exercise 104 Let (xi) and (yi) be Cauchy sequences in a metric space X.
Prove that the real sequence (di) where di := d(xi, yi), is convergent.

Definition 157 A metric space X is called complete if every Cauchy sequence
(xi) in X is convergent.

It is possible to show that every metric space X is isometric to a subset
of a complete metric space, called the metric completion of X (see [1]), which
is also the “smallest” such metric space in a certain sense. For example, the
metric completion of Q is R. However, the general construction of the metric
completion of a metric space is beyond the scope of this text. We will be more
interested in proving that metric spaces that we are working with either are or
are not complete. The following theorem takes us a long way in making such
determinations:

Proposition 158 Every compact metric space X is complete.

Proof. Let (xi) be a Cauchy sequence in X. Then (xi) has a cluster point,
hence, according to Lemma 156, is convergent.
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Corollary 159 Let X be a metric space such that every closed metric ball of
X is compact. Then X is complete.

Proof. Every Cauchy sequence (xi) in X is bounded by Exercise 103 and
therefore contained in some closed metric ball C, which is a complete metric
space. Hence (xi) is convergent in C and therefore in X.
From the Heine-Borel Theorem we now obtain:

Corollary 160 Rn is complete for all n with respect to the product or max
metric.

Exercise 105 Prove that any closed subset A of a complete metric space X is
complete with the subspace metric.

Example 161 Recall from calculus that the function ex : R→(0,∞) is contin-
uous and has continuous inverse lnx. Therefore ex is a homeomorphism. But
R is complete and (0,∞) is not complete ((1i ) is Cauchy but has no limit in
(0,∞)). This shows that a non-complete metric space can be homeomorphic to
a complete metric space. In other words, completeness is not a “topological”
property, but a metric property.

Exercise 106 Suppose that f : X → Y is a function between metric spaces.

1. Prove that if f is Lipschitz and (xi) is Cauchy then (f(xi)) is Cauchy.

2. Prove that if f is bilipschitz and X is complete then Y is complete.
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Chapter 3

Complex sequences and
Series

3.1 Complex Numbers

Definition 162 The complex numbers C consist of the metric space R2 having
the usual operation of vector addition and a new operation of multiplication
defined as follows: For (x1, y1), (x2, y2) ∈ R2 we define

(x1, y1) · (x2, y2) := (x1x2 − y1y2, x1y2 + x2y1) (3.1)

There is a more standard notation for the complex numbers with which the
reader may be familiar, where we write x+ yi rather than (x, y). Addition and
multiplication are carried out as though the symbols represent real numbers,
except that the symbol i has the property that i2 = −1 and otherwise is treated
like an independent variable. For example to compute (x1 + y1i) + (x2 + y2i)
we simply add all the terms and “collect” the terms involving i to obtain (x1 +
x2) + (y1 + y2)i. For multiplication we distribute and collect terms:

(x1 + y1i)(x2 + y2i) = x1x2 + x1y2i+ y1x2i+ (i)(i)y1y2

= (x1x2 − y1y2) + (x1y2 + x2y1)i

Note that the above formula is precisely the same as that in Formula 3.1; only
the notation is different. With these two operations, the set C is a field (see
Section 1.4). The details are not difficult, and not too interesting. We simply
note the following: The additive identity is 0 + 0i, which we will simply denote
by 0. The multiplicative identity is 1 + 0i, which we will simply denote by 1.
The additive inverse of x+ yi is −x− yi. The multiplicative inverse of x+ iy is
more tricky to figure out, but it looks like this:

(x+ yi)−1 =
x

x2 + y2
− y

x2 + y2
i

69
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which we may write in the more compact form

(x+ yi)−1 =
x− yi

x2 + y2
.

Exercise 107 Show that (x+ iy)
³

x
x2+y2 − i y

x2+y2

´
= 1.

One uses the same algebraic definitions and obtains the same basic algebraic
theorems that are familiar for R (or any field). As we did for real numbers, we
can define z0 := 1 and zn iteratively by zn := z · zn−1 for any integer n > 0.
One then defines zn = 1

z−n for negative integers n whenever z 6= 0. In the
next section we will prove the existence of nth roots of positive numbers. This
will allow us to define the root test, which is part of the logical path to the
exponential function and its properties. At the end of this chapter we will use
the exponential function to define real powers of positive numbers.
We make two more notational conventions, extending what we did above for

0 and 1. If a complex number x+yi satisfies y = 0, we write it simply as x, and
refer to it as real. This makes sense because the set of all such complex num-
bers is closed under multiplication and addition and for these specific numbers
addition and multiplication are identical to addition and multiplication for real
numbers. For example

(x1 + 0i)(x2 + 0i) = (x1x2 − 0 · 0) + (x1 · 0 + 0 · x2)i = x1x2 + 0i.

The student who is familiar with abstract algebra will recognize that what is
really going on is that the real numbers are naturally field isomorphic (see the
definition below) to the subfield of C consisting of all complex numbers of the
form x + 0i, but such a formality will not be useful for us now. Note that,
when considering the complex numbers as points in the plane, the real numbers
correspond to the points having second coordinate 0, i.e. the x-axis.
On the other hand if x = 0 we write yi rather than 0 + yi and refer to

yi as pure imaginary. Pure imaginary numbers are closed under addition but,
obviously, not under multiplication. We also write i rather than 1i.
Finally, as one traditionally does in a field, we often will write z

w rather than
zw−1; one can easily check that the usual formulas for adding and multiplying
fractions are still valid.

Exercise 108 Show that
³
−1±

√
3i

2

´3
= 1, that is, 1 has two cube roots besides

1 in C.

Definition 163 If F1 and F2 are fields, a function f : F1 → F2 is called a field
isomorphism if f is a bijection and for all x, y ∈ F1, f(x + y) = f(x) + f(y)
and f(xy) = f(x)f(y).

A field isomorphism shows that two fields are algebraically identical.
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Exercise 109 Consider the set K of all matrices of the form
∙

a b
−b a

¸
where

a and b are real numbers, with the operations of matrix addition and matrix
multiplication.

1. Show that K is closed under addition and multiplication.

2. Show that the function M : C→ K defined by M(a+ bi) =

∙
a b
−b a

¸
is

a field isomorphism. It is not necessary to prove that K is a field; in fact
when you check formally the conditions for a field isomorphism it follows
that K is a field.

Let us return to considering C as the metric space R2. When using the
notation x + yi we will use, as in the case of R, absolute value notation to
denote the norm, i.e. |x+ yi| denotes k(x, y)k =

p
x2 + y2. We will also use

regular roman numerals (not bold) to name elements of C when we are not using
the x+ yi notation. For any z ∈ C, the quantity |z| is often referred to as the
modulus of z. We already have the triangle inequality relating to the modulus
of a sum; the following lemma describes the simpler situation for the modulus
of a product.

Lemma 164 For z, w ∈ C, |zw| = |z| |w|.

Proof. Let z = a+ bi and w = c+ di. Then

|zw|2 = |(a+ bi) (c+ di)|2 = (ac− bd)2 + (ad+ bc)2

= a2c2 + b2d2 − 2abcd+ a2d2 + b2c2 + 2abcd

= (a2 + b2)(c2 + d2) = |z|2 |w|2 = (|z| |w|)2

Exercise 110 Verify that if z = a+ bi then z has the following square roots:

±
Ãr

a+ |z|
2

+ sgn(b)

r
−a+ |z|

2
i

!

where sgn(b) is the sign of the real number b 6= 0 and sgn(b) = 1 if b = 0.

Definition 165 Let z = a+ bi be a complex number. The conjugate of z is the
complex number z := a− bi.

Proposition 166 Let z and w be complex numbers. Then

1. z = z

2. z + w = z + w
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3. z · w = z · w (the · refers to multiplication, used for easier reading)

4. |z|2 = zz

Exercise 111 Prove the above proposition.

Exercise 112 Let f : C→ C be defined by f(z) = z. Prove that

1. f is an isometry, hence a homeomorphism

2. f is a field isomorphism

3. f is involutive, i.e. f ◦ f = idC

4. f |R= idR

Exercise 113 Show the following:

1. For complex numbers z and w, |z + w|2 + |z − w|2 = 2(|z|2 + |w|2).

2. Use the above problem to show that for any parallelogram in the plane the
sum of the squares of the lengths of the diagonals is equal to the sum of
the squares of the sides. Hint: the sum of the lengths of the diagonals is
on the left side of the equation.

Exercise 114 Prove that if z 6= 0 then there exists an N such that for all
n ≥ N ,

¯̄
n2 + 1

z

¯̄
≥ n

3
2 . Hint: Use the triangle inequality on the three points 0,

n2 and n2 + 1
z .

3.2 Complex Sequences
We will quickly review a few basic facts that we know about sequences of com-
plex numbers. Everything we know so far is a consequence of more general
theorems about the metric space R2. We know that C is a complete metric
space, with metric given by d(z, w) = |z − w|. In particular, we have zn → z if
and only if |zn − z| → 0. Closed and bounded subsets of C are compact, and
every bounded sequence of complex numbers has a convergent subsequence. Set-
ting zn := ai + bni and z = a + b we have zn → z if and only if an → a and
bn → b. Note that the proposition below is valid for real sequences since every
real sequence is also a complex sequence.

Proposition 167 Let {zn} and {wn} be complex sequences such that zn → z
and wn → w. Then

1. zn + wn → z + w

2. znwn → zw

3. if z 6= 0 then zn 6= 0 for all large n and z−1n → z−1.
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Proof. We leave the proofs of the first two parts as exercises. For the last
part note that |z| > 0 and for all large n |zn − z| < |z|

2 and therefore by the

triangle inequality |zn| ≥ |z|− |zn − z| > |z|
2 > 0, so zn 6= 0. Now let ε > 0. For

large n we also have |zn − z| < ε|z|2
2 . Combining the two previous inequalities

for large n we have ¯̄̄̄
1

zn
− 1

z

¯̄̄̄
=

¯̄̄̄
zn − z

znz

¯̄̄̄
<
2 |zn − z|
|z|2

< ε.

Exercise 115 Finish the proof of Proposition 167.

Note that, as a special case of part (2) of Proposition 167 we can let wn be
the constant sequence wn = c, in which case we obtain that czn → cz. We can
also combine the last two parts to obtain that wn

zn
→ w

z provided z 6= 0.
As in the real case, given a set A and functions f, g : A → C and constant

c ∈ C we define f + g : A→ C by (f + g)(x) = f(x) + g(x), and f · g, f/g, cf ,
are defined similarly. All four combinations are defined on A except for f/g,
which is defined for all x ∈ A such that g(x) 6= 0.

Corollary 168 Let X be a metric space and f, g : X → C be continuous at
x ∈ X and c ∈ C. Then the functions f + g, f · g, cf , and (provided g(x) 6= 0)
f/g are continuous at x.

Proof. We will prove only that f/g is continuous at x provided g(x) 6= 0;
the other proofs are similar and simpler. Let A := {x ∈ X : g(x) 6= 0}, which
is the domain of definition of f/g. Let xn → x in A. Since f and g are
continuous at x, f(xn) → f(x) and g(xn) → g(x) 6= 0. By Proposition 167
f(xn)/g(xn)→ f(x)/g(x), which proves the continuity of f/g at x.

Corollary 169 Every complex polynomial, i.e., function of the form f(z) =
anz

n + an−1z
n−1 + ...+ a1z + a0 where each ai and z are complex numbers, is

continuous

Proof. We will prove the statement by induction in the degree n of the
polynomial. For n = 0, the polynomial is constant, and this case was con-
sidered in Exercise 57. Suppose we have proved the statement for n ≥ 0 and
consider f(z) = an+1z

n+1 + anz
n + ... + a1z + a0. We will be finished by the

inductive hypothesis and Corollary 168 if we can prove that an+1zn+1 is contin-
uous. However, we know that the identity function f(z) = z is continuous (in
any metric space!) and by Corollary 168, an+1z is continuous. By the inductive
hypothesis, zn is continuous, and by Corollary 168 an+1z

n+1 = (an+1z)z
n is

continuous.

Corollary 170 If a is a positive real number and n > 1 is a natural number
then there is a unique positive nth root of a, that is, a positive real number x
such that xn = a, denoted by n

√
a or a

1
n .
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Proof. Consider the real function f(x) = xn defined on [0,∞). This func-
tion is the restriction of a complex polynomial and hence is continuous. In
addition, this function is onto [0,∞). In fact, f([0,∞)) is connected and con-
tains 0, hence is an interval with left endpoint 0. Since x > 1, xn > x, f([0,∞))
is unbounded, hence must be the interval [0,∞). Since f is onto there exists
some x ∈ [0,∞) such that xn = a ∈ [0,∞). The uniqueness statement follows
from the fact that if 0 < a < b then an < bn.

Exercise 116 Prove that the real function f defined by f(x) := n
√
x is contin-

uous for all n ≥ 1.

Note that it follows from the field and order axioms that the functions x 7→
xn and x→ x

1
n are strictly increasing functions, a fact that we will use without

further comment.

Exercise 117 Let (zn) be a complex sequence. Prove that if (zn) is convergent
then (|zn|) is convergent; is the converse true?

Example 171 One immediate consequence of Proposition 167 is that a se-
quence (zn) is convergent if and only if (czn) is convergent for every c 6= 0.
However, it is not true that if the sum of two sequences is convergent then the
two sequences are convergent. For example, let an = n and bn = −n; the sum
of the unbounded sequences (an) and (bn) is the constant (hence convergent)
sequence whose terms are all 0.

Problems involving complex sequences and series can often be reduced to
problems involving real sequences. For example, we have already observed that
zn → z if and only if |zn − z| → 0; the latter is a real sequence. Likewise
if zn = an + bni then the two sequences (ai) and (bi) are real sequences that
completely determine the convergence of the complex sequence (zn). We will
therefore consider a few useful theorems about real sequences.
The convergence of several sequences follows from the binomial formula for

complex numbers a, b and natural number n:

(a+ b)
n
=

nX
k=0

µ
n

k

¶
akbn−k (3.2)

Here
¡
n
k

¢
= n!

k!(n−k)! satisfies the following propertyµ
n+ 1

k

¶
=

µ
n

k − 1

¶
+

µ
n

k

¶
(3.3)

that can be verified by direct computation and used to prove the binomial
formula by induction in n. Formula 3.3 also is the basis for the construction of
Pascal’s triangle. Note that if a and b are nonnegative then each of the terms
in the right side of Formula 3.2 is also nonnegative. In particular, one can
obtain many useful inequalities by “throwing away” some of these terms. For
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example, (a + b)n ≥ an + nan−1b (for a, b ≥ 0) follows by throwing away all
terms but the first two. One can also sometimes use clever choices of a and b to
get equations and inequalities. For example, by letting a = b = 1 one obtains
that 2n =

Pn
k=0

¡
n
k

¢
.

Example 172 If p > 0 then lim n
√
p = 1. To prove this, first suppose that p > 1

and let an = n
√
p−1 > 0 then p = (1+an)

n. By the binomial formula (throwing
away all but the first two terms) p ≥ 1 + nan and so 0 ≤ an ≤ p−1

n , and the
proof is finished by the sandwich theorem. If p = 1 no proof is required, and if
p < 1 we can apply the previous case to 1

p > 1 and apply Proposition 167 (3).

Exercise 118 Use the binomial formula to prove that lim n
√
n = 1.

Exercise 119 Prove that if a > 1 then lim 1
an → 0.

Example 173 Let z ∈ C satisfy 0 < |z| < 1. Then |z|n → 0 by Exercise 119.
Since |zn| = |z|n → 0, zn → 0. In other words, for any z inside open unit ball
at 0 in C, higher and higher powers of z tend to 0. If z is real then zn is real
for all n, and zn → 0 on the x-axis. But other complex numbers do not tend to
0 in a straight line. See Exercise 120 below.

Exercise 120 Plot the first eight terms of the sequence zn, where z = 1+i
2 .

Exercise 121 Show that if z lies on the unit circle in the complex plane then zn

lies on the unit circle for all natural numbers n. What happens if z lies outside
the unit circle?

We finish this section with some theorems about real sequences. First of all
we adopt the standard conventions for infinite limits of extended real sequences.
Note that we have not defined a metric on the extended real numbers (this is
possible, but not in a way that the subspace metric on the reals is the usual
metric on the reals). Therefore we must define what we mean by limits involving
extended reals without using any kind of metric. We say that xi → ∞, where
xi is an extended real number, if for every real M , xi ≥ M for all large i. We
similarly define xi → −∞. We will use the following notation. We will say that
a real sequence (xi) is convergent if it has a real limit, but when we say that (xi)
has a limit this will mean that (xi) is convergent or limxi = ±∞. Note that
we can now state that every monotone real sequence (xi) has a limit (allowing
±∞). If (xi) is bounded we have already proved this statement in Proposition
60. The unbounded case is the next exercise.

Exercise 122 Show that if (xi) is an unbounded real sequence then xi → ∞
(resp. xi → −∞) if (xi) is increasing (resp. decreasing).

Proposition 174 If (xi) and (yi) are real sequences having (possibly infinite)
limits and xi ≤ yi for all large i then limxi ≤ lim yi.
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Proof. Let x = limxi and y = lim yi. We will prove the case when both x
and y are finite. The remaining cases are an exercise. Suppose that y < x. Let
a be such that y < a < x. Then for all large i, yi < a < xi, a contradiction.

Exercise 123 Finish the proof of Proposition 174.

Definition 175 Let (xi) be a real sequence. We define the limit superior (or
lim sup) of (xi) by

lim supxi = lim sn, where sn := sup
k≥n

{xk}

and the limit inferior (or lim inf) of (xi) by

lim inf xi = limmn, where mn := inf
k≥n

{xk}.

This definition may take some time to digest. We will discuss the lim sup;
a similar discussion applies to the lim inf. First of all we should observe that,
unlike the limit of a sequence, the lim sup of a sequence always exists (although
it could be ±∞). To see why, let Sn := {xk}k≥n and sn := Sn. Since S1 ⊃
S2 ⊃ S3 · ·· we have s1 ≥ s2 ≥ ...; i.e., the sequence (sn) is decreasing. Therefore
lim supxi = lim sn exists. Note that it is always true that

lim inf xi ≤ lim supxi. (3.4)

In fact, mn ≤ sn for all n and the above inequality follows from Proposition
174.

Lemma 176 If (xi) and (yi) are real sequences and xi ≤ yi for all large i then
lim supxi ≤ lim sup yi and lim inf xi ≤ lim inf yi.

Proof. We will prove only the statement for the lim sup; the other case is
similar. But this follows from Proposition 174 and the fact that supk≥n{xk} ≤
supk≥n{yk}.

Lemma 177 Let (xi) be a real sequence and let s := lim supxi (resp. s :=
lim inf xi). Then for all extended real numbers K,M such that K < s < M , we
have xi > K for some (resp. all) large i and xi < M for all (resp. some) large
i.

Proof. We only consider the case of the lim sup; the other case is similar.
Since the interval (K,M) is an open set and s = lim sup{xi}i≥n ∈ (K,M),

K < sup{xi}i≥n < M .

for all large n. Then xi ≤ sup{xi}i≥n < M for all i ≥ n. Moreover, sn ≥ s > K
and for any positive ε < sn−K, the approximation property implies that there
exists some i ≥ n such that xi > sn − ε > K.
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Lemma 178 Let (xn) be a real sequence. Then (xn) is convergent (with finite
limit) if and only if lim supxn = lim inf xn. If (xn) is convergent then limxn =
lim supxn.

Proof. Suppose that lim supxn = lim inf xn := y and let ε > 0. Then
y− ε < y < y+ ε and by Lemma 177, for all large n, y− ε < xn < y+ ε, which
implies xn → y.
Suppose now that xn → x ∈ R. Then for every ε > 0, xn < x + ε for

all large n. By Lemma 176 (using the constant sequence (x + ε)) we have
lim supxn ≤ x+ ε for every ε > 0. Exercise 14 implies lim supxi ≤ x. A similar
argument shows lim inf xi ≥ x and the proof is finished by (3.4).

Exercise 124 Find the lim sup and lim inf of the sequence (xn), where xn =
1 + (−1)n n

n+1 . You do not need to give a proof for your answer.

Exercise 125 State and prove an analog of Lemma 178 concerning infinite
limits.

Exercise 126 Let (an) and (bn) be real sequences.

1. Prove that lim sup(an + bn) ≤ lim sup(an) + lim sup(bn).

2. Give an example that shows that equality may not occur in the above
formula.

3.3 Series

In this section we will investigate series of complex numbers. We will be con-
cerned with expressions of the form

∞X
n=1

zn

where each zn is a complex number. The series may also start at n = 0 (as in the
geometric series below) or some other finite number; theorems below involving
divergence and convergence are clearly also true for any no matter what the
starting value for n.
At first it may not even be clear whether one can make sense of such an

expression. One could start adding the zn’s and see what happens. If zn = 2−n

then starting with n = 1 one gets 1
2 ,

3
4 ,

7
8 , ... when adding the first 1, 2, 3, ...

terms together, and these “partial sums” form the sequence ( n
n+1), which tends

to 1. Therefore it seems clear that
P∞

n=1 2
−n should be 1. (The Ancient Greeks,

who had no good way to represent and therefore add fractions, apparently never
made this observation and were forever troubled by Zeno’s “paradox”.) If one
tries the same thing with

P∞
n=1 1 then the partial sums are 1, 2, 3, ..., which

converges to ∞. Again, it is reasonable to say
P∞

n=1 1 = ∞. What about
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P∞
n=1 i? In this case the partial sums are i, 2i, 3i, 4i, ... which “diverges” up the

y-axis in the complex plane. Does it also tend to∞? If it does, is this the same
∞ that you “approach” as you go out the x-axis? This particular question will
have to be left for a later course in complex analysis. At least we can agree that
the sum

P∞
n=1 i doesn’t converge to any complex number.

Another issue that we will have to contend with is the associative law.
Let’s consider the series

P∞
n=1(−1)n. We could compute the partial sums as

−1, 0,−1, 0,−1, ... which doesn’t converge to anything. On the other hand, by
combining terms in pairs we could compute

(−1 + 1) + (−1 + 1) + (−1 + 1) + · · · = 0 + 0 + 0 + · · · = 0

or
−1 + (1− 1) + (1− 1) + · · · = −1 + 0 + 0 + · · · = −1

Which way is “right”? For the second two computations we have tried to use
some kind of “infinite associative law” that allows us to simultaneously rearrange
infinitely many parentheses from the arrangement for partial sums, which looks
like

· · ·((((−1 + 1)− 1) + 1) + 1)− · · ·
Apparently no such law exists, because arbitrary rearrangements of parentheses
do change the sum. In particular, if we want to have a well-defined notion of
a sum of a series (if it exists) we should stick to finding limits of partial sums,
which we will now formally introduce.
A complex series is an expression

P∞
n=1 zn where each zn is a complex

number. Each series has an associated sequence (σk) called the sequence of
partial sums defined by

σk :=
kX

n=1

zn

If the sequence (σk) converges to a complex number z we say that the series
converges to z and we will refer to z as the sum of the series; otherwise we say
the series diverges.

Lemma 179 (Small Tails Lemma) A series
P∞

n=1 zn is convergent if and only
if for every ε > 0, |

P∞
n=k zn| < ε for all large k.

Exercise 127 Prove the above lemma.

Since C is a complete metric space, the sequence (σk) is convergent if and
only if it is Cauchy. Since σj − σk =

Pj
n=k+1 zn for j ≥ k, this fact can be

restated as follows:

Lemma 180 (Cauchy Criterion) A series
P∞

n=1 zn converges if and only if for
every ε > 0 ¯̄̄̄

¯̄ kX
n=j

zn

¯̄̄̄
¯̄ < ε.

for all large j ≤ k.
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Letting k = j in the above lemma yields:

Corollary 181 (Divergence Test) If
P∞

n=1 zn converges then |zn|→ 0.

The above corollary is the complex version of the “divergence test” for real
series in elementary calculus. It can be used to prove that a series does not
converge (i.e. by showing that |zn| doesn’t converge to 0), but we will see later
that there are divergent series such that |zn|→ 0.

Corollary 182 If
P∞

n=1 zn is a series and the real series
P∞

n=1 |zn| converges
then

P∞
n=1 zn converges.

Proof. Let ε > 0. Then for all large j ≤ k, the triangle inequality and
Cauchy criterion for

P∞
n=1 |zn| imply¯̄̄̄
¯̄ kX
n=j

zn

¯̄̄̄
¯̄ ≤ kX

n=j

|zn| =

¯̄̄̄
¯̄ kX
n=j

|zn|

¯̄̄̄
¯̄ < ε.

According to the Cauchy criterion,
P∞

n=1 zn converges.

Definition 183 A series
P∞

n=1 zn such that
P∞

n=1 |zn| converges is called ab-
solutely convergent.

We will see later that there are series that are convergent but not absolutely
convergent.

Example 184 The geometric series is the series
P∞

n=0 z
n. If z 6= 1 then (1−

z)σn = 1− zn+1 and

σn =
1− zn+1

1− z
.

According to Example 173, σn → 1
1−z if |z| < 1; that is,

∞X
n=0

zn =
1

1− z
( |z| < 1)

On the other hand, if |z| ≥ 1 then |zn| = |z|n ≥ 1 for all n, and
P∞

n=0 zn
diverges by the divergence test. Sometimes it is useful to use n = 1 as the
starting point for the geometric series, in which case convergence and divergence
are unchanged, but the sum, in case of convergence, is z

1−z .

Proposition 185 If
P∞

n=1 zn and
P∞

n=1wn are convergent then
P∞

n=1(zn +
wn) is convergent and

P∞
n=1(zn + wn) =

P∞
n=1 zn +

P∞
n=1wn.

Proof. Let (σn) and (τn) denote the partial sum sequences for
P∞

n=1 zn andP∞
n=1 wn, respectively. Then if (ηn) is the partial sum sequence for

P∞
n=1(zn+

wn) we have

ηk =
kX

n=1

(zn + wn) =
kX

n=1

zn +
kX

n=1

wn = σk + τk
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and by Proposition 167, part (1)

∞X
n=1

(zn + wn) = lim ηk = lim(σk + τk) = limσk + lim τk =
∞X
n=1

zn +
∞X
n=1

wn.

Exercise 128 Let c 6= 0 and
P∞

n=1 zn be a series. Prove that
P∞

n=1 zn is
convergent if and only if

P∞
n=1 czn is convergent, and if

P∞
n=1 zn is convergent

then
P∞

n=1 czn = c
P∞

n=1 zn. What happens when c = 0?

Exercise 129 Prove or disprove: If
P∞

n=1 zn and
P∞

n=1wn are series thenP∞
n=1(zn +wn) is convergent if and only if

P∞
n=1 zn and

P∞
n=1wn are conver-

gent.

Exercise 130 (Telescoping Series) Let (zn) be a sequence of complex numbers
and let tn := zn− zn+1. Show that the series

P∞
n=1 tn is convergent if and only

if the sequence (zn) is convergent. When the series is convergent, give a formula
for its sum.

Exercise 131 Compute the sum of the following series:

1.
P∞

n=1
3

(1−i)n

2.
P∞

n=1

³
1√

n2+2n+1
− 1√

n2

´
3.
P∞

n=1
2

n(n+1) Hint: Use a partial fractions decomposition (a fraction of

the form cx+d
(x+a)(x+b) can always be rewritten in the form

r
x+a +

s
x+b when

a 6= b).

Multiplication of series is a bit more complicated because we will have to
contend with the distributive law. Consider what happens to a few terms:

(a0 + a1 + a2 + a3)(b0 + b1 + b2 + b3)

= a0b0 + a0b1 + a0b2 + · · ·+ a3b2 + a3b3.

We need a way to conveniently collect and enumerate all of these terms. The
simplest way to do this is to collect together all terms aibj so that the sum of
the indices i+ j is a fixed number n; that is,

cn :=
nX

k=0

akbn−k (3.5)

or alternatively, cn :=
P

i+j=n aibj . The first few terms are c0 := a0b0, c1 :=
a0b1 + a1b0 and c3 := a0b3 + a1b2 + a3b0.
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Proposition 186 Let
P∞

n=0 an be absolutely convergent,
P∞

n=0 bn be conver-
gent, and cn be defined according to Formula (3.5). ThenÃ ∞X

n=0

an

!Ã ∞X
n=0

bn

!
=

Ã ∞X
n=0

cn

!
.

In particular, the series on the right side is convergent.

Exercise 132 Prove Proposition 186 as follows. Let (σk), (τk), (ηk) be the
partial sum sequences of

P∞
n=0 an = a,

P∞
n=0 bn = b, and

P∞
n=0 cn, respectively.

Let tk be the sum of the (k + 1)-tail of
P∞

n=0 bn.

1. Show that ηn = σnb+ εn for all n, where

εn = a0tn + a1tn−1 + · · ·+ ant0. (3.6)

2. Suppose
P∞

n=0 |an| = A, and for given ε > 0, N is such that |tn| ≤ ε
whenever n ≥ N (why does such an N exist?). Prove that for any n ≥ N ,

|εn| ≤ |ant0 + · · ·+ an−N tN |+ εA.

3. Show that εn → 0 and finish the proof.

3.4 Convergence tests

The geometric series and series in Exercise 130 are of the exceedingly rare variety
the sum of which can actually be computed; generally the only question that
can be answered precisely about a given series is whether or not it converges.
This is far more useful than it may seem at first. None only can sums of series
be numerically approximated, there are many situations in which knowing the
exact sum of a series is not important.
For series with nonnegative (real) terms there is a particularly simple crite-

rion for convergence since in that case the partial sum sequence (σn) is monotone
increasing and converges if and only if it is bounded. We restate this as:

Lemma 187 If
P∞

n=1 xn is a series with nonnegative terms then
P∞

n=1 xn is
convergent if and only if there exists an M <∞ such that for all k,

Pk
n=1 xn ≤

M , and in this case
P∞

n=1 xn ≤M .

Corollary 188 (Comparison Test) If 0 ≤ xn ≤ cn and
P∞

n=1 cn is convergent
then

P∞
n=1 xn is convergent and

P∞
n=1 xn ≤

P∞
n=1 cn

Proof. Clearly the partial sum sequence (σn) of
P∞

n=1 xn and the partial
sum sequence (τn) of

P∞
n=1 cn satisfy σn ≤ τn for all n; if the latter is bounded

then the former is bounded.
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Proposition 189 (Root Test) Let
P∞

n=1 zn be a series and define

r := lim sup
³

n
p
|zn|

´
.

1. If r < 1 then the series converges absolutely.

2. If r > 1 then the series diverges.

Proof. If r < 1 then there is some ρ such that r < ρ < 1 and according
to Lemma 177 n

p
|zn| < ρ for all large n. Equivalently |zn| < ρn and the series

converges absolutely by comparison with the geometric series
P∞

n=1 ρ
n. If r > 1

then by Lemma 177, for some large n, n
p
|zn| > 1 and hence |zn| > 1. Then |zn|

cannot converge to 0 and the series diverges.

Lemma 190 Let (xn) be a sequence of positive real numbers. Then

lim inf
xn+1
xn

≤ lim inf n
√
xn ≤ lim sup n

√
xn ≤ lim sup

xn+1
xn

.

Proof. We will prove the first inequality; the middle inequality is clear and
the last is similar to the first. First note that if lim inf xn+1xn

= 0 then there
is nothing to prove. Suppose lim inf xn+1xn

> 0 and let 0 < M < lim inf xn+1xn
.

According to Lemma 177, there is a natural number N such that if m ≥ N
then xm+1

xm
> M , which is equivalent to xm+1 > Mxm. Iterating this inequality

starting with some n > N we obtain

xn > Mxn−1 > · · · > Mn−NxN =
xN
MN

Mn

or
n
√
xn > M n

r
xN
MN

.

From Example 172 we know that n
p

xN
MN → 1 (N is fixed) and by Lemma 176,

lim inf n
√
xn ≥M . If lim inf xn+1xn

is finite we may take M = lim inf xn+1xn
− ε for

any ε > 0 and conclude that lim inf n
√
xn ≥ lim inf xn+1xn

. If lim inf xn+1xn
=∞ we

may take M to be any natural number to conclude that lim inf n
√
xn =∞.

Corollary 191 (Ratio Test) Let
P∞

n=1 zn be a series such that zn 6= 0 for all
large n.

1. If lim sup
¯̄̄
zn+1
zn

¯̄̄
< 1 then the series converges absolutely.

2. If lim inf
¯̄̄
zn+1
zn

¯̄̄
≥ 1 then the series diverges.

Note that we have used the root test to prove the ratio test. The root test is
indeed “stronger” in the sense that it provides a conclusion whenever the ratio
test does, while it can be shown that the ratio test may be inconclusive when
the root test is not. Therefore the main advantage of the ratio test is that it is
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sometimes easier to check. Using either of these tests to show divergence may
not be the easiest approach because, as the proof reveals, divergence is implied
by either test only when the terms of the series do not tend to 0. For concrete
series this fact is generally more easily verified directly. A good general strategy
for testing series is to first use the divergence test. If this does not reveal
divergence, consider the root test. If this seems difficult to check, try the ratio
test.

Proposition 192 (Alternating Series Test) If (an) is a decreasing sequence of
positive real numbers such that an → 0 then

P∞
n=1(−1)n−1an is convergent.

Proof. For any m, since (an) is decreasing, we have

σ2m = (a1 − a2) + · · ·+ (a2m−1 − a2m)

and
σ2m = a1 − (a2 − a3)− ...− a2m < a1

The first formula shows that (σ2m) is a positive increasing sequence, and the
second shows (σ2m) is bounded above, hence σ2m % s for some real number s.
Let ε > 0. Then for all large n we have an < ε

2 and, if n is even, s− σn < ε/2.
If n is odd then n+ 1 is even and

|s− σn| = |s− σn+1 − an+1| ≤ |s− σn+1|+ |an+1| <
ε

2
+

ε

2
= ε.

Example 193 The harmonic series is the series
P∞

n=1
1
n . The harmonic series

is a p-series, convergence and divergence of which are considered in Example ??.
However, one may see directly that the harmonic series diverges. Writing out
the terms one sees

1 +

µ
1

2

¶
+ (
1

3
+
1

4
) + (

1

5
+
1

6
+
1

7
+
1

8
) + · · ·

where each of the sets in parentheses consists of 2k−1 terms each of which is
at least 2−k and therefore has sum at least 1

2 . It follows that the sequence of
partial sums is unbounded. However, the terms of the series decrease to 0, and
so by the alternating series test, the alternating harmonic series

P∞
n=1

(−1)n+1
n

is convergent, but is not absolutely convergent.

We saw earlier that in general there is no “infinite associative law” for series,
and as one might expect there is in general no “infinite commutative” law that
allows one shuffle the order of the terms of a series without affecting the sum.
Worse yet, it can be shown (see [?], Theorem 3.55) that any series that converges
but does not converge absolutely (like the alternating harmonic series) can have
its terms rearranged so that it converges to any arbitrary real number! On the
other hand, as we will see next, the sum any absolutely convergent series is
unaffected by rearrangement.
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Definition 194 A rearrangement of a series
P∞

n=1 zn is a series
P∞

k=1wk such
that there is a bijection ψ : N→ N with the property that wψ(k) = zk for all k.

Note that if
P∞

k=1wk is a rearrangement of
P∞

n=1 zn then
P∞

n=1 zn is a
rearrangement of

P∞
k=1wk (via the function ψ−1).

Proposition 195 Let
P∞

n=1 zn be an absolutely convergent series. If
P∞

k=1wk

is a rearrangement of
P∞

n=1 zn then
P∞

k=1wk is convergent and
P∞

n=1 zn =P∞
k=1 wk.

Proof. Let (σn), (τk) be the partial sum sequences for
P∞

n=1 zn = z andP∞
k=1 wk, respectively, ψ be the bijection of the rearrangement, and let ε >

0. Since
P∞

n=1 zn is absolutely convergent, for all large m |σm − z| < ε
2 andP∞

k=m |zk| < ε
2 . Now let

K1 := {ψ(1), ..., ψ(m)}

and
M := maxK1 ≥ m

and
K2 := {1, ...,M}\K1.

Since wψ(k) = zk, σm =
P

n∈K1
wn and if n ∈ K2 then ψ−1(n) > m. Therefore

|τM − σm| =
¯̄̄̄
¯ X
n∈K2

wn

¯̄̄̄
¯ ≤ X

n∈K2

|wn| =
X
n∈K2

¯̄
zψ−1(n)

¯̄
≤
∞X

k=m

|zk| <
ε

2
.

Finally
|τM − z| ≤ |τM − σm|+ |σm − z| < ε.

Note that the above proposition can be applied to the series
P∞

n=1 |zn| andP∞
k=1 |wk| to conclude that

P∞
k=1wk is also absolutely convergent. Also, one

may conclude that if
P∞

k=1 zk is not absolutely convergent then neither is any
rearrangement of it.

Exercise 133 Consider the “double alternating harmonic series”

1− 1 + 1
2
− 1
2
+
1

3
− 1
3
+
1

4
· ··

Show that this series is convergent and has a rearrangement such that the se-
quence of partial sums (σk) satisfies σk → ∞. Hint: you will not be able to
write down an explicit rearrangement; show one exists by showing that you can
always move enough positive terms in front of each negative term to make the
partial sums get large.
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3.5 Power Series

Definition 196 Given a sequence (cn)∞n=0 of complex numbers, an expression
of the form

∞X
n=0

cnz
n

is called a power series, and the numbers cn are called the coefficients of the
power series.

A power series is a kind of “infinite polynomial” except that, because the
sum is infinite, there is the question of convergence. Of course the series always
converges for z = 0 and so there is always some nonempty subset C of C on
which the power series defines a function into C. We will study the properties of
these very important functions later, but in the present section we are primarily
concerned with understanding the domain of this function.

Example 197 The power series
P∞

n=0 n
nzn converges only for z = 0, for if

z 6= 0 the terms of the series are of the form (nz)n. Since z is fixed, for large
n we have that |nz| > 1 and therefore the terms of the series do not tend to 0.
This series has the smallest possible domain of convergence.

Example 198 Consider the series
P∞

n=0
zn

n! . Applying the ratio test we have¯̄
zn+1

¯̄
n!

|zn| (n+ 1)! =
|z|

n+ 1
→ 0 < 1

for all z, so this power series converges for all z. The reader should recognize
that this power series has the coefficients of the Maclaurin series for the real
function ex. This motivates the following definition.

Definition 199 Define exp : C→ C by exp(z) :=
P∞

n=0
zn

n! . This function is
called the (complex) exponential function. We define e := exp(1).

Note that if x is positive, the terms in the series are positive. Since the first
term is always 1, exp(x) > 1 when x > 0. Examining the first two terms shows
that e > 2.

Proposition 200 For any complex numbers z, w, we have exp(z) exp(w) =
exp(z + w) and

1. exp(0) = 1.

2. exp(−z) = 1
exp(z) for any complex z.

3. (exp(z))n = exp(nz) for any complex z and natural number n.

4. exp(1q ) =
q
√
e for any natural number q.
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5. exp(pq ) = (
q
√
e)p for any integers p and q with q > 0.

Exercise 134 Prove the above proposition.

Corollary 201 The restriction of exp to the real numbers is a strictly increas-
ing, positive, unbounded function.

Proof. If x < y then y = x+ k for some k > 0. We have already observed
that exp(k) > 1 if k > 0 and therefore exp(y) = exp (x+ k) = exp(x) exp(k) >
exp(x). If x < 0 then exp(x) = 1

exp(−x) > 0. Therefore exp(x) is always
positive. It is easy to show by induction that 2n > n for any n ∈ N and
therefore exp(n) = en > 2n > n, which shows the function is unbounded.

Example 202 The power series
P∞

n=0 z
n is simply the geometric series (Ex-

ample 184). We have already seen that this series converges for |z| < 1 and
diverges for |z| ≥ 1.

So far we have seen that power series can converge only at 0, on an open
ball, or on all of C. The next theorem shows that the domain is always one of
these three possibilities, possibly including part of the boundary circle when the
domain is an open ball. We will use the following conventions: If τ = ∞ then
define 1

τ = 0, if τ = 0 then define
1
τ =∞, and let B(0,∞) := C. The open unit

ball refers to B(0, 1).

Theorem 203 Let
P∞

n=0 cnz
n be a power series and let

τ := lim sup n
p
|cn| and R :=

1

τ
.

If R = 0 then
P∞

n=0 cnz
n converges only on the set {0}. If R > 0 thenP∞

n=0 cnz
n converges if |z| < R and diverges if |z| > R.

Proof. Applying the root test we have

lim sup n
p
|cnzn| = lim sup |z| n

p
|cn| = |z| τ

provided τ is finite. If τ = 0 then the series converges for all z ∈ C, otherwise
the lim sup is less than 1 if |z| < R = 1

τ and greater than 1 if |z| > R = 1
τ . If

τ =∞ then the limit is infinite unless z = 0.
The extended real number R in the above theorem is called the radius of

convergence. For z such that |z| = R, convergence or divergence is possible;
sometimes this can be checked using other methods. Note that although the
radius of convergence is defined by a specific formula, the ratio test can be

used to find the radius of convergence, provided lim
¯̄̄
cn+1
cn

¯̄̄
exists (see the next

exercise for a more general statement).

Exercise 135 Let
P∞

n=0 cnz
n be a series.
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1. Show that if there exists some r ∈ (0,∞) such that
P∞

n=0 cnz
n converges

for all z ∈ B(0, r) and diverges for all z /∈ C(0, r) then r is the radius of
convergence of the series.

2. Show that if lim sup
¯̄̄
cn+1
cn

¯̄̄
= τ then the radius of convergence R of the

series satisfies R ≥ 1
τ .

3. Show that if lim inf
¯̄̄
cn+1
cn

¯̄̄
= σ then the radius of convergence R of the

series satisfies R ≤ 1
σ .

Example 204 Consider the power series
P∞

n=1
zn

n2 . Applying the ratio test
from the previous exercise,¯̄̄̄

n2

(n+ 1)2

¯̄̄̄
=

n2

(n+ 1)2
→ 1

so the series converges absolutely if |z| < 1 and diverges if |z| > 1.

Exercise 136 Show that the power series
P∞

n=1
zn

n converges absolutely on the
open unit ball and diverges outside the closed unit ball. Show that it converges
at z = −1 and diverges at z = 1. It can be shown that this power series in fact
converges on the unit circle except at z = 1.

Exercise 137 Find the radius of convergence of the following power series z−
z3

6 +
z5

5! − · · · Do you recognize the coefficients of this series?

Exercise 138 Prove or disprove: If
P∞

n=0 cnz
n and

P∞
n=0 bnz

n are power se-
ries and the radius of convergence of each series is R, then the radius of con-
vergence of

P∞
n=0(bn + cn)z

n is also R.

3.6 Pointwise and monotone convergence

At this point, our understanding of convergence involves sequences in metric
spaces. We have seen in Example 31 that it is possible to define a metric on
some sets of functions, and hence we can discuss convergence of functions in the
same way we would any elements of a metric space, applying all of the results
in the preceding chapters. We will consider this further later in this chapter.
In the meantime we will consider a more basic kind of convergence of functions
called pointwise convergence, which is not defined in terms of a metric on the
set of functions.

Definition 205 Let A be a set, X be a metric space, and (fi) be a sequence
of functions fi : A → X. We say that fi converges pointwise to f : A → X

(written fi
p→ f) if for every x ∈ A, fi(x)→ f(x) in X.
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The word “pointwise” refers to the fact that each point in the domain gives
rise to a convergent sequence in the range, but as we will see in the next couple
of examples the “rate” of convergence, in some sense, may vary widely from
point to point.

Exercise 139 Prove that the limit of a pointwise convergent sequence of func-
tions is unique. That is, if fi

p→ f and fi
p→ g then f = g.

Example 206 Let fn : R→ R be given by fn(x) = x
n . Then fn

p→ 0. In fact,
for any x, we have fn(x) =

x
n → 0. Note that “how fast” fn(x) tends to 0

depends on x in the following sense: Given x ∈ R and ε > 0, there exists an Nx

such that if n ≥ Nx then |fn(x)| = |fn(x)− 0| < ε. In fact, we need
¯̄
x
n

¯̄
< ε or

n > |x|
ε , which is equivalent to Nx > |x|

ε . In other words, the larger |x| is, the
larger we have to choose Nx for the same ε. This means that for given ε > 0,
we cannot choose a single N such that |fn(x)| < ε for all x ∈ R. One can see
this behavior graphically: Since the line y = x

n slopes upwards, the farther out
you go the larger n must be in order to make x

n close to 0.

Example 207 Let fn : [0, 1]→ R be defined by

fn(x) =
1

1 + nx
.

We will check that fn converges pointwise to the function f defined by f(0) =
1 and f(x) = 0 when x 6= 0. First, fn(0) = 1 for all n, so fn(0) → 1.
Now let x ∈ (0, 1]. Then nx → ∞ and therefore fn(x) → 0. Note that the
functions fn are all continuous, but f is not! This example shows that it is
possible for a sequence of continuous real functions defined on a compact set to
converge pointwise to a function that is not continuous. This already indicates
that pointwise convergence is too weak for some purposes. What goes wrong
again in this case is a lack of uniformity of convergence, although it is not as
obvious as in the preceding example. As before, fix x ∈ (0, 1] and let ε > 0. Then¯̄̄

1
1+nx

¯̄̄
< ε is equivalent to n >

1
ε−1
x . So we need to choose our Nx >

1
ε−1
x . But

1
ε−1
x → ∞ as x → 0; in other words if x is close to 0 then the Nx must be
chosen arbitrarily large. Note that for x = 0 any N will work for any ε.
This same example illustrates another “problem” with the pointwise conver-

gence that can occur. Note that it follows from our preceding computations that

lim
n→∞

³
lim
x→0

fn(x)
´
= lim

n→∞
fn(0) = lim

n→∞
1 = 1

but
lim
x→0

³
lim
n→∞

fn(x)
´
= lim

x→0
f(x) = 0.

In other words, “switching the order of limits” changes the value of those limits!
In fact, as the reader should notice, the discontinuity of the limit function f and
the problem with the order of limits are closely related.
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The following lemma is an immediate consequence of the definition and
Proposition 167. We note only that if gn

p→ g and g(x) 6= 0 it is possible that
for all n ∈ N there exists some x ∈ A such that gn(x) = 0 (the reader is welcome

to construct an example) and hence no tail of the sequence
³
fn
gn

´
is defined on

all of A. Hence the stronger requirement for the domain in the third part.

Lemma 208 Let (fn) and (gn) be sequence of functions from a set A into C.
If fn

p→ f and gn
p→ g then

1. fn + gn
p→ f + g

2. fn · gn
p→ f · g

3. fn
gn

p→ f
g on {x ∈ A : g(x) 6= 0 and gn(x) 6= 0 for all n}.

Example 207 also illustrates another kind of convergence when the range
space is R, defined as follows:

Definition 209 Let A be a set and (fn) be a sequence of functions fn : A→ X,

where X is a metric space. We say (fn) is uniformly bounded if
∞S
n=1

fn(A) is

bounded in X. If fn : A→ R we say that (fn) is decreasing (resp. increasing) if
for all x ∈ A the sequence (fn(x)) is a decreasing (resp. increasing) sequence in
R. If in addition (fn) converges pointwise to f : X → R we write fn & f (resp.
fn % f). If (fn) is increasing or decreasing we say that (fn) is monotone.

Exercise 140 Let (fn) be a sequence of functions fn : A→ C. Show that (fn)
is uniformly bounded if and only if there exists some M ≥ 0 such that for all
x ∈ A and n, |fn(x)| ≤M .

Monotone convergence is “stronger” than pointwise convergence in the sense
that there are sequences that converge pointwise but do not converge monoton-
ically, as will be shown in the next exercise:

Exercise 141 Give an example of a sequence of real functions that converges
pointwise but not monotonically.

As will be shown in an exercise below, an arbitrary sequence of functions
may not converge to any function at all (just like an arbitrary sequence in a
metric space need not converge), but uniformly bounded, monotone sequences
of real functions always do converge pointwise to a function:

Lemma 210 Let (fn) be decreasing (resp. increasing) uniformly bounded se-
quence of functions fn : A → R. Then there exists some function f : A → R
such that fn & f (resp. fn % f).

Proof. Let x ∈ A. Then by assumption the sequence (fn(x)) is a bounded,
decreasing (resp. increasing) sequence in R and therefore fn(x) → y for some
y ∈ R. We define f(x) := y. By construction fn & f (resp. fn % f).
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Exercise 142 Let (fn) be a sequence of functions from a set A into a complete
metric space X. Prove that if for all x ∈ A the sequence (fn(x)) is Cauchy then
there exists some function f : A→ X such that fn

p→ f .

Exercise 143 Let fn(x) := xn for n ∈ N.

1. Show that (fn) converges monotonically on (−1, 1] (i.e. when each fn is
restricted to (−1, 1]).

2. Show that (fn) does not converge pointwise to any function on [−1, 1].

3. Show that (fn) has a subsequence that converges pointwise to a function
f on [−1, 1] that is not continuous.

4. Show that there exists a ∈ [−1, 1] such that limx→a (limn→∞ fn(x)) exists
but limn→∞ (limx→a fn(x)) does not.

3.7 Uniform convergence

In Example 31 we constructed a metric on the space of continuous functions
f : [0, 1]→ R by simply defining

d(f, g) = max
[0,1]

{|f(x)− g(x)|}.

This definition is made possible by the Max-Min Theorem for continuous real-
valued functions, which depends both on the compactness of [0, 1] and the con-
tinuity of the functions in question. If one considers more generally functions
defined on metric spaces one might try to simply replace the maximum by
the supremum, but it is possible that the supremum is infinite: for example
sup(0,1){

¯̄
x2 − 1

x

¯̄
} =∞. While it is possible to develop a theory of metrics hav-

ing infinite values, there is a more useful approach to this problem, namely by
“truncating” large distances so that the maximum distance between functions
is at most 1. If this seems a bit crude, note that what matters, in terms of
convergence, is small distances, not large ones.

Definition 211 Let (X, d) be a metric space. For every x, y ∈ X, define
d1(x, y) = min{d(x, y), 1}.

Proposition 212 If (X,d) is a metric space then d1 is a metric on X that is
topologically equivalent to d.

Proof. The proof that d1 is a metric is trivial except for the triangle in-
equality d1(x, z) ≤ d1(x, y) + d1(y, z), which must be sorted into cases. First
note that for any a, b ∈ X, d1(a, b) ≤ 1 and d1(a, b) ≤ d(a, b). If d1(x, y) = 1 or
d1(y, z) = 1 then

d1(x, z) ≤ 1 ≤ d1(x, y) + d1(y, z).
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Otherwise, d1(x, y) = d(x, y) and d1(y, z) = d(y, z), and we have

d1(x, y) + d1(y, z) = d(x, y) + d(y, z) ≥ d(x, z) ≥ d1(x, z).

To see that these metrics are topologically equivalent, let (xi) be a sequence in
X. If xi → x in (X,d) then d(xi, x) → 0. But for all large i, d(xi, x) < 1 and
hence d(xi, x) = d1(xi, x), so d1(xi, x) → 0 and xi → x in (X, d1). A similar
argument shows if xi → x in (X, d1) then xi → x in (X, d) and it follows from
Lemma 110 that the two metrics are topologically equivalent.

Definition 213 Let A be a set and X be a metric space. Let F(A,X) denote
the set of all functions f : A → X with the metric defined, for f, g ∈ F(A,X),
by

d(f, g) := sup
x∈A

©
d1(f(x), g(x))

ª
. (3.7)

If a sequence (fn) converges to f in F(A,X) we will say that fn converges
uniformly to f and write fn → f .

Using essentially the same proof as in Example 31, we see that the function
d defined in the above definition is actually a metric, which satisfies d(f, g) ≤ 1
for all f, g ∈ F(A,X). Note that every subset, and hence any sequence, in
F(A,X) is bounded; this is partly why the separate term “uniformly bounded”
was introduced.

Exercise 144 Note that the set C defined in Example 31 is a subset of F([0, 1],R).
Show that the metric d defined in Example 31 is different from, but topologically
equivalent to, the subspace metric on C as a subspace of F([0, 1],R) with the
metric defined in Definition 213.

Lemma 214 If fn → f in F(A,X) then fn
p→ f .

Proof. Let x ∈ A and ε > 0. By definition of uniform convergence, for all
large n we have d(fn, f) < ε, which implies d1(fn(x), f(x)) < ε for all large i.
In other words, fn(x)→ f(x) in d1 and hence in d.

Exercise 145 Show that the sequence (fn) of Exercise 143

1. converges pointwise to a continuous function on [0, 1)

2. converges uniformly on [0, c] for any 0 < c < 1,but

3. does not converge uniformly on [0, 1) =
S

0<c<1
[0, c]. This shows that a

sequence of functions that converges uniformly on each of a collection of
sets need not converge uniformly on the union of those sets. We will see
other examples of this kind of behavior later.

Lemma 215 Let A be a set, X be a metric space, and (fn) be a sequence of
functions in F(A,X). Then fn → f in F(A,X) if and only if for every ε > 0
there exists an N such that for all n ≥ N and all x ∈ A, d(fn(x), f(x)) < ε.
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Proof. Suppose first that fn → f and let ε > 0. Define δ := min{ε, 1}. By
definition there exists an N such that for all n ≥ N , d(fn, f) < δ, which implies
that d1(fn(x), f(x)) < δ for all such n and x ∈ A. But then

d(fn(x), f(x)) = d1(fn(x), f(x)) < δ ≤ ε

for all n ≥ N and x ∈ A. The converse is an exercise.

Corollary 216 If (fn) is a sequence in F(A,X) then fn → f if and only if
supx∈A {d(fn(x), f(x))}→ 0.

The condition given in Lemma 215 is sometimes used as the definition of
uniform convergence. We have chosen to define it in terms of the space F(A,X)
because this allows us to use certain theorems that we have proved about metric
spaces. Lemma 215, on the other hand, is very often useful in practice and we
will generally use it without direct reference to it. Lemma 215 also more clearly
reveals the difference between uniform and pointwise convergence: Given a fixed
ε > 0, uniform convergence implies there is an N that “works” uniformly, i.e.
for every point in A simultaneously, but pointwise convergence only provides an
Nx that “works” for an individual x and Nx may vary from point to point. The
reader should take a moment to look again at Examples 206 and 207, which,
according to our current definitions, are examples of sequences that converge
pointwise but not uniformly.

Exercise 146 Finish the proof of Lemma 215.

We have already seen that one of the deficiencies of monotone and pointwise
convergence is that switching the order of iterated limits can fail to preserve
the limit, or even whether the limit exists. This is not a problem with uniform
convergence in complete metric spaces.

Theorem 217 Let (fn) be a sequence of functions fn : A → Y , where A is
a subset of a metric space X and Y is a metric space. Suppose fn converges
uniformly on A to f : A→ Y and for some x0 ∈ A, yn := limx→x0 fn(x) exists
for all n. Then

1. (yn) is Cauchy and

2. if (yn) is convergent (e.g. if Y is complete), then

lim
n→∞

lim
x→x0

fn(x) = lim
x→x0

f(x) = lim
x→x0

lim
n→∞

fn(x) (3.8)

(in particular all limits in this expression exist).

Proof. For the first part, let ε > 0. Since the sequence (fn) is Cauchy in
F(A,X), for all large m and n we have d(fm(x), fn(x)) < ε

2 for all x ∈ A. Since
the distance function is continuous, Corollary 67 implies

d(ym, yn) = d( lim
x→x0

fm(x), lim
x→x0

fn(x)) = lim
x→x0

d(fm(x), fn(x)) ≤
ε

2
< ε
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for all large m and n. That is, (yn) is Cauchy.
For the second part let y0 := lim yn. The proof will be complete if we

show that limx→x0 f(x) = y0. Let ε > 0. For all large n we have both
d(fn(x), f(x)) <

ε
3 for all x ∈ A and d(yn, y0) < ε

3 . For any such n the fact that
yn = limx→x0 fn(x) means, by definition, that there exists a δ > 0 such that if
0 < d(x, x0) < δ and x ∈ A then d(fn(x), yn) <

ε
3 . Putting all of these together

we have, when 0 < d(x, x0) < δ,

d(f(x), y0) ≤ d(f(x), fn(x)) + d(fn(x), yn) + d(yn, y0) < ε.

That is, limx→x0 f(x) = y0.

Corollary 218 Let (fn) be a sequence of functions fn : X → Y between metric
spaces with fn → f . If each fn is continuous at x0 ∈ X then f is continuous
x0.

Proof. By the continuity of each fn, yn := limx→x0 fn(x) = fn(x0) and
since fn

p→ f , yn → f(x0). We may apply Theorem 217 and obtain

lim
x→x0

f(x) = lim
n→∞

µ
lim
x→x0

fn(x)

¶
= lim

n→∞
fn(x0) = f(x0).

Lemma 219 Let A be a set and X be a metric space. If (fi) is Cauchy in
F(A,X) and fi

p→ f then fi → f .

Proof. Let ε > 0. Since (fi) is Cauchy there exists some N such that if
i, j ≥ N then d(fi(x), fj(x)) <

ε
2 for all x ∈ A. Now fix any i ≥ N . Then for

all j ≥ i we have for all x

d(fi(x), fj(x)) <
ε

2
.

Since f(x) = lim
j→∞

fj(x), by Corollary 74 and Exercise 52 we obtain

d(fi(x), f(x)) = lim
j→∞

d(fi(x), fj(x)) ≤
ε

2

for all x, i.e., d(fi, f) ≤ ε
2 < ε for all i ≥ N .

Proposition 220 Let A be a set and X be a complete metric space. Then
F(A,X) is complete.

Proof. Let (fi) be a Cauchy sequence in F(A,X). Then for each x ∈ A
the sequence (fi(x)) is Cauchy in X, hence convergent. Let f(x) := lim(fi(x)).
Then fi

p→ f and the proof is finished by Lemma 219.

Definition 221 Let X and Y be metric spaces. By C(X,Y ) we denote the
subset of F(X,Y ) of all continuous functions f : X → Y with the subspace
metric.
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As an immediate consequence of Corollary 218 we obtain.

Theorem 222 If X and Y are metric spaces with Y complete then C(X,Y ) is
a closed subset of F(X,Y ).

Corollary 223 If X and Y are metric spaces and Y is complete then C(X,Y )
is complete.

Exercise 147 Let fn, gn : A→ C be functions for all n ∈ N such that (fn) and
(gn) converge uniformly to functions f and g respectively.

1. Prove (fn + gn) converges uniformly to f + g.

2. Prove that if (fn) and (gn) are uniformly bounded then (fngn) converges
uniformly to (fg).

Example 224 One cannot remove the requirement in the above exercise that
the sequences be uniformly bounded. For example, let fn(z) := 1

z and gn(z) =
1
n

for all n ∈ N and z ∈ D := B(0, 1)\{0}. For any z ∈ D, |gn(z)− 0| = 1
n , and it

follows that gn converges uniformly to the constant function g(z) = 0 on D. On
the other hand, (fn) is simply a constant sequence and so converges uniformly
to f(z) := 1

z . We have fg(z) = 0 for all z in D. Now for any ε > 0 and any
n ∈ N, let z be such that |z| < 1

nε . Then

|fngn(z)− fg(z)| =
¯̄̄̄
1

nz

¯̄̄̄
=

1

n |z| > ε.

Therefore (fngn) does not converge uniformly to 0 on D (although it still con-
verges pointwise to 0).

Exercise 148 Consider the sequence of real functions fn(x) := x
nx2+1 .

1. What is the pointwise limit f of (fn)?

2. Prove that (fn) converges uniformly.

3. Using theorems from basic calculus show that lim f 0n(0) 6= f 0(0). That is,
a uniformly convergent sequence of differentiable functions need not have
even pointwise convergent derivatives.

3.8 Series of Functions

Series of functions are defined in an analogous way to series of complex numbers,
namely an expression of the form

∞X
n=0

fn
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where each fn : A → C is a function defined on a set A. Frequently A will
be a subset of complex numbers. As with the case of series of numbers, with
series of functions there is a question of convergence. In this case the sequence
of partial sums is a sequence of functions (gk)∞k=1, with gk :=

Pk
n=0 fn. We

can ask on which subsets B of A (gk)∞k=1 converges pointwise or uniformly, and
when it does we will say that

P∞
n=0 fn converges pointwise or uniformly, respec-

tively, on B. In either case we will denote the limiting function by
P∞

n=0 fn,
and (

P∞
n=0 fn) (x) =

P∞
n=0 fn(x) by definition. We also say that

P∞
n=0 fn con-

verges absolutely (pointwise or uniformly) if
P∞

n=0 |fn| converges (pointwise or
uniformly, respectively). As with the case of numerical series, absolute conver-
gence implies convergence, but the converse is not true.
We are primarily interested in uniform convergence because of the stronger

properties it provides. For example, if A is a metric space, each of the functions
fn is continuous and the series

P∞
n=0 fn converges uniformly onA then according

to Corollaries 168 and 218 the function
P∞

n=0 fn is continuous on A. It is worth
considering the meaning of “Cauchy” in this context. The difference between
two terms

Pk
n=0 fn and

Pm
n=0 fn in the sequence of partial sums with m > k isPm

n=k+1 fn. Therefore the sequence of partial sums is Cauchy if and only if for
every ε > 0 we have that |

Pm
n=k fn(x)| < ε for all x ∈ A and all large k < m.

The next proposition, which is analogous to the Comparison Test for numerical
series, is frequently useful.

Proposition 225 (Weierstrass M-test) Let A be a set and fk : A → C be a
sequence of functions. Suppose there is a convergent real series

P∞
k=0Mk such

that for all x ∈ A and k ∈ N, |fk(x)| ≤Mk. Then
P∞

k=0 fk converges absolutely
uniformly on A.

Proof. To prove uniform convergence we need only prove that the sequence
of partial sums is Cauchy. Since the sequence of partial sums of

P∞
n=0Mn is

Cauchy, given ε > 0, for all large m < k and all x ∈ A we have¯̄̄̄
¯
kX

n=0

|fn(x)|−
mX
n=0

|fn(x)|
¯̄̄̄
¯ =

¯̄̄̄
¯

kX
n=m+1

|fn(x)|
¯̄̄̄
¯ =

kX
n=m+1

|fn(x)| ≤
kX

n=m+1

Mn < ε.

The most fundamental type of series is the power series
P∞

n=0 anz
n. In this

case the partial sum functions are polynomials
Pk

n=0 anz
n. We have already

seen that each power series has a radius of convergence R ∈ [0,∞] and for
z ∈ B(0, R) the numerical series

P∞
n=0 anz

n converges absolutely. In other
words, the series

P∞
n=0 anz

n converges pointwise on B(0, R).

Theorem 226 If
P∞

n=0 anz
n is a power series with radius of convergence R > 0

then
P∞

n=0 anz
n converges absolutely uniformly on any closed ball C(0, r) such

that 0 < r < R.

Proof. For any z ∈ C(0, r) we have for all k ≥ 0,¯̄
akz

k
¯̄
≤ |ak| rk
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Letting Mk := |ak| rk and noting that, since r < R, the numerical seriesP∞
n=k+1 |an| rn converges, the proof is finished by the Weierstrass M-test.

Corollary 227 If f(z) :=
P∞

n=0 anz
n is a power series with radius of conver-

gence R > 0 then f is continuous on B(0, R).

Proof. Let z ∈ B(0, R); so |z| = r, with r < R and suppose zi → z
in B(0, R). Let ρ be such that r < ρ < R. Theorem 226 implies that f is
continuous on C(0, ρ). Moreover, for large i, zi ∈ C(0, ρ). Therefore f(zi) →
f(z).

Exercise 149 A power series centered at z0 ∈ C is an expression of the formP∞
n=0 an(z− z0)

n. Show that
P∞

n=0 an(z− z0)
n converges uniformly for all z ∈

B(z0, r), where r is less than the radius of convergence of the series
P∞

n=0 anz
n.

Exercise 150 Let f(z) :=
P∞

n=0
1

1+n2z .

1. Show that f is absolutely and uniformly convergent on any set of the form
C\(B(0, r) where r > 0. Hint: Use Exercise 114.

2. Determine whether f converges uniformly on C\{0}.

Exercise 151 Show that the real function exp : R → (0,∞) is a continuous
bijection.

We are now in a position to define powers ar, where a > 0 and r is a
real number. Since exp is a bijection onR, it has an inverse, which we will
give its usual name ln : (0,∞) → R. We define ar := exp(r ln a). Note that
er = exp(r ln e) = exp(r) for any real r. Therefore from now on we will denote
exp(r) by er when r is real. Using Proposition 200 we have for real r, s,

ar+s = e(r+s) ln a = er ln a+s ln a = aras.

Moreover,
ers = e(s ln(e

r)) = (er)s

and so
ars = ers ln a =

¡
er ln a

¢s
= (ar)

s .

We need to check that this “new” way to define powers is not really new, at
least for rational exponent. But note that For a natural number n, induction
on the above formula implies

an = en ln a = eln a · · · eln a = a · · · a,

where the last two products have n factors. Next
³
a
1
q

´q
= a(

q
q ) = a1 = a, so

a
1
q = q
√
a. Similarly it can be checked that for any integer p, a

p
q = ( q

√
a)

p. We
know that the function ax = ex ln a is the composition of continuous functions
and therefore we have continuously extended rational powers to powers of any
real number.



Chapter 4

Integration

4.1 Riemann Integration

Throughout this section we assume that a < b. Recall from basic calculus that
the Riemann integral of a real function f : [a, b]→ R is defined as follows: Take
a partition P of the interval [a, b], which is a set {xj}kj=0 such that

x0 = a < x1 < · · · < xk−1 < xk = b.

Choose for each j = 1, 2, ..., k some cj with xj−1 ≤ cj ≤ xj . The corresponding
Riemann sum is

S(P, {cj}) :=
kX

j=1

f(cj)(xj − xj−1).

Note that the value of the Riemann sum depends on both the partition and the
choice of the constants cj . The Riemann integral exists if these Riemann sums
converge to a specific number as the partitions get “fine”, regardless of how cj
is chosen. More precisely, for any partition P of [a, b] we define the size of P to
be

σ(P) := max
j
{xj − xj−1}.

That is, σ(P) is the maximum length of the subintervals [xj−1, xj ] in the par-
tition. We say f is Riemann integrable on [a, b] if there is some real number I
such that for every ε > 0 there exists some δ > 0 such that |S(P, {cj})− I| < ε
for any partition P such that σ(P) < δ and any choice of {cj}. The number I
is called the Riemann integral of f , denoted by

R b
a
f or

R b
a
f(x)dx.

Exercise 152 Let f be continuous on [a, b]. Prove that if P is any partition of
[a, b] then for any choice of {cj},

(b− a)min
[a,b]

f ≤ S(P, {cj}) ≤ (b− a)max
[a,b]

f .

97
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Which functions are Riemann integrable? We will not state the answer to
this question later, but without proof. For now we will prove the usual theorem
stated in elementary calculus, that continuous functions are Riemann integrable.
We need a few preliminaries about partitions. If P and P 0 are partitions, we say
that P 0 is a refinement of P if P ⊂ P 0. That is, P 0 is obtained by adding more
points to P. Note that σ(P 0) ≤ σ(P). Note also that every pair of partitions P
and P 00

has a common refinement P 0 := P ∪ P 00, which is a refinement of both
P and P 00.
Given a continuous function f : [a, b] → R, we will be interested in the real

sequence (ri)∞i=1 defined by

ri := sup{S(P, {cj})} : σ(P) ≤
1

i
}.

That is, ri is the supremum of all Riemann sums involving partitions of [a, b]
into subintervals of length at most 1

i . According to Exercise 152, (ri)
∞
i=1 is

bounded below. Moreover, (ri) is monotone decreasing. In fact if σ(P) ≤ 1
i

then σ(P) ≤ 1
k for every k ≤ i and therefore½
S(P, {cj}) : σ(P) ≤

1

i

¾
⊂
½
S(P, {cj})} : σ(P) ≤

1

k

¾
.

Therefore the supremum of the set on the left is not larger than the supremum
of the set on the right.
Next we would like to consider a very specific Riemann sum for a given

partition P, namely

Smax(P) :=
kX

j=1

µ
max

[xj−1,xj ]
f(x)

¶
(xj − xj−1).

This is the Riemann sum having the largest value for the partition P. One
can similarly define Smin(P), and for any partition P we have Smin(P) ≤
S(P, {cj}) ≤ Smax(P).

Exercise 153 Let f : [a, b] → R be continuous and suppose P and P 0 are
partitions of [a, b].

1. Show that if P 0 is a refinement of P then

Smin(P) ≤ Smin(P 0) ≤ Smax(P 0) ≤ Smax(P).

2. Show that Smin(P) ≤ Smax(P 0) even if neither partition is a refinement of
the other. (Hint: Let P 00 be a common refinement of P and P 0.)

Theorem 228 If f : [a, b]→ R is continuous then f is Riemann integrable.
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Proof. Using the notation prior to the statement of this theorem, let I :=
lim ri and fix ε > 0. First, there exists an N such that I ≤ rN < I + ε.
According to Proposition 93, f is uniformly continuous; there exists a δ > 0
such that δ < 1

N and if |x− y| < δ then |f(x)− f(y)| < ε
3(b−a) . Let P be a

partition such that σ(P) < δ < 1
N . By definition of rN ,

Smax(P) ≤ rN < I + ε.

According to Exercise 153 we will be finished if we can now show

Smin(P) > I − ε.

Next

Smax(P)− Smin(P) ≤
kX

j=1

µ
max

[xj−1,xj ]
f(x)− min

[xj−1,xj ]
f(x)

¶
(xj − xj−1)

<
ε

3(b− a)

kX
j=1

(xj − xj−1) =
ε

3(b− a)
(b− a) =

ε

3
. (4.1)

(Here we have used the fact that
Pk

j=1(xj − xj−1) “telescopes” and is equal to
b − a.) Choose any 1

i < δ. Since ri ≥ I > I − ε
3 the approximation property

for the supremum implies there exists some P 0 such that σ(P 0) < 1
i < δ and

choice of dj such that Smax(P 0) ≥ S(P 0, {dj}) > I − ε
3 . Applying Exercise 153

and Formula 4.1 twice we have

Smin(P) ≥ Smax(P)−
ε

3
≥ Smin(P 0)−

ε

3
≥ Smax(P 0)−

2ε

3
> I − ε.

Proposition 229 Let f : [a, b] → R be Riemann integrable on [a, b] and g :
[a, b]→ R be a function such that f(x) = g(x) for all x except for a single point
y0 ∈ [a, b]. Then g is Riemann integrable on [a, b] and

R b
a
f =

R b
a
g.

Proof. Let ε > 0 and I :=
R b
a
f . Then there exists a δ > 0 such that

δ < ε
3(|f(y0)−g(y0)|) and if a partition P satisfies σ(P) < δ then for any choice of

{cj} we have
¯̄̄
I −

Pk
i=1 f(cj)(xj − xj−1)

¯̄̄
< ε

3 . Now consider the corresponding

sum
Pk

j=1 g(cj)(xj − xj−1). The two sums are identical unless we happen to
have chosen cj = y0 for some j. There are two possible cases: we chose only
a single cj = y0 or we chose cj = cj+1 = y0 (in this case y0 = xj). We will
consider the second case; the first is an exercise. Now¯̄̄̄
¯̄ kX
j=1

f(cj)(xj − xj−1)−
kX

j=1

g(cj)(xj − xj−1)

¯̄̄̄
¯̄ =

¯̄̄̄
¯̄ kX
j=1

(f(cj)− g(cj))(xj − xj−1)

¯̄̄̄
¯̄
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= |(f(y0)− g(y0))((xj − xj−1) + (xj+1 − xj))| = |(f(y0)− g(y0))| |xj+1 − xj−1|

< |f(y0)− g(y0)|
µ

2ε

3 |g(y0)− f(y0)|

¶
=
2ε

3
.

By the triangle inequality,
¯̄̄
I −

Pk
j=1 g(cj)(xj − xj−1)

¯̄̄
< ε.

Exercise 154 Prove the remaining case in Proposition 229.

A simple induction proof yields the following:

Corollary 230 If f : [a, b] → R is continuous except at finitely many points
then f is Riemann integrable.

Example 231 Let fδ : [0, 1]→ R be defined by fδ(x) = 1 if x is rational and
fδ(x) = 0 if x is irrational (fδ is sometimes called the Dirichlet function). Cer-
tainly this function is not Riemann integrable. In fact, given any partition of
[0, 1], if one chooses, for each value of cj a rational number then the corre-
sponding Riemann sum is always 1. If one chooses cj to always be irrational
than the corresponding Riemann sum is always 0, so there can be no limit as
the partitions get fine. This shows that a function with countably many dis-
continuities need not be Riemann integrable. More seriously, fδ is a monotone
increasing limit of a uniformly bounded sequence of Riemann integrable func-
tions: Let (qn)∞n=1 be a sequence that is surjective onto the rational numbers.
Define fi(x) to be 1 if x ∈ {q1, ..., qi} and 0 otherwise. Then each fi has finitely
many discontinuities and hence is Riemann integrable and fi % fδ.

Exercise 155 Prove that the function fδ is not continuous at any point in [0, 1].

The above example illustrates one of the most important limitations of Rie-
mann integration. Riemann integrable functions lack a basic completeness prop-
erty, which makes them unacceptable for more advanced mathematics. Many
problems in pure and applied mathematics are solved using pointwise limits of
functions, and a theory of integration that behaves well with respect to such lim-
its is essential. Also, as we will see later in our discussion of iterated integration,
the proofs of some very basic theorems about Riemann integration of contin-
uous functions require consideration of non-continuous functions. Without a
more general theory these proofs must be carried out using rather ad hoc meth-
ods that are of little value beyond the proof at hand. In summary, continuous
functions, which are central to the topological component of real analysis, do not
provide a suitable setting for integration theory. Riemann integrable functions,
while more general, are difficult to characterize and still behave badly when it
comes to taking limits. In the next section we will define a class of functions,
called Borel functions, that is more suitable for integration—in particular hav-
ing the property that a pointwise limit of Borel functions is a Borel function.
Specifically we will show that the function fδ is a Borel function, the integral
of which is 0. In addition, every Riemann integrable real function f is a Borel
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function, and we will see that Riemann integration is a special case of the more
general Lebesgue integral that we will define. In a sense, Lebesgue integration is
a “completion” of Riemann integration. Lebsegue integration enlarges the set of
continuous functions in much the way that the completion of the real numbers
enlarges the rational numbers—allowing a viable theory of limits to be carried
out.
Despite its serious limitations, the Riemann integral should not be com-

pletely dismissed. Riemann sums are, at least, easily computable and can pro-
vide a way to approximate an integral numerically.

4.2 Borel sets and functions

Lebesgue integration theory involves countable processes of the underlying sets,
such as countable unions and intersections. This is an important difference
from Riemann integration, in which one normally considers only finite unions
and intersections. For example, there is a theorem that the integral over the
union of two adjacent intervals is the sum of the integrals over the two intervals
separately.

Definition 232 Let X be a metric space. The collection of Borel sets in X is
the smallest collection B of subsets of X such that

1. every open subset of X is in B,

2. if A ∈ B then Ac ∈ B

3. if Ai ∈ B for all i ∈ N then ∪∞i=1Ai is in B.

Any nonempty collection of sets satisfying conditions (2) and (3) is called a
σ-algebra.

Hence a σ-algebra is a nonempty collection of sets that is closed with respect
to complements and countable unions. What do we mean by the “smallest” such
σ-algebra, and how do we know that such a thing exists? First of all there is some
collection of subsets of X with the above three properties, namely the collection
P(X) of all subsets of X, and B is formally defined to be the intersection of
all such collections. Certainly B contains all open sets, and an exercise below
shows that B is in fact a σ-algebra.

Exercise 156 Let Σ be a σ-algebra. Show that

1. If Ai lies in a σ-algebra Σ for all i ∈ N then ∩∞i=1Ai is in Σ.

2. Σ contains the empty set and hence contains all finite unions or intersec-
tions of sets in Σ.

3. If A,B ∈ Σ then A\B ∈ Σ.
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Exercise 157 Let {Σα}a∈Λ be a collection of σ-algebras. Show that
T
α∈Λ
Σα is

a σ-algebra.

What does B contain? By definition B contains all open subsets of X, and
therefore all closed subsets of X by property (2). It also includes all count-
able intersections of open sets, all countable unions of closed sets, and so on.
Roughly speaking, B contains any set that can be obtained from open sets by
any countable combination of taking unions, intersections, and complements.
It turns out that there are subsets of metric spaces, including R, that are not
Borel sets, but their construction is not trivial (see, for example, [3], Theorem
3.38).

Example 233 In any metric space X, we know that singleton sets {x} are
closed, hence Borel. Therefore any countable subset of a metric space is Borel,
in particular Q is a Borel subset of R. On the other hand, this shows that, unlike
the case with open sets, uncountable unions of Borel sets need not be Borel sets.
In fact any non-Borel subset of R is the uncountable union of the singleton sets
containing each of its points and therefore is an uncountable union of Borel sets.

Definition 234 A function f : A→ Y , where X and Y are metric spaces and
A ⊂ X is a Borel set, is called Borel if for every open set U in Y , f−1(U) is a
Borel set.

Recall that f is continuous if and only if for every open set U in Y , f−1(U)
is open; therefore every continuous function is a Borel function. Borel functions
are much more general, however:

Proposition 235 Let X be a metric space and X := ∪∞i=1Ei, where each Ei is
a Borel set. Suppose f : X → Y is a function such that f |Ei is Borel for all i.
Then f is a Borel function.

Proof. Let U ⊂ Y be open. Then for any i, f−1(U)∩Ei = (f |Ei)
−1
(U) is

Borel and hence f−1(U) =
∞S
i=1

f−1(U) ∩Ei) is Borel.

Note that the above two results also apply to finite unions—ifX = E1∪···∪Ek

then we can always let Ei := Ek for all i > k to express X as a countable union
∪∞i=1Ei. Note also that the countability of the union is essential. In fact, R can
be written as an uncountable union of singleton sets, and any function defined on
R is constant, hence continuous, when restricted to a singleton set. Therefore if
the above corollary were true for uncountable unions, every real function would
be a Borel function. Although the proof is beyond the scope of this text, there
do exist real functions that are not Borel functions (see [3]).

Definition 236 If E is a subset of a set X we define the characteristic function
χE : X → R by χE(x) = 1 if x ∈ E and χE(x) = 0 if x /∈ E.
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The characteristic function, simple as it is, is of considerable importance in
integration theory—being, in a sense, the simplest kind of non-trivial function.
Note that the characteristic function is rarely continuous—for example, χ[0,1] :
R→ R has discontinuities at 0 and 1. However, if E is a Borel set then X\E
is a Borel set, and χE is constant, hence continuous, when restricted to E and
when restricted to X\E. Proposition 235 therefore implies:

Corollary 237 If E is a Borel set in a metric space X then χE : X → R is a
Borel function.

Example 238 In our current notation we now see that fδ = χQ∩[0,1] (see Ex-
ample 231) and therefore fδ is a Borel function that is not continuous at any
point.

Exercise 158 Prove that if f : X → R is a function defined on a metric space
X and f is continuous on X\A where A is countable, then f is Borel.

Exercise 159 Let g : R→ R be defined by g(x) = 0 if x is irrational and
g(x) = 1

q if x is rational and expressed as x = p
q in reduced form (take the

reduced form of an integer to have 1 in the denominator).

1. Prove that g is continuous at every irrational number and hence is Borel.

2. Sketch a graph of g on [0, 1] by indicating the graph above several rational
points.

Recall that the pointwise limit of continuous functions need not be continu-
ous. As we will see shortly, real-valued Borel functions are much more robust.
First we need a preliminary lemma.

Lemma 239 Let f : X → R be a function where X is a metric space. The
following are equivalent:

1. f is Borel,

2. for any closed set C ⊂ R, f−1(C) is Borel,

3. for any closed interval [a, b] ⊂ R, f−1([a, b]) is Borel,

4. for any open interval (a, b) ⊂ R, f−1((a, b)) is Borel.

Exercise 160 Prove the above lemma. Hint: Show (1)⇒(2)⇒(3)⇒(4)⇒(1),
using Proposition 129 for the last part.

Theorem 240 Let fi : X → R be a sequence of Borel functions defined on a
metric space X such that fi

p→ f . Then f is Borel.
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Proof. This remarkable theorem is a consequence of some tedious set theory.
We will show that for any closed interval [a, b], f−1([a, b]) is Borel. For every
j ∈ N, define Uj := (a − 1

j , b +
1
j ). Now let Wi,j := f−1i (Uj). Since each fi is

Borel, every Wi,j is Borel, as is the set

V :=
∞\
j=1

Ã ∞[
N=1

Ã ∞\
i=N

Wi,j

!!
.

We will be finished if we show that V = f−1([a, b]). A quick check of the
definitions reveals that x ∈ V if and only if for every j ∈ N we have that

a− 1
j
< fi(x) < b+

1

j

for all large i. Taking the limit as i → ∞ gives us f(x) ∈
h
a− 1

j , b+
1
j

i
for

every j, and hence f(x) ∈ [a, b]. Conversely, if f(x) ∈ [a, b] then for any j we

have |fi(x)− f(x)| < 1
j for all large i and hence fi(x) ∈

³
a− 1

j , b+
1
j

´
for all

large i.
The above theorem shows that a function that is not Borel must be somewhat

difficult to construct—after all, it cannot be constructed using any kind of limiting
process involving continuous or even Borel functions. At the same the theorem
provides perhaps the best way to show that a function is a Borel function,
namely to show that it is a pointwise limit of Borel functions. Finally, this
theorem also makes Borel functions an excellent (if not the most general) setting
for integration theory. We need to know some other ways in which one obtains
Borel functions.

Lemma 241 If f : X → Y is a Borel function between metric spaces and
A ⊂ X is a Borel set then f |A is a Borel function.

Lemma 242 If X,Y,Z are metric spaces, f : Y → Z is continuous and g :
X → Y is Borel then f ◦ g is Borel.

Exercise 161 Prove Lemmas 241 and 242.

Lemma 243 If X is a metric space and h : X → R2 is a function having Borel
components then h is Borel.

Proof. Let h1 : X → R and h2 : X → R be the components of h. Suppose
first that U and V are open intervals in R. Then

h−1(U × V ) = {x ∈ X : h1(x) ∈ U and h2(x) ∈ V }

= h−11 (U) ∩ h−12 (V )

which is a Borel set since h1 and h2 are Borel functions. Now according to
Proposition 129, every open set in R2 is of the form W = ∪∞i=1Bmax(xi, ri) and
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each Bmax(xi, ri) is of the form Ii × Ji, where Ii and Ji are open intervals (see
Lemma 119). From what we proved above we have

h−1(W ) =
∞[
i=1

h−1(Ii × Ji)

is a Borel set.

Proposition 244 Let f, g : X → R be Borel functions defined on a metric
space X and c be any real number. Then the functions f + g, f · g, cf , and f/g
(where it is defined) are Borel functions.

Proof. Let h : R× R→ R be the “sum” function defined by h(x, y) = x+y.
Then h is continuous. In fact, if (xi, yi) → (x, y) then by earlier sequence
theorems we have h(xi, yi) = xi + yi → x + y = h(x, y). If k : X → R×R
denotes the function having f and g as components then

(h ◦ k)(x) = h(k(x)) = h(f(x), g(x)) = f(x) + g(x) = (f + g)(x).

That is, we have written f + g as a composition of two functions, where k is
Borel by Lemma 243 and h is continuous. By Lemma 242, f + g is Borel. The
proofs for the other algebraic operations are similar. We only observe that in
the case of the quotient, the domain of definition of f/g is g−1(R\{0}), which
is a Borel set.

4.3 Integration of Nonnegative Borel Functions
We will take the existence of the Lebesgue integral on nonnegative Borel func-
tions without proof. In a way this is very similar to our acceptance of the real
numbers without actually constructing them. However, we will do a little more
in this case. In the course of our discussion we will see how Lebesgue integra-
tion can be defined; we will simply not provide the details of the proofs of the
properties that we will assume it has in Theorem 247. The arguments involved
are primarily set theoretic in nature and are valid in much greater generality in
the setting of abstract measure theory, which is normally covered in a first year
graduate course in real analysis. We will not even study Lebesgue integration
in its most general setting in Euclidean spaces. This would involve introduc-
ing the somewhat abstract notions of measurable sets and functions—which again
appear in the more general setting of abstract measure theory. For our purposes
Lebesgue integration involving Borel sets and functions is adequate.
We will need some preliminary notation.

Definition 245 If A ⊂ Rn and v ∈Rn then we define v+A := {v+x : x ∈ A},
and refer to v +A as the translation (or translate) of A by v.

Definition 246 Let A be a set and suppose {Ei} is a collection of subsets of A.
We say that {Ei} is pairwise disjoint if whenever i 6= j we have Ei ∩Ej = ∅.



106 CHAPTER 4. INTEGRATION

We will use below some properties of the closed max metric balls in Rn,
which we will refer to as “cubes.” The term “cube” will always refer to closed
max metric balls (which have edges parallel to the standard axes) and not other
geometric cubes (such as the closed balls of the plus metric). Since the max
metric is invariant, every cube of a given radius is a translate of any other such
cube, including the one centered at 0. We will refer to the cube centered at 0 in
Rn with radius r/2 as Qn(r) (so this cube has side length r), and we will refer
to Qn(1) simply as Qn, and call it the unit cube. Every cube in Rn also has 2n
“faces” that come in pairs, each of which is isometric to the cube Qn−1(r). For
example, the cube Qn(2) has two faces perpendicular to the jth axis, namely
the sets

F j
+ := {x = (x1, ..., xn) : dmax(0,x) = 1 and xj = 1}

and
F j
− := {x = (x1, ..., xn) : dmax(0,x) = 1 and xj = −1}.

The union of the 2n faces of a cube of side length r is called the boundary of the
cube; it is the set of all points at max distance exactly r

2 from the center of the
cube. Next any cube of side length r can be subdivided into mn cubes having
edge length r

m , for any natural number m, such that different cubes intersect
only their faces. We won’t give any details here, which are a bit tedious; the
student is encouraged to convince him/herself in lower dimensions with a good
picture. Some special cases are considered in the following exercise. Finally,
define a semicube to be a set of the form Q\A where Q is a cube and A is a
compact subset of its boundary.

Exercise 162 Sketch the subdivision of Q3 in R3 into 8 equal sized cubes, and
determine for each of them the vector used to translate Q3(12 ) to it. Determine
the vector that translates Q4(12) to the subdivision cube of Q

4 that has (1, 1, 1, 1)
as one of its corners. Explicit details are not required in either case.

Exercise 163 Let Bjk(r) := {(x1, ..., xn) ∈ Rn : 0 ≤ xi ≤ r if i 6= j and
0 ≤ xj ≤ 1

k}.

1. Sketch B24(3) in R2.

2. Prove that Qn(r + 4
k )\Qn(r) contains a translate of Bjk(r) for all j and

r > 0.

Theorem 247 For each n ∈ N there exists a unique function that assigns to
each Borel set A in Rn and nonnegative Borel function f : A→ R a nonnegative
extended real number

R
A
f satisfying the following properties for any f, g : A→

R, c ≥ 0 and v ∈Rn:

1. (Positivity)
R
A
f ≥ 0.

2. (Linearity)
R
A
(cf + g) = c

R
A
f +

R
A
g (assuming

R
A
f <∞ or c 6= 0)

3. (Countable Set Additivity) If E =
S∞
i=1Ei where {Ei}∞i=1 is a pairwise

disjoint collection of Borel sets, then
R
E
f =

P∞
i=1

R
Ei

f .
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4. (Translation Invariance) If h(x) = f(x − v), which is defined on v + A,
then

R
A
f =

R
v+A

h.

5. (Normalization)
R
Qn 1 = 1.

The first two properties are familiar from elementary calculus of the Riemann
integral. The “finite” version of the third property is also familiar from calculus—
although in calculus one actually considers mainly sets that intersect along some
kind of boundary, as in the statement that

R c
a
f(x)dx =

R b
a
f(x)dx =

R c
b
f(x)dx

when a ≤ b ≤ c. In this case the intervals [a, b] and [b, c] intersect in {b}, but
as we will see later, a single point, by itself, contributes nothing to an integral.
More important is the fact that the third property is stated not just for two
sets, or finitely many sets, but for countably many sets. Note that, as a result
of Proposition 195, the order of the sum is not important. The reader may be
tempted to believe that condition (3) follows by induction from the case when
there are only two sets, but in fact it does not. This situation is explored further
in Exercise 166 below.
The fourth property appears in elementary calculus as a special case of

change of variables. The fifth condition is necessary for uniqueness and non-
triviality. For if one has an integral satisfying only the first four properties,
one may multiply it by any non-negative constant (including 0!) and still have
an integral satisfying those four properties. Note that the usual conventions
involving infinity apply to (2) and (3) (see Definition 10).
We need to establish some very basic properties of the integral.

Lemma 248 Let f, g : A → R be nonnegative Borel functions, A ⊂ Rn. If
f(x) ≤ g(x) for all x ∈ A then

R
A
f ≤

R
A
g.

Proof. Let k(x) := g(x)− f(x) ≥ 0. Then g(x) = f(x)+ k(x) and
R
A
k ≥ 0

imply Z
A

g =

Z
A

f +

Z
A

k ≥
Z
A

f .

Our next goal is to understand the integral of a function over the empty set.
As annoying as this may seem at first, it is a necessary task. Mainly we need
to first understand exactly what a function defined on the empty set is. Recall
that a function f : A→ B is a set of ordered pairs (a, b) with a ∈ A and b ∈ B.
In particular, if A = ∅ then the function f is actually the empty set. This is
true regardless of what f is called or where f is defined. Therefore, if we showR
∅ 1 = 0 then we will know that

R
∅ f = 0 for any Borel function f . But Qn

is the countable pairwise disjoint union of Qn ∪ ∅ ∪ ∅ ∪ · · · and therefore by
countable set additivity Z

Qn

1 =

Z
Qn

1 +
∞X
i=1

Z
∅
1.

Since
R
Qn 1 = 1 we conclude that

P∞
i=1

R
∅ 1 = 0, and hence

R
∅ 1 = 0. We have

proved:
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Lemma 249 If f : A → R is a nonnegative Borel function with A ⊂ Rn thenR
∅ f = 0.

If we now let all but finitely many of the sets in Theorem 247 part (3) be
the empty set then we conclude from the above lemma:

Lemma 250 (Finite Additivity) If E1, ..., En ⊂ Rn are pairwise disjoint Borel
sets, E =

Sk
i=1Ei, and f : E → R is a nonnegative Borel function, thenR

E
f =

Pk
i=1

R
Ei

f .

We will repeatedly use the following very special case of Finite Additivity:
For any Borel sets E and A in Rn we have that E = E ∩ A ∪ E\A, and this
union is a disjoint union. Therefore we have for any nonnegative Borel function
f : E → R, Z

E

f =

Z
E∩A

f +

Z
E\A

f .

If it so happens that A ⊂ E then the above expression becomes
R
E
f =

R
A
f +R

E\A f .

Lemma 251 If f : E → R is a nonnegative Borel function where F ⊂ E ⊂ Rn
are Borel sets then

R
F
f ≤

R
E
f .

Proof. We have
R
E
f =

R
F
f +

R
E\F f . Noting that

R
E\F f ≥ 0 finishes the

proof.

Exercise 164 Suppose f, g : A→ R are nonnegative Borel functions, A ⊂ Rn,
and f(x) ≤ g(x) for all x ∈ A. Prove: If

R
A
f <∞ then

R
A
(g−f) =

R
A
g−
R
A
f .

Lemma 252 (Countable Set Subadditivity) If E ⊂ Rn is a Borel set and E ⊂S∞
i=1Ei where {Ei}∞i=1 is a collection of Borel sets, then

R
E
f ≤

P∞
i=1

R
Ei

f for
any nonnegative Borel function f :

S∞
i=1Ei → R.

Proof. Let E0 :=
S∞
i=1Ei and let F1 := E1, F2 := E2\E1, F3 := E3\(E1 ∪

E2), and so on. It is an exercise in set theory to see that E0 is the pairwise
disjoint union of the sets {Fi}∞i=1, and Fi ⊂ Ei for all i. Therefore

∞X
i=1

Z
Ei

f ≥
∞X
i=1

Z
Fi

f =

Z
E0

f ≥
Z
E

f .

Corollary 253 If f(x) = 0 on a Borel set A ⊂ Rn then
R
A
f = 0.

Proof. We first computeZ
Qn

0 =

Z
Qn

0 · 1 = 0
Z
Qn

1 = 0 · 1 = 0.
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As in the proof of Proposition 129, Rn is the union of the countably many unit
cubes Qi having centers with rational coordinates. By Translation InvarianceR
Qi
0 = 0 and countable subadditivity impliesZ

A

0 ≤
∞X
i=1

Z
Qi

0 =
∞X
i=1

0 = 0.

Corollary 254 If f : E → R is a nonnegative Borel function and A ⊂ E ⊂ Rn
are Borel sets then Z

A

f =

Z
E

χA · f .

Proof. By definition,

χA · f(x) =
½

f(x) if x ∈ A
0 if x /∈ A

,

and Z
E

χA · f =
Z
A

χA · f +
Z
E\A

χA · f =
Z
A

f +

Z
E\A

0 =

Z
A

f .

Exercise 165 In the proof of the Countable Set Subadditivity lemma, show that
E0 is the pairwise disjoint union of the sets {Fi}∞i=1.

Exercise 166 Prove that the assumption of countable set additivity in Theo-
rem 247 is equivalent to assuming both countable set subadditivity and finite set
additivity. Hint: Use Lemma 251 and Lemma 187.

Definition 255 We say that a collection of sets {Ei}∞i=1 is increasing (resp.
decreasing) if E1 ⊂ E2 ⊂ · · · (resp. E1 ⊃ E2 ⊃ · · ·). In this case we say
that E =

S∞
i=1Ei is the increasing union (resp. E =

T∞
i=1Ei is the decreasing

intersection) of {Ei}∞i=1. We will use the notation Ei % E (resp. Ei & E).

Proposition 256 If {Ei}∞i=1 is a collection of Borel sets in Rn such that Ei %
E and f : E → R is a nonnegative Borel function then

R
E
f = lim

R
Ei

f .

Proof. Note that E1 ⊂ E2 ⊂ · · · implies the sequence
³R

Ei
f
´∞
i=1

is

monotone increasing. Let F1 := E1, F2 := E2\E1, and so on. Then the sets Fi
are pairwise disjoint and Ek =

Sk
i=1 Fi and E =

S∞
i=1 Fi. We haveZ

E

f =
∞X
i=1

Z
Fi

f = lim
kX
i=1

Z
Fi

f = lim

Z
Ek

f .
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Corollary 257 If {Ei}∞i=1 is a collection of Borel sets in Rn such that Ei & E
and f : E1 → R is a nonnegative Borel function with

R
E1

f < ∞ then
R
E
f =

lim
R
Ei

f .

Exercise 167 Prove Corollary 257, stating explicitly how you use the fact thatR
E1

f < ∞. Hint: Consider the sets Fi := E1\Ei and use de Morgan’s laws to
apply Proposition 256.

Example 258 The interval En := [n,∞) contains countably many pairwise
disjoint intervals Im := [2m, 2m + 1], each of which is a translate of the unit
interval and hence satisfies

R
Im
1 = 1. Therefore

R
En
1 = ∞ for all n. Then

the collection {En}∞n=1 is decreasing and
T∞
n=1En = ∅, but

R
∅ 1 = 0 6= ∞ =

lim
R
En
1. This shows the necessity of the requirement that

R
E1

f <∞ in Corol-
lary 257 (actually, assuming that some

R
Ei

f <∞ will do).

4.4 Lebesgue Measure
In elementary calculus one defines the area of a two dimensional region A to
be the double integral over A of the function f(x) = 1 (of course the regions
A were always very simple so that one could actually compute the integral by
iterated integration). We will do precisely the same thing now, although, to
avoid the dimensional connotations of words like “area” and “volume” we will
use the term “measure” for all dimensions.

Definition 259 Let E be a Borel subset of Rn. We define the (Lebesgue) mea-
sure of E to be

µ(E) :=

Z
Rn

χE =

Z
E

1.

From the properties for the Lebesgue integral we immediately obtain the
following:

Theorem 260 Lebesgue measure in Rn satisfies the following properties:

1. (Positivity) For any Borel set E, µ(E) ≥ 0.

2. (Countable Set Additivity) If E =
S∞
i=1Ei where {Ei}∞i=1 is a pairwise

disjoint collection of Borel sets, then µ(E) =
P∞

i=1 µ(Ei).

3. (Translation Invariance) For any Borel set E and x ∈Rn, µ(E) = µ(x+
E).

4. (Normalization) µ(Qn) = 1.

Note that translation invariance implies that every cube of side length 1
in Rn has measure 1. Other consequences of our theorems about integration
include: µ(∅) = 0, finite set additivity, countable set subadditivity, and the
fact that if E ⊂ F then µ(E) ≤ µ(F ). In addition, if f(x) = c > 0 then for any
Borel set E,

R
E
f = cµ(E) (by linearity). The next lemma now follows from

Lemma 248.
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Lemma 261 Suppose that for some positive c ∈ R, c ≤ f(x) (resp. f(x) ≥ c)
for all x in a Borel set E ⊂ Rn, where f : E → R is a Borel function. Then

cµ(E) ≤
Z
E

f (resp. ≤
Z
E

f ≤ cµ(E)).

This simple but important lemma will be used repeatedly in the following
way. Consider, for example, the set

E = f−1([a, b]) = {x : a ≤ f(x) ≤ b} with a > 0.

The above lemma implies

aµ(E) ≤
Z
E

f ≤ bµ(E).

It will be very useful to divide the range of a nonnegative Borel function into
intervals on which f has specific bounds, above, below, or both. Sometimes it
is beneficial to actually partition the range—for example later we will use the
partition of R into the pairwise disjoint collection {[n, n+ 1)}∞n=0; if f : A→ R
is any function then one can easily check that A is the pairwise disjoint union
of the collection

©
f−1 ([n, n+ 1))

ª∞
n=0

. In other cases, such as the proof of the
next lemma, we will use countable subadditivity and do not need a pairwise
disjoint collection.

Proposition 262 Let f : A→ R be a nonnegative Borel function defined on a
Borel set A such that µ(A) = 0. Then

R
A
f = 0.

Proof. If f were bounded then the proof would be complete by Lemma
261, but f may not be bounded. To resolve this problem, let An := f−1([0, n]).
Then f(x) ≤ n for all x ∈ An. In addition, An ⊂ A and therefore µ(An) = 0.
Note that An % A and

R
An

f ≤ n · µ(An) = 0. Therefore
R
A
f = lim

R
An

f = 0.

Exercise 168 Let f : E → R be a nonnegative Borel function, defined on
E ⊂ Rn and α be any positive real number.

1. Prove the Tschebyshev Inequality:

µ(f−1((α,∞))) ≤ 1

α

Z
E

f .

Hint: f−1((α,∞)) = {x ∈ E : f(x) > α}.

2. Illustrate this inequality in the case of a continuous real function with a
sketch of a graph, interpreting the integral as area under the graph.

Exercise 169 Let (fi) be an increasing sequence of Borel functions fi : E → R,
with E ⊂ Rn, and suppose that there exists some M > 0 such that for all i,R
E
fi ≤ M . Let F be the set of all x ∈ E such that the sequence (fi(x)) is

unbounded. Prove that µ(F ) = 0. Hint: For any fixed N , consider the measure
of the union of the sets Fk := f−1k ((N,∞)).
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Exercise 170 A collection {Ei} (finite or countably infinite) of Borel sets is
called nonoverlapping if for every i 6= j, µ(Ei ∩ Ej) = 0. Prove that if E =S∞
i=1Ei where {Ei}∞i=1 is a nonoverlapping collection of Borel sets, then for

any nonnegative Borel function f : E → R,
R
E
f =

P∞
i=1

R
Ei

f . Hint: Let
Fi := Ei\

S
j<i(Ei ∩Ej).

A direct translation of Proposition 256 and Corollary 257 provides:

Proposition 263 If E is the increasing union (resp. decreasing intersection
with µ(E1) < ∞) of a collection {Ei}∞i=1 of Borel subsets of Rn then µ(E) =
limµ(Ei).

Our next goal is to prove the expected formula that µ(Qn(r)) = rn. This is
harder than it may seem at first. Remember: at the moment we have absolutely
no knowledge of how to actually compute a Lebesgue integral (in fact this for-
mula is the first stage in understanding how to compute them). We only know
how to compute the measure of a unit cube, but remarkably this, together with
the properties we have proved so far, is enough. But it will take a few steps.
First of all we need to check that cubes have finite measure. In fact, by Trans-
lation Invariance we need only prove that Qn(r) has finite measure for all r.
By the Archimedean Principle we need only check that µ(Qn(m)) <∞ for any
m ∈ N. But Qn(m) is a union of mn unit cubes and therefore µ(Qn(m)) ≤ mn.
The next step is to prove that the faces of a cube have measure 0; this

is proved by showing that each face is contained in a decreasing sequence of
“boxes” the measures of which go to 0.

Lemma 264 Let

Bjk(r) := {(x1, ..., xn) ∈ Rn : 0 ≤ xi ≤ r if i 6= j and 0 ≤ xj ≤
1

k
}.

Then for any j and r > 0, µ(Bjk(r))→ 0.

Proof. Note that Qn(r) is the decreasing intersection of the cubes Qn(r+ 1
i )

and (since cubes have finite measure) limµ(Qn(r + 1
i )) = µ(Qn(r)). But finite

additivity implies

limµ(Qn(r +
1

i
)\Qn(r)) = 0.

According to Exercise 163 each of the sets Qn(r+ 4
k )\Qn(r) contains a translate

of Bjk(r) for all j and k and hence µ(Bjk(r))→ 0.

Corollary 265 For every n and r > 0, µ(Qn(r)\B(0, r2)) = 0. In particular
the faces of Qn(r) have measure 0 and the measure of any semicube Q\A is
equal to the measure of Q.

Proof. Each of the faces of Qn(r) is the intersection of translates of sets
Bjk(r) for some fixed j, and therefore has measure 0. Therefore the union
of all the faces has measure 0, and so A has measure 0. By finite additivity
µ(Q) = µ(Q\A).
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Lemma 266 For any r > 0 and natural numbers n and m,

µ(Qn(mr)) = mnµ(Qn(r)).

Proof. The cube Qn(rm) can be subdivided into mn cubes that are trans-
lates of Qn(r) and therefore each have measure µ(Qn(r)). These cubes meet
only in faces, which have measure 0 by Corollary 265, and the proof is finished
by finite set additivity.

Proposition 267 For any r > 0, µ(Qn(r)) = rn.

Proof. First suppose that r = p
q , where p, q ∈ N. Applying Lemma 266 a

couple of times yields

qnµ

µ
Qn(

p

q
)

¶
= µ (Qn(p)) = pnµ (Q(1)) = pn

which implies

µ

µ
Qn(

p

q
)

¶
=

pn

qn
= rn.

Finally, if r > 0 is real, let ri & r, where each ri ∈ Q. Then Qn(r) is the
decreasing intersection of the cubes Qn(ri) and therefore

µ(Qn(r)) = limµ(Qn(ri)) = lim rni = rn.

Corollary 268 For any x ∈ Rn, µ({x}) = 0.

Proof. The set {0} the decreasing intersection of the cubes Qn(1i ), and in
general {x} = x+ {0}.

Corollary 269 Any countable subset of Rn is of measure 0.

Corollary 270
R
[0,1]

fδ = 0.

Proof. Z
[0,1]

fδ =

Z
[0,1]

χQ∩[0,1] = µ(Q∩[0, 1]) = 0.

Exercise 171 Show that the y-axis (and hence any vertical line) in R2 has
measure 0.

Example 271 Although we have shown that the measure of the closure of a
max metric ball is the same as the measure of the ball, it is not in general true
that the measure of the closure of a set is equal to the measure of the set. For
example, we know that [0, 1] ∩Q is countable and hence has measure 0, but the
closure of [0, 1] ∩Q is [0, 1], which has measure 1.



114 CHAPTER 4. INTEGRATION

Lemma 272 If f : [a, b]→ R is a continuous nonnegative function and
R
[a,b]

=

0 then f(x) = 0 for all x ∈ [a, b].

Proof. We will prove the contrapositive statement. If f(x0) = δ > 0
for some x0 ∈ (a, b) then since f is continuous f(x) > δ

2 on some interval
(x0 − ε, x0 + ε) ⊂ (a, b), where ε > 0. But then

R
[a,b]

f ≥
R
(x0−ε,x0+ε) f ≥

δ
2(2ε) = δε > 0. The proof if x0 is an endpoint is similar.
We already know that Lemma 272 is not true if we simply replace continuous

by Borel (e.g. the function fδ, which has integral 0 but is positive at countably
many points). But something almost like it is true.

Lemma 273 If f : E → R is a nonnegative Borel function defined on a Borel
set E ⊂ Rn such that

R
E
f = 0 then

µ(f−1((0,∞))) = µ({x ∈ E : f(x) > 0}) = 0.

That is, f(x) = 0 except for x in a set of measure 0.

Proof. We will prove the theorem by contrapositive. Letting F := f−1((0,∞)),
suppose that µ(F ) > 0. As in the previous proof for continuous functions we
would be done if we knew that f had a positive lower bound on F , but there is
no reason why this should be true. Instead, let Fi := f−1([1i ,∞)). Then F is
the increasing union of the collection {Fi}, and so µ(Fi)→ µ(F ) and for some
i, µ(Fi) > 0. On Fi, we have f(x) ≥ 1

i and therefore
R
E
f ≥

R
Fi
f ≥ µ(Fi)

i > 0.

A statement that is true in the complement of a set of measure 0 is said to be
true “almost everywhere,” abbreviated “a.e.” For example, the last statement
of the above lemma can be restated as “That is, f = 0 a.e.”

Exercise 172 Prove that if f and g are nonnegative Borel functions such that
f ≤ g a.e. on a Borel set E then

R
E
f ≤

R
E
g.

We will conclude this section by showing that one can compute the measure
of a compact set using covers by cubes (or semicubes) and obtaining some
important consequences of this fact.

Theorem 274 If C ⊂ Rn is compact then there exists a sequence {Km}∞m=1,
where Km is a collection {Qmi}nmi=1 of disjoint semicubes such that

1. for m ≥ 2, each Qmi is contained in precisely one Q(m−1)j

2. if Km =
nmS
i=1

Qmi then C is the decreasing intersection of {Km}.

In particular, µ(C) = limµ(Km) and

µ(C) = inf

(
kX
i=1

µ(Qi)

)
where the infimum is over the collection of all Qi is a semicube (resp. cube) and
C ⊂

Sk
i=1Qi.
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Proof. Since C is compact, C is closed, hence Borel, and bounded, so C
lies in some Qn(r). We will successively subdivide the cube Qn(r) dividing
the side length by half at each stage. We first subdivide Qn(r) into 2n cubes
{Q01k} of side length r

2 , any two of which meet only in a face. We then may
change this into a pairwise disjoint collection of semicubes {Q1k} by letting
Q1k := Q01k\

S
i<k

Q1i. Each Q01k may be subdivided into 2
n smaller cubes, each

of which intersects Q1k in a semicube Q02j . Again these meet only in faces, and
we may, as in the previous set, replace these semicubes by a pairwise disjoint
collection. We will denote by Km the collection of all semicubes constructed in
this way of side length r2−m that intersect C, each of which has measure ( r

2m )
n.

The corresponding collection {Km} is decreasing, since any semicube Q in
Km(C) is contained in a larger semicube Q0 in the previous subdivision. Since
Q intersects C, so must Q0, which implies Q0 ∈ Km−1(C). This proves the first
condition.
Next, observe that C ⊂ Km for all m. In fact, the semicubes subdivide

all of Qn(r), which contains C and therefore each x ∈ C is contained in some
semicube in Km(C). Therefore C ⊂

T∞
m=1Km. On the other hand, we also

have that Km ⊂ N
¡
C,
¡

r
2m−1

¢n¢
. According to Exercise 65 we have

∞\
m=1

Km ⊂
\
ε>0

N(C, ε) = C.

Finally, since C =
T∞
m=1Km and µ(K1) ≤ µ(Qn(r)) < ∞, Proposition 263

implies that µ(C) = limµ(Km). The last statement follows from Proposition
62. In fact, µ(C) is certainly a lower bound for the set in question, and µ(Km)
is a sequence converging to µ(C). For any such collection of semicubes we may
replace each semicube by the cube with the same interior, which has the same
measure, and hence the last statement is also true for cubes (but the resulting
cubes are not generally pairwise disjoint).
A related proposition, whose proof is an exercise, is the following.

Proposition 275 Let f : U → R be a nonnegative Borel function defined on
an open set U ⊂ Rn, and suppose that C ⊂ U is compact and

R
U
f < ∞. For

every ε > 0 there exists a δ > 0 such that N(C, δ) ⊂ U and
R
N(C,δ)

f <
R
C
f+ε.

Corollary 276 If C ⊂ Rn is compact then for every ε > 0 there exists an open
set U such that C ⊂ U and µ(U) < µ(C) + ε.

Exercise 173 Prove Proposition 275. Explain how the above corollary follows.

4.5 Convergence Theorems
We already know that pointwise limits of Borel functions are Borel functions and
therefore we can consider what happens when we integrate a sequence of Borel
functions. We already know from Example 258 that the limit of the integrals
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need not be the integral of the limit. The following example shows this may
happen even when the integrals in question are all finite.

Example 277 Let fn : [0, 1] → R be defined by fn :=
¡
n2 + n

¢
χ[ 1

n+1 ,
1
n ]
. Now

fn(0) = 0 for all n ∈ N, and for any x ∈ (0, 1], fn(x) = 0 for all n such that
1
n < x. In other words, (fn) converges pointwise to 0 and

R
lim fn = 0. ButZ

[0,1]

fn =
¡
n2 + n

¢
(
1

n
− 1

n+ 1
) = 1

for all n, and so lim
R
[0,1]

fn = 1 6= 0. We will prove in this section two theorems
about when the limit of the integrals is the integral of the limit, and the required
conditions are quite simple—either that the sequence of functions is monotone
increasing, or that the entire sequence is “dominated,” i.e. there is a single
function g of finite integral that is greater than or equal to every function in the
sequence. This function g prevents the kind of “shifting around” that one sees
in this example. In fact, for a function g to be larger than all of the functions
fn, g would have to have to have under its graph all of the rectangles having
base [ 1

n+1 ,
1
n ] and height n

2 + n. That would force g to have infinite integral.

We need some preliminary lemmas. The next lemma states, roughly, that if
a Borel function has a finite integral then its integral over small sets must be
small.

Lemma 278 Suppose f : E → R is a nonnegative Borel function, E ⊂ Rn,
such that

R
E
f <∞. For every ε > 0 there exists a δ > 0 such that if F ⊂ E is

a Borel set with µ(F ) < δ then
R
F
f < ε.

Proof. Note that if f were bounded by some M the proof would be easy.
In that case, we need only choose δ = ε

M to get
R
F
f ≤Mµ(f) < ε. But f may

not be bounded, so we proceed by partitioning the range into bounded pieces.
Define Em := f−1([m,m+ 1)) and Em := f−1([m,∞)) =

S∞
k=mEk. Then the

E is the pairwise disjoint union of {Ek}∞k=0 andZ
E

f =
∞X
k=0

Z
Ek

f .

Fix ε > 0. By the Small Tails Lemma (179) there exists some m such thatZ
Em

f =
∞X

k=m

Z
Ek

f <
ε

2
.

Let δ := ε
2m . Suppose that F ⊂ E is a Borel set such that µ(F ) < δ. Since

f(x) < m for all x /∈ Em we haveZ
F

f =

Z
Em

f +

Z
F\Em

f ≤
Z
Em

f +mµ(F\Em)
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≤ ε

2
+mµ(F ) < ε.

Exercise 174 Use the sum of the functions (fn) in Example 277 to show that
the assumption that

R
E
f <∞ cannot be removed from Lemma 278.

The next lemma deals with the potential situation that a function could have
finite integral on a set of infinite measure (an example of this from basic calculus
is
R∞
1

1
x2 dx = 1). Sets with finite measure are much easier to work with, and

the next lemma shows that one can always approximate a finite integral over a
set of infinite measure by an integral over a set of finite measure.

Lemma 279 Suppose f : E → R is a nonnegative Borel function, E ⊂ Rn,
such that

R
E
f < ∞. For every ε > 0 there exists a Borel set F ⊂ E such that

µ(F ) <∞ and
R
E
f −

R
F
f < ε.

Proof. In this case the proof would be simple if we had f ≥ c > 0 for some
c, for then E would already have to have finite measure. The proof would also
be trivial if f were 0. This suggests dividing up the range in a different way
from the last proof. Let Fi := f−1([1i ,∞)) for all i ∈ N, F∞ = f−1(0,∞) and
F0 := f−1({0}). For any x ∈ Fi we have f(x) ≥ 1

i and

∞ >

Z
E

f ≥
Z
Fi

f ≥ 1
i
µ(Fi).

Hence µ(Fi) <∞ for all i. Now Fi % F∞ and since
R
F0

f = 0 and E = F0∪F∞,R
Fi
f %

R
F∞

f =
R
E
f . Letting F := Fi for sufficiently large i finishes the proof.

The analogous statement for infinite integrals is the following:

Lemma 280 Suppose f : E → R is a nonnegative Borel function, E ⊂ Rn,such
that

R
E
f = ∞. For every M > 0 there exists a Borel set F ⊂ E such that

µ(F ) <∞ and M ≤
R
F
f <∞.

Proof. According to Exercise 175 below there is a Borel set F 0 ⊂ E such
that µ(F 0) < ∞ and

R
F 0 f ≥ 2M (the problem is that

R
F 0 f could still be

infinite). Let Fi := f−1(([0, i])) ∩ F 0. For every i,
R
Fi
f ≤ i · µ(F 0) <∞. Also,

F 0 is the increasing union of the collection {Fi} and so
R
Fi
f →

R
F 0 f ≥ 2M .

Therefore for some large j
R
Fj

f ≥M ; let F := Fj .

Exercise 175 Finish the proof of Lemma 280. Hint: let Ki := Qn(i) ∩E.

Theorem 281 (Monotone Convergence Theorem) Let (fi) be a sequence of
nonnegative Borel functions defined on a Borel set E ⊂ Rn such that fi % f
(pointwise) on E. Then

R
E
f = lim

R
E
fi.
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Proof. Suppose first that
R
E
f <∞ and let ε > 0. Since f ≥ fi, the proof

will be finished by Exercise 164 if we can show that for all large i,Z
E

f −
Z
E

fi =

Z
E

(f − fi) < ε.

First of all, by Lemma 279 there exists some Borel set E0 ⊂ E such that µ(E0) <
∞ and

R
E
f −

R
E0 f < ε

3 . So for all i we haveZ
E

(f − fi)−
Z
E0
(f − fi) =

Z
E

f −
Z
E0

f −
µZ

E

fi −
Z
E0

fi

¶
<

ε

3
.

If µ(E0) = 0 then
R
E
(f − fi) <

ε
3 < ε as needed. Otherwise, according to

Lemma 278 there exists a δ > 0 such that if F ⊂ E is a Borel set with µ(F ) < δ
then

R
F
f < ε

3 . Let

Fi :=

½
x ∈ E0 : f(x)− fi(x) >

ε

3µ(E0)

¾
Since fi % f , {Fi}∞i=1 is a decreasing sequence with

T∞
i=1 Fi = ∅. Since µ(Fi) ≤

µ(E0) <∞, according to Proposition 263 µ(Fi) < δ for all large i, and for such
i we have:Z

E

(f − fi) ≤
Z
E0
(f − fi) +

ε

3
=

Z
E0∩Fi

(f − fi) +

Z
E0\Fi

(f − fi) +
ε

3

<
ε

3
+

µ
ε

3µ(E0)

¶
µ(E0) +

ε

3
= ε.

Now suppose that
R
E
f =∞ and let M > 0. We will prove that for all large

i,
R
E
fi ≥ M . According to Lemma 280 there is a Borel set F ⊂ E such that

2M ≤
R
F
f < ∞. But fi % f on F and so we can apply the above case for

finite integrals to conclude that
R
F
fi →

R
F
f ≥ 2M . But then for all large i,Z

E

fi ≥
Z
F

fi ≥M .

Exercise 176 Let (fi) be a monotone increasing sequence of nonnegative Borel
functions fi : E → R, where E ⊂ Rn is Borel. Suppose that there exists some
M such that for all i,

R
E
fi ≤ M . Show that there exists a subset F of E such

that the following statements are true:

1. µ(F ) = 0

2. if gi denotes the restriction of fi to H := E\F then gi % g for some Borel
function g : H → R

3.
R
E
fi %

R
H
g.



4.5. CONVERGENCE THEOREMS 119

The Monotone Convergence Theorem is very useful, but it is also important
to have theorems about convergence that is not monotone increasing. The
following definition provides a useful tool to translate pointwise convergence
into monotone convergence.

Definition 282 Let {fi}∞i=1 be a collection of real-valued functions defined on
a set A. The function infk≥m(fk) (resp. supk≥m(fk)) is defined by

inf
k≥m

(fk)(x) := inf
k≥m

{fk(x)} (resp. sup
k≥m

(fk)(x) := sup
k≥m

{fk(x)})

for all x ∈ A.

When m = 1 we will omit the subscript k ≥ m in this notation. Note
that in general the functions infk≥m(fk) and supk≥m(fk) have extended real
values. Below we will only consider the case when these functions are finite, but
a completely general integration theory requires some consideration of possibly
infinite valued functions.

Lemma 283 Let fk : X → R be Borel functions defined on a metric space X.
If infk≥m(fk) (resp. supk≥m(fk)) is finite then infk≥m(fk) (resp. supk≥m(fk))
is Borel.

Proof. We prove only that g := inf(fk) is Borel; the proofs for infk≥m(fk)
and supk≥m(fk) are similar. According to Lemma 239 we need only show that
for any a < b in R, g−1([a, b]) is a Borel set. Since [a, b] = [a,∞) ∩ (−∞, b]
we need only show that the inverse images of the latter two sets are Borel
sets. We will prove only the first one, leaving the other one for the reader.
But x ∈ g−1([a,∞)) is equivalent to inf(fk)(x) ≥ a, which is equivalent to a
being a lower bound for {fk(x)}∞k=1, which means a ≤ fk(x) for all k, which
means x ∈

T∞
k=1 f

−1
k ([a,∞)). Putting these together we have g−1([a,∞)) =T∞

k=1 f
−1
k ([a,∞)), which is a Borel set.

Lemma 284 Let fi : A → R be a sequence of functions such that fi
p→ f for

some f : A → R. Define gk(x) := infi≥k fi(x) (resp. gk(x) := supi≥k fi(x)).
Then gk is Borel for all k and gk % f (resp. gk & f).

Proof. Lemma 283 implies that each gk is Borel. We prove only the case
gk % f ; the other case is similar. But for any x ∈ A, gk(x) = infi≥k fi(x)
and therefore (gk(x)) is increasing and by definition lim gk(x) = lim inf fk(x) =
lim fk(x) = f(x).

Lemma 285 (Fatou’s Lemma) Let (fi) be a sequence of nonnegative Borel
functions defined on a Borel set E such that fi

p→ f on E. Then
R
E
f ≤

lim inf
R
E
fi.
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Proof. For all x ∈ E and every i, let gk(x) := infi≥k fi(x). Lemma 284
implies each gk is Borel and gk % f and so

R
E
gk →

R
E
f by the Monotone

Convergence Theorem. Now gk(x) ≤ fk(x) for all x ∈ E and thereforeZ
E

f = lim

Z
E

gi ≤ lim inf
Z
E

fi.

Corollary 286 Let (fi) be a sequence of nonnegative Borel functions defined on
a Borel set E such that fi

p→ f on E. If
R
E
f =∞ then lim

R
E
fi =

R
E
f =∞.

Theorem 287 (Lebesgue Dominated Convergence Theorem) Let fi : E → R be
a sequence of nonnegative Borel functions such that fi

p→ f for some f : E → R,
where E is a Borel subset of Rn. If there exists a Borel function g : E → R
such that

R
E
g <∞ and g(x) ≥ fi(x) for all i and x ∈ E, thenZ

E

f = lim

Z
E

fi.

Proof. By Fatou’s Lemma we have
R
E
f ≤ lim inf

R
E
fi. The functions

hi := g − fi are nonnegative and hi
p→ (g − f). Fatou’s Lemma now impliesZ

E

g −
Z
E

f =

Z
E

g − f ≤ lim inf
Z
E

g − fi

= lim inf

µZ
E

g −
Z
E

fi

¶
=

Z
E

g − lim sup
Z
E

fi

or Z
E

f ≥ lim sup
Z
E

fi.

Recall that Example 277 shows that the “domination” assumption cannot
be removed. Example 258 shows that one cannot remove this assumption even
for monotone decreasing sequences, however, the next exercise does address this
situation.

Exercise 177 Prove that if fi : E → R are Borel functions, E ⊂ Rn,
R
E
f1 <

∞, and (fi) is monotone decreasing to a nonnegative function f : E → R thenR
E
f = lim

R
E
fi.

Exercise 178 The purpose of this exercise is to study the Uniform Convergence
Theorem: Let E ⊂ Rn have finite measure and suppose fi : E → R are non-
negative Borel functions functions and (fi) converges uniformly to f : E → R.
Then

R
E
fi →

R
E
f .

1. Prove the theorem. Hint: don’t forget Corollary 286 and note that the
Lebesgue Dominated Convergence Theorem is still valid if “all i” is re-
placed by “all large i.”
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2. Construct a decreasing sequence of functions (fi) converging uniformly to
0 on R such that

R
R fi =∞ for all i. This shows that the assumption that

µ(E) <∞ cannot be removed.

3. Construct a sequence of continuous functions (fi) converging uniformly to
0 on R such that

R
R fi = 1 for all i. Hint: You may use the fact, proved

later, that the integral of a function whose graph is the upper part of a
triangle sitting on the x-axis is the area of the triangle.

Exercise 179 Modify Example 277 to make the functions fn continuous. As in
the previous exercise you may use elementary calculus to compute the integrals.
Hint: Replace rectangles by triangles.

4.6 Simple Functions
Definition 288 A simple function f : Rn → R is a function of the form

f =
kX
i=1

ciχEi

where each ci ≥ 0 and Ei is a Borel set.

Exercise 180 Prove that the sum and product of two simple functions are sim-
ple functions.

Exercise 181 Let
Pk

i=1 ciχEi be a simple function. Show that the function can
be expressed as a finite linear combination of characteristic functions of pairwise
disjoint Borel sets. Hint. For any subset S of {1, ..., k}, let ES :=

T
i∈S

Ei, and

use the collection of all such subsets to index the sum.

Exercise 182 Prove that if f =
Pk

i=1 ciχEi and g : Rn → Rn is a function
f ◦ g =

Pk
i=1 ciχg−1(Ei).

Simple functions are linear combinations of Borel functions and hence are
Borel functions. Given a nonnegative continuous function f defined on an in-
terval [a, b], let P(n) be the partition a = x0 < x1 < · · · < x2n = b of [a, b] into
2n intervals of length 2−n. Define a simple function gn :=

P2n

i=1miχEi , where
Ei = [xi−1, xi) for 1 ≤ i < 2n, E2n = [x2n−1, x2n ], and for all i, mi := f(xi−1).

Exercise 183 Show that if gn is the function defined above then gn
p→ f .

Since f is continuous on [a, b], f is bounded above by some M < ∞. By
definition we also have gn ≤ M for all n. Letting g(x) = M , we have

R
[a,b]

g =

M(b − a) < ∞ and gn ≤ g for all n. The Lebesgue Dominated Converence
Theorem applies and we have

R
[a,b]

gn →
R
[a,b]

f . But
R
[a,b]

gn =
P2n

i=1mi(2
−i)

is also a Riemann sum for f and since these converge to
R b
a
f , we have proved:



122 CHAPTER 4. INTEGRATION

Theorem 289 If f : [a, b] → R is nonnegative and continuous then
R
[a,b]

f =R b
a
f .

Thus the Riemann integral of a continuous function on a compact interval
is the same as the Lebesgue integral, which means that all of the theorems we
have proved about Lebesgue integration hold for Riemann integration of con-
tinuous functions. However, the statements require many caveats—for example,
we already know that pointwise or even monotone limits of continuous func-
tions may not be continuous, so the convergence theorems may only be used
when the limit function can otherwise be proved to be continuous, as in the
case of uniform convergence of continuous functions. It is not hard to extend
the above argument to prove that a continuous nonnegative function defined
on a compact set can also be computed using higher-dimensional analogs of
Riemann sums, although the region in question generally cannot be subdivided
into higher dimensional semicubes.
What about an arbitrary nonnegative Riemann integrable function? It can

be shown that a real valued function defined on [a, b] is Riemann integrable if
and only if it is continuous except on a subset of a Borel set of measure 0 (with
an analogous statement for appropriately defined regions in higher dimensions).
The fact that there are such subsets that are not Borel sets points to the necessity
of “completing” the collection of Borel sets by adding all subsets of Borel sets
having measure 0. The smallest σ-algebra of sets containing all open sets and
all subsets of Borel sets of measure zero is called the σ-algebra of measurable
sets. One might say that Lebesgue integration of Borel functions, while not the
most general possible, differs from the general theory only by subsets of sets of
measure 0—close enough for our purposes.
In elementary calculus one also learns about “improper” integrals, such asR∞

a
f(x)dx, which is defined to be limt→∞

R t
a
f(x)dx. However, it follows from

Proposition 256 that if f is nonnegative and this limit exists then the limit must
be equal to the Lebesgue integral

R
[a,∞) f .

We will next prove the interesting fact that the Lebesgue integral of an
arbitrary nonnegative Borel function can be computed in essentially the same
way as the Riemann integral, except that rather than using only simple functions
that are defined on partitions, we must use arbitrary simple functions. The key
difference is that the approximations (Riemann sums) for the Riemann integral
are obtained by subdividing the domain of the interval, while the approximations
of the Lebesgue integral are obtained by subdividing the range and “pulling
back” the subdivision to the domain. The advantage of the latter becomes clear
when the function in question is defined on a subset of Rn for n > 1. While
an interval is relatively easy to subdivide into smaller intervals, an arbitrary
closed, bounded, connected set in higher dimensional space is not so easy to
subdivide nicely, and certainly cannot always be subdivided into cubes. On the
other hand, since all of our functions are real-valued, subdividing the range, as is
done with the Lebesgue integral, remains easy to do regardless of the dimension
of the domain space.
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Definition 290 A subset A of a metric space X is called an Fσ set if A is the
countable union of closed sets.

Certainly Fσ sets are Borel sets, and closed sets are Fσ sets—but for example

any half-open interval is an Fσ that is not closed. If A =
∞S
i=1

Ai, where each i is

closed then one can always write A as an increasing union A =
∞S
i=1
(A1∪ · · ·∪Ai).

If A is an Fσ subset of Rn then we can further write

A =
∞[
i=1

[(A1 ∪ · · · ∪Ai) ∩Qn(i)]

where each (A1 ∪ · · · ∪Ai) ∩Qn(i) is compact. In other words:

Lemma 291 If A ⊂ Rn is an Fσ then A is the increasing union of countably
many compact sets.

Sets that are countable increasing unions of compact sets are sometimes
called σ-compact .

Proposition 292 Let f : E → R be a nonnegative Borel function defined on a
Borel set E in Rn. There exists a sequence (fi) of simple functions such that
fi % f on E. If f is continuous and E is closed then each fi is of the formPj

n=1 cjχEj where each Ej is an Fσ.

Proof. For every k ∈ N, subdivide [0, k) into k · 2k intervals of equal length
2−k; each interval is of the form [(j − 1)2−k, j2−k) with 1 ≤ j ≤ k · 2k. We
know that each of the sets Ek

j := f−1([(j − 1)2−k, j2−k)) is a Borel set. Define
fk :=

Pk·2k
j=1 (j − 1)2−kχEk

j
. For x ∈ Ek

j we have, by definition, (j − 1)2−k ≤
f(x) < j2−k and therefore if Ek := f−1([0, k)) we have for all x ∈ Ek, 0 ≤
f(x)− fk(x) < 2

−k. Now for any x ∈ E we have f(x) ∈ [0, k) for all sufficiently
large k and therefore |f(x)− fk(x)| ≤ 2−k for all such k, so fk(x)→ f(x). It is
an exercise to prove that the sequence (fk) is monotone increasing.
Note that each interval [(j−1)2−k, j2−k) is a countable union of closed inter-

vals [(j−1)2−k, ai], where ai is some sequence in the interval ((j−1)2−k, j2−k)
converging to j2−k. If f is continuous then since the inverse image of closed
sets is closed, each Ek

j is a countable union of sets that are closed in E. If E is
closed in Rn then these sets are also closed in Rn.

Corollary 293 If f : E → R is a nonnegative Borel function then
R
E
f =

sup
©R

E
g
ª
where the supremum is over all simple functions g such that g ≤ f

on E.

Exercise 184 Finish the proof of Proposition 292.



124 CHAPTER 4. INTEGRATION

4.7 Fubini’s Theorem
In elementary calculus one learns that double and triple integrals can be com-
puted using iterated integration. We will now show that the same procedure
works for the Lebesgue integral of a nonnegative continuous function defined on
a compact set. This theorem, known as Fubini’s Theorem, is true under weaker
assumptions, but the proof of the most general version is beyond the scope of
this text. The version we present here will be adequate for our purposes; in
particular we will not be combining iterated integration with limits of func-
tions and will not need our general convergence theorems when using iterated
integration. Even though we will prove the theorem for continuous functions
there is still a significant advantage over the theorem for Riemann integration,
namely that we can prove it for continuous functions defined on any compact
set, and not simply on certain “nice” regions (generally called Jordan regions),
which are essentially regions having boundary of measure 0. Such restrictions
on the domain of a function are highly problematic in certain kinds of analysis,
for example geometric measure theory, which includes analysis of fractal sets.
First, let’s examine an exercise from calculus to see how it works in our

present terminology. Suppose we wish to integrate a function f(x, y, z) = xyz
over the region R in R3 that is bounded by the parabolic cylinder y = x2, the
plane y + z = 4, and the x, y-plane. We can set up the integralZ 2

−2

Z 4

x2

Z 4−y

0

(xyz) dzdydx.

How do we evaluate it? The usual description from elementary calculus is
something like “treat x and y like constants and do the inside integral with
respect to z.” This results in the iterated integral

R 2
−2
R 4
x2

1
2xy(4 − y)2dydx,

which is equal to the integral
R
A
1
2xy(4− y)2dydx where A is the region in the

(x, y)-plane bounded by the parabola y = x2 and the line y = 4. The region A
is also the projection of the region R onto the (x, y)-plane. Really what we have
done in this first stage is reduce the triple integral to a double integral, and this
is the step we will focus on. Reducing the resulting double integral to a single
integral is similar.
We consider R3 as R2 × R, where the first factor is the (x, y)-plane and

the latter factor is the z-axis. We let π1 : R3 → R2 and π2 : R3 → R be the
projections. So A = π1(R). If we fix any (x, y) ∈ A, the vertical line above (x, y)
is L(x,y) = π−11 ((x, y)). Because R is a “reasonable” set, this line intersects R
in a line segment (possibly a single point). We will be integrating a function of
one variable, so we project this segment onto the z-axis. That gives us a set

R(x,y) := π2(π
−1
1 ((x, y)) ∩R) = {z ∈ R : (x, y, z) ∈ R}.

Again, because R is “reasonable” each R(x,y) is an interval in R, which we will
refer to as the “slice” of R at the point (x, y). What are the endpoints of this
interval? The lower endpoint is the projection of the point where the line L(x,y)
first meets the region R, which always has z-coordinate 0. This line exits R
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through the plane y + z = 4, at the point with z-coordinate 4 − y. Therefore
R(x,y) = [0, 4 − y]. We may now consider the function of one variable f(x,y) :
R(x,y) → R defined by f(x,y)(z) = f(x, y, z) = xyz. This is what it means to
“treat x and y like constants.” We now integrate this function over the set R(x,y),

resulting in a function of two variables I(x, y) :=
R 4−y
0

f(x,y)(z)dz =
R 4−y
0

xyzdz
we now have a continuous function I : A→ R of two variables and can perform
the double integral

R
A
I(x, y)dxdy, which we have been assured by our calculus

text is equal to the original triple integral. Actually proving that this is the case
is nontrivial. Note that, with our current notation, we are finding the measure
of the region by integrating the measure of the “slice” of the region above each
point (x, y) when it is projected onto the z-axis. Note that the measure of
π−11 ((x, y) is actually 0 since it is contained in a vertical line; that is why we
project it to the one-dimensional space R, where its measure is 4− y.
Proving that iterated Riemann integration works when the region is a rec-

tangle is relatively straightforward; it is the passage from rectangles to more
general regions that presents difficulties. The standard method involves cover-
ing a compact region in the plane by squares that meet only in their faces, the
idea being to apply the theorem to each square and add the results. Even if
one assumes that the function is defined on this larger region, one must still
take a limit as the union of squares decreases to the original region—and as we
have already observed Riemann integration fares poorly when it comes to limits.
Instead, for Riemann integration one must proceed in a fairly ad hoc manner,
extending the function as 0 on the larger region so that the integral over the
larger region is equal to the integral over the original. Of course this extension
need not be continuous, and one must pile on additional assumptions about the
boundary of the region to ensure that the extended function is Riemann inte-
grable. None of this is necessary with Lebesgue integration, for which adequate
limiting theorems are available.
The proof of Fubini’s theorem is somewhat involved, but general strategy

is widely applicable in analysis: prove the theorem for characteristic functions,
then for simple functions, and then use Proposition 292 to finish it off. This
will not be the last time we follow these steps.
Our starting point should also be familiar from elementary calculus; we will

show that the measure of a compact set (which is the integral of its characteristic
function) in Rn ×Rm can be computed using “integration by slices”.

Definition 294 Let E ⊂ Rn × Rm and let π1 : Rn × Rm → Rn and π2 :
Rn × Rm → Rm be the projections. Define E1 := π1(E) ⊂ Rn and for any
x ∈E1 define

Ex := {y ∈Rm : (x,y) ∈E} = π2(π
−1
1 (x) ∩E).

The set Ex is called the slice of E at x.

Note, the slice Ex is, strictly speaking, a subset of Rm. Geometrically it is
useful to think of Ex as being the set π

−1
1 (x) ∩ E, which really is a “slice” of

the set E sitting above the point x in Rm, but of course in Rn+m this set has
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measure 0! That is why we must project to Rm if we are to correctly determine
its measure.

Exercise 185 Verify the equality {y ∈Rm : (x,y) ∈E} = π2(π
−1
1 (x) ∩ E) in

Definition 294.

Lemma 295 If E ⊂ Rn ×Rm is compact then for all x ∈ E1, Ex is compact.

Proof. Since {x} is closed, π−11 (x) is closed and E is compact, hence closed
and bounded. Therefore π−11 (x) ∩ E is closed and bounded, hence compact.
Finally, Ex = π2(π

−1
1 (x) ∩E) is compact.

Theorem 296 (Measure by Slices) Let E ⊂ Rn ×Rm be a bounded Fσ set and
define η : Rn → R by η(x) := µ(Ex). Then E1 is a Borel set, η is a Borel
function, and

R
E1

η = µ(E).

Proof. Note that if x /∈E1 then Ex = ∅ and η(x) = 0. Therefore, in each
case below when we have proved η is Borel we will know that for any Borel set
A

if E1 ⊂ A then
Z
A

η =

Z
E1

η. (4.2)

Suppose first that E is a cube of the form Q1×Q2, where Q1 = E1 and Q2 are
cubes of side length r in Rn, Rm, respectively. Then Ex = Q2 for all x ∈E1 and
therefore η(x) = µ(Q2) = rm, which is constant, hence Borel. In addition,Z

E1

η =

Z
Q1

rm = rmµ(Q2) = rn+m = µ(E).

Now suppose that E is a semicube (Q1 ×Q2) \A. A somewhat tedious argument
shows that E1 is a semicube Q1\A1 and Ex is a semicube Q2\Ax for all x. (For
example, one needs to show by writing out the definitions of the sets involved
that the boundary of Q1 is the projection of a compact part of the boundary of
Q1×Q2. This is easy to see in low dimensions.) Once again we have η(x) = rm,
µ(E) = rn+m and

R
E1

η =
R
Q1

rm = rn+m.
Next suppose that E is a finite union of pairwise disjoint semicubes in Rn×

Rm; E := K1 ∪ · · · ∪KN . Now π−11 (x) ∩E is the pairwise disjoint union of the
sets π−11 (x) ∩Ki and since π2 is one-to-one on π−11 (x), each Ex is the pairwise
disjoint union of the sets (Ki)x. We have η(x) = µ(Ex) =

PN
i=1 µ((Ki)x). That

is, η is a sum of Borel functions and hence is Borel. Since (Ki)1 ⊂ E1, we have
from (4.2) thatZ

E1

η =

Z
E1

µ(Ex) =

Z
E1

nX
i=1

µ((Ki)x) =
nX
i=1

Z
E1

µ((Ki)x)

=
nX
i=1

Z
(Ki)1

µ((Ki)x) =
nX
i=1

µ(Ki) = µ(E).
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Now let E be an arbitrary compact set. According to Theorem 274 there
exists a collection {Fi} of sets such that E is the decreasing intersection of the
collection and each Fi is a finite union of pairwise disjoint semicubes. It is easy
to check that Ex is the decreasing intersection of the collection {(Fi)x} and
therefore µ((Fi)x) & µ(Ex). By definition this means that if ηi(x) :=µ((Fi)x)
then ηi & η. Since ηi is Borel by the case we just proved, η is Borel. In addition,R
(F1)1

η1 = µ(F1) <∞, and since the sequence is decreasing ηi ≤ η1 for all i. We
can apply the Lebesgue Dominated Convergence Theorem. Applying Formula
(4.2) twice we haveZ

E1

η =

Z
(F1)1

η = lim

Z
(F1)1

ηi = lim

Z
(Fi)1

ηi = limµ(Fi) = µ(E).

The general case, when E is an Fσ, is an exercise.

Exercise 186 Finish the proof of Measure by Slices. Be sure to explicitly use
the fact that E is bounded. Hint: Use the fact that E is the increasing union of
compact sets {Ei}.

Example 297 Let E be the union of the y-axis and the segment of the x-axis
from the point (−1, 0) to the point (1, 0). According to Exercise 171 µ(E) = 0,
but of course E is not compact. Now let’s see what happens if we try to use
Theorem 296 to compute the measure of E. Then E1 is the interval [−1, 1] and
Ex = {0} for x 6= 0, but E0 = R, and µ(E0) =∞. This means that the function
η has an infinite value at 0 and hence is not a real valued function. Therefore
we cannot apply our integration theory. Resolving this problem (and proving the
general version of Fubini’s Theorem) requires an integration theory for functions
into the extended reals—or at least for functions that have infinite value only on
a set of measure 0. The infinite values then do not affect the integral. In the
present example the function η takes an infinite value at a single point, which
has measure 0, and is 0 elsewhere. Thus in a more general theory the integral
of η would be 0, as expected.

Recall from elementary calculus that the integral of a non-negative contin-
uous function real function defined on an interval is interpreted to be the area
of the region bounded by the graph. We will make this idea precise and more
general by showing that the integral of a bounded function defined on a compact
set is the measure of the set bounded by the graph.

Definition 298 Let f : X → R be a nonnegative function, where X is a set.
Define

A(f) := {(x, y) ∈ X ×R : 0 ≤ y ≤ f(x)}.

Exercise 187 Show that if f : E → R is a nonnegative continuous function,
where E is a compact subset of Rn then A(f) is compact. Hint: Use the Heine-
Borel Theorem.
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Theorem 299 If f : E → R is a nonnegative continuous function, where E is
a compact subset of Rn then

µ(A(f)) =

Z
E

f .

Proof. We will compute the measure of A(f) ⊂ Rn×R by slices. First note
that (A(f))1 = E and for any x ∈ E, x (A(f))xis the interval [0, f(x)] in R,
which has measure f(x). Therefore

µ(A(f)) =

Z
E

µ((A(f))x) =

Z
E

f .

Exercise 188 Prove that if f : E → R is a nonnegative continuous function,
where E is a compact subset of Rn then the graph of f has measure 0 in Rn+1.

Definition 300 Let E ⊂ Rn×Rm, π1 : Rn×Rm → Rn and π2 : Rn×Rm → Rm
be the projections, and f : E → R be a function. Define fx : Ex → R by
fx(y) := f(x,y).

Note that if f is continuous then the function gx(y) := f(x,y) is continuous
and since fx(y) = f(gx(y)), fx is continuous for any x.

Exercise 189 Let E ⊂ Rn ×Rm let f =
Pk

i=1 cigi where each gi : E → R is a
function. Prove that for any x ∈ E1, fx =

Pk
i=1 ci (gi)x.

Exercise 190 Let fi % f on E ⊂ Rn×Rm. Prove that for any x ∈E1, (fi)x %
fx. A similar statement holds for decreasing sequences.

Lemma 301 Let E ⊂ Rn ×Rm. Then for any x ∈ Rn, (χE)x = χEx .

Proof. For any y ∈Rm, we have (χE)x (y) = χE(x,y) = 1 if and only if
(x,y) ∈ E and 0 otherwise. But χEx(y) = 1 if and only if y ∈Ex, which is
equivalent to (x,y) ∈ E, and 0 otherwise.
Note that in Fubini’s Theorem below, if we take fx = 1 then the theorem

reduces to Measure by Slices; hence the latter theorem is a special case of
Fubini’s Theorem.

Theorem 302 (Fubini’s Theorem) If E ⊂ Rn×Rm is compact and f : E → R
is a nonnegative continuous function then I(x) :=

R
Ex

fx is a Borel function
and Z

E

f =

Z
E1

µZ
Ex

fx

¶
.
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Proof. First let g =
Pk

i=1 ciχFi where each Fi ⊂ E is a bounded Fσ. Then
for any x ∈E1, by Exercise 189 and Lemma 301,Z

Ex

gx =

Z
Ex

kX
i=1

ci (χFi)x =
kX
i=1

ci

Z
Ex

χ(Fi)x =
kX
i=1

ciµ((Fi)x)

and by Theorem 296 the function h(x) :=
R
Ex

gx is a Borel function and

Z
E1

µZ
Fx

gx

¶
=

Z
E1

Ã
kX
i=1

ciµ((Fi)x)

!
=

kX
i=1

ci

Z
E1

µ((Fi)x)

=
kX
i=1

ci

Z
Fi

µ((Fi)x) =
kX
i=1

ciµ(Fi) =

Z
E

g.

According to Proposition 292 there exist simple functions gi of the form
considered above such that gi % f (the Fσ sets are bounded because they are
contained in the bounded set E). By Exercise 190, for any x ∈E1, (gi)x % fx.
By the Monotone Convergence Theorem

R
Ex
(gi)x %

R
Ex

fx for all x. Since
each function Ii(x) :=

R
Ex
(gi)x is a Borel function and Ii % I, I is also a Borel

function. We can now apply the Monotone Convergence Theorem to conclude
that Z

E1

I = lim

Z
E1

Ii = lim

Z
E1

Z
Ex

(gi)x = lim

Z
E1

gi =

Z
E1

f .

Note that we could carry out the above proof as well by letting E2 be the
projection of E onto Rm and for any y ∈ E2 defining fy in an analogous fashion
to obtain: Z

E2

ÃZ
Ey

fy

!
=

Z
E

f =

Z
E1

µZ
Ex

fx

¶
.

In other words we can “reverse the order of integration.”

Exercise 191 Let f : A → R and g : B → R be continuous nonnegative real
functions and define h : A×B → R by h(x, y) = f(x)g(y), where A and B are
compact subsets of R. Prove that

R
A×B h =

¡R
A
f
¢ ¡R

B
g
¢
.

4.8 Integration of Arbitrary Borel Functions

Of course one needs to consider integration of functions that are not necessarily
nonnegative. Nonnegative functions are a bit easier to deal with, especially
when we are dealing with integrals that may be infinite. We treat arbitrary
Borel functions by writing them as a difference of nonnegative functions, and
then applying the theory we have already developed to each of those nonnegative
functions. This allows us to quickly extend our theory to more general functions.
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Definition 303 Let f : E → R be a function defined on a set E. Define
f+(x) = max{f(x), 0} and f−(x) := −min{f(x), 0}.

Exercise 192 Let f : E → R be a Borel function defined on a Borel set E ⊂
Rn. Prove that

1. f+ and f− are nonnegative Borel functions on E,

2. f = f+ − f−, and

3. |f | = f+ + f−.

Definition 304 Let f : E → R be a Borel function defined on a set E ⊂ Rn. If
at least one of

R
E
f+ or

R
E
f− is finite we say that

R
E
f exists and define

R
E
f :=R

E
f+ −

R
E
f−. If

R
E
f exists and is finite then we say that f is integrable.

Note that f is integrable if and only if both f+ and f− are integrable. There
are analogs for arbitrary Borel functions of most of the main theorems that we
have proved about nonnegative functions, plus a few, like the next two lemmas,
that are trivial for nonnegative functions. We must take care to assume (or
assert) the existence of the integral where needed, and some care must be taken
to avoid trying to add +∞ and −∞. Because of such problems many of the
theorems below will be stated only for integrable functions, although some more
general statements (with appropriate caveats) are also true.

Lemma 305 For any f : E → R, if
R
E
f exists then,

¯̄R
E
f
¯̄
≤
R
E
|f |. More-

over, f is integrable on E if and only if |f | is integrable.

Proof. We compute¯̄̄̄Z
E

f

¯̄̄̄
=

¯̄̄̄Z
E

f+ −
Z
E

f−
¯̄̄̄
≤
Z
E

f+ +

Z
E

f− =

Z
E

(f+ + f−) =

Z
E

|f | .

Now f is integrable if and only if both
R
E
f+ and

R
E
f− are finite, and since

|f | = f+ + f− this is equivalent to
R
E
|f | being finite.

A few comments about the above lemma are in order. First of all, one should
contrast what this lemma tells us with what we already know about series—that
a series may converge but not converge absolutely. Lemma 305 is true because
we separate out the positive and negative parts and only proceed if the integral
of one of these parts is finite. In a series that converges, but not absolutely, the
series of negative terms and the series of positive terms must both, by them-
selves, diverge. There is a similar distinction between Lebesgue integration and
improper Riemann integration. While for nonnegative continuous functions we
have already seen that Lebesgue integration and improper Riemann integration
agree, the same is not true for arbitrary continuous functions, as is shown in
the following exercise.
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Exercise 193 Show that of the improper Riemann integrals
R∞
0

sinx
x dx andR∞

0

¯̄
sinx
x

¯̄
dx, the first is finite but the second is infinite, using the steps be-

low. The latter integral must equal the Lebesgue integral
R
(0,∞)

¯̄
sinx
x

¯̄
, and so by

Lemma 305, sinxx is not Lebesgue integrable on (0,∞). Therefore the improper
Riemann integral

R∞
0

sinx
x dx is not equal to the Lebesgue integral

R
(0,∞)

sinx
x .

You may use theorems from elementary calculus to do the calculations.

1. Show that sinxx is the restriction of a continuous function defined on [0,∞)
and therefore

R∞
0

sinx
x dx is finite if and only if

R∞
1

sinx
x dx is finite.

2. Use integration by parts and the fact that
R∞
1

dx
x2 < ∞ to finish showingR∞

0
sinx
x dx <∞.

3. Prove that
R
[0,n]

|sinπx|
x ≥ 2

π

Pn
i=1

1
i and use this to show that

R∞
0

¯̄
sinx
x

¯̄
dx =

∞. Hint: Consider the intervals [i− 1, i].

The (improper) Riemann integrability of |f | is sometimes referred to as “ab-
solute” integrability of f in analogy with series. The above exercise therefore
exhibits a function that is Riemann integrable but not absolutely Riemann in-
tegrable. We know already that there is no such distinction for Lebesgue inte-
grals, although if the Lebesgue integral of a Borel function does not exist one
can sometimes still consider improper Lebsegue integrals using limits in analogy
with improper Riemann integrals.

Lemma 306 Suppose f = f1 − f2, where f1 and f2 are nonnegative integrable
functions defined on E ⊂ Rn. Then f is integrable and

R
E
f =

R
E
f1 −

R
E
f2.

Proof. First, |f | ≤ |f1|+ |f2|, and since f1 and f2 are integrable, so is f by
Lemma 305. Since f+ − f− = f1 − f2, f+ + f2 = f− + f1 and thereforeZ

E

f+ +

Z
E

f2 =

Z
E

f− +

Z
E

f1.

Rearranging the terms (which are all finite) finishes the proof.

Lemma 307 If f : E → R is an integrable function, where E ⊂ Rn and A ⊂ E
are Borel sets, then f is integrable on A.

Proof. If f is integrable on E then each of the nonnegative functions f+

and f− has finite integral on E and hence on A. Therefore f is integrable on
A.
We now verify the basic properties of the integral. We will list them here

and verify them below. Of course positivity no longer holds and normalization
only concerns a nonnegative function, which leaves three of the original five.

1. (Linearity) If f and g are integrable on A ⊂ Rn then for any c ∈ R, cf + g
is integrable and

R
A
(cf + g) = c

R
A
f +

R
A
g.
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2. (Countable Set Additivity) If E =
S∞
i=1Ei where {Ei}∞i=1 is a pairwise

disjoint collection of Borel sets and f is integrable on E then
R
E
f =P∞

i=1

R
Ei

f .

3. (Translation Invariance) If f is integrable on A ⊂ Rn and h(x) = f(x−v),
which is defined on v+A, then h is integrable and

R
A
f =

R
v+A

h.

Proof. We will prove linearity as two separate parts, proving
R
A
cf = c

R
A
f

first. If c = 0 the proof is trivial. If c > 0 then (cf)+ = max{0, cf} =
cmax{0, f} = cf+ and likewise (cf)− = cf−. We now computeZ
A

cf =

Z
A

(cf)+ − (cf)− =
Z
A

cf+ −
Z
A

cf− = c

µZ
A

f+ −
Z
A

f−
¶
= c

Z
A

f .

The proof for c < 0 is an exercise. Since

f + g = (f+ + g+)− (f− + g−)

Lemma 306 implies that f + g is integrable andZ
A

f + g =

Z
A

¡
f+ + g+

¢
−
Z
A

¡
f− + g−

¢
=

Z
A

f+ −
Z
A

f− +

Z
A

g+ −
Z
A

g− =

Z
A

f +

Z
A

g.

The rest of the the proof is an exercise.

Exercise 194 Finish the above proof.

Lemma 308 If f and g are Borel functions defined on a set E ⊂ Rn such that
f(x) ≤ g(x) for all x ∈ E and

R
E
f and

R
E
g exist then

R
E
f ≤

R
E
g.

Lemma 309 If f is a Borel function defined on a Borel set E ⊂ Rn of measure
0 then

R
E
f exists and is equal to 0.

Exercise 195 Prove the above two lemmas.

Exercise 196 Suppose that f and g are integrable Borel functions such that
f ≥ g a.e. on a Borel set E.

1. Prove that if
R
E
f =

R
E
g then f = g a.e. on E.

2. Show by example that the statement is false if one removes the requirement
that f ≥ g a.e.

Theorem 310 (General Lebesgue Dominated Convergence Theorem) Let fi :
E → R be a sequence of Borel functions such that fi

p→ f for some f : E → R,
where E is a Borel subset of Rn. If there exists a nonnegative integrable function
g : E → R such that |fi(x)| ≤ g(x) for all i and x ∈ E, thenZ

E

f = lim

Z
E

fi.
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Proof. Note that
0 ≤ g − fi ≤ g − (−g) = 2g

and (g − fi)
p→ g − f . The Lebesgue Dominated Convergence Theorem impliesZ

E

g − lim
Z
E

fi = lim

Z
E

(g − fi) =

Z
E

g −
Z
E

f

and the proof is finished since all the integrals are finite for large i.

Theorem 311 (Fubini’s Theorem) If E ⊂ Rn×Rm is compact and f : E → R
is a continuous function then I(x) :=

R
Ex

fx is a Borel function andZ
E

f =

Z
E1

µZ
Ex

fx

¶
.

Proof. Since f is continuous on a compact set f is bounded below by some
real number M and g := f −M is nonnegative and continuous. One can easily
check that fx = gx +M and so fx is Borel and integrable. We can apply the
previous version of Fubini’s Theorem to g:Z

E

g =

Z
E1

µZ
Ex

gx

¶
=

Z
E1

µZ
Ex

fx −M

¶

=

Z
E1

µZ
Ex

fx

¶
−M

Z
E1

µZ
Ex

1

¶
=

Z
E1

µZ
Ex

fx

¶
−Mµ(E).

On the other hand, Z
E

g =

Z
E

(f −M) =

Z
E

f −Mµ(E).

Proposition 312 Let f : U → R be an integrable Borel function defined on an
open set U ⊂ Rn, and suppose that C ⊂ U is compact. For every ε > 0 there
exists a δ > 0 such that N(C, δ) ⊂ U and

¯̄̄R
N(C,δ)

f −
R
C
f
¯̄̄
< ε.

Exercise 197 Prove Proposition 312.

At this point we would like to describe the most direct method for showing
the existence of the Lebesgue integral. One can start with the conclusion of
Theorem 274, defining the measure of an arbitrary set in Rn to be the infi-
mum of sums

Pk
i=1 µ(Qi) such that each Qi is a cube and C ⊂

Sk
i=1Qi. An

immediate problem is that this measure is not countably additive for arbitrary
subsets of Rn; to get countable additivity one must restrict consideration to a
collection of sets for which countably additivity is valid, such as Borel sets or
measurable sets that were defined earlier. This measure allows one to define
the integral of simple functions. One then defines the integral of an arbitrary
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nonnegative Borel function f (or more generally measurable function, that is,
inverse images of open sets are measurable) to be the supremum of the inte-
grals of all simple functions less than or equal to f (see Corollary 293). The
extension to arbitrary Borel or measurable functions is then exactly the same as
what we did this section. While this whole procedure seems straightforward, the
details of the proofs of the various properties are somewhat involved. In some
graduate courses this presentation is avoided and the Lebesgue integral appears
somewhat mysteriously as an application of a theorem known as the Riesz Rep-
resentation Theorem to the Riemann integral; one purpose of this chapter has
been to facilitate the transition to that more sophisticated perspective.
We conclude this section with a brief discussion of integrals of complex val-

ued functions. If E ⊂ C is a Borel set and f : E → C is a function, we say that f
is integrable if and only if the real and imaginary parts of f are integrable. More
specifically, letting f(z) = g(z)+ ih(z) where g and h are real function, f is said
to be integrable if and only if g and h are integrable (as real valued functions
defined on C = R2) and we define

R
E
f to be the complex number

R
E
g+ i

R
E
h.

Using methods similar to what we used in this chapter one can prove linear-
ity, countable set additivity, and translation invariance, plus a version of the
Lebesgue Dominated Convergence Theorem for complex integrals.

4.9 Lp Spaces
The purpose of this section is to introduce the most important and well-known
infinite dimensional normed vector spaces, the Lp spaces. We saw in Theorem
139 that all norms on Rn are bilipschitz equivalent and hence, since the standard
norm on Rn is complete, it follows that all norms on Rn are complete. The same
cannot be said for norms on infinite dimensional spaces, although we will not
discuss specific examples here. Completeness is important enough a property
that complete normed vector spaces have their own name.

Definition 313 A Banach space is a vector space V with a norm such that the
metric induced by the norm is complete.

A theorem from linear algebra tells us that every finite dimensional (real)
vector space is isomorphic to Rn for some n and hence we may conclude that
all normed vector spaces of dimension n are Banach spaces that are topologi-
cally equivalent and isometric to Rn with some norm. The most basic infinite
dimensional Banach spaces are defined as follows:

Definition 314 Let E be a nonempty Borel subset of Rn and 1 ≤ p <∞. We
define Lp(E) to be the set of all functions f : E → R such that

R
E
|f |p < ∞.

None of the results in this section depends on the particular properties of E, and
hence we will simply denote the space by Lp, as is customary.

Exercise 198 Prove using theorems of elementary calculus that x−
1
q ∈ Lp((0, 1))

if p > q, but x−
1
q /∈ Lq((0, 1)).
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Note that Lp is a vector space. In fact, the set of all real valued functions
on E is easily checked to be a vector space with respect to the usual adding and
scalar multiplication of vectors. Therefore we need only check closure under
scalar multiplication and addition. Certainly if f ∈ Lp then cf ∈ Lp for any
c ∈ R. If f, g ∈ Lp we have for any x ∈ E,

|f(x) + g(x)|p ≤ (|f(x)|+ |g(x)|)p ≤ (2max{|f(x)| , |g(x)|})p

= 2pmax{|f(x)|p , |g(x)|p} ≤ 2p(|f(x)|p + |g(x)|p)
and therefore Z

E

|f + g|p ≤ 2p
µZ

E

|f |p +
Z
E

|g|p
¶
<∞.

We define the norm of f ∈ Lp by

kfkp :=
µZ

E

|f |p
¶ 1

p

. (4.3)

We will verify that this is a norm—almost! It turns out that this “norm” is not
positive definite, and we will have to deal with this later. For now, observe
that certainly for any constant c, kcfkp = |c| kfkp. The triangle inequality (also
known, in this context, as the Minkowski Inequality), will follow from some
other inequalities that are important in their own right.

Lemma 315 (Young’s Inequality) Let f : [0,∞) → [0,∞) be a continuous,
one-to-one function such that f(0) = 0. Then for any a, b > 0 such that b lies
in the range of f ,

ab ≤
Z a

0

f +

Z b

0

f−1

and equality holds if and only if b = f(a).

Proof. Let A = A(f |[0,a]) and B = A(f−1 |[0,b]) (see Definition 298). Note
that A ∩B is the graph of f , which by Exercise 188 has measure 0. Therefore

µ(A ∪B) = µ(A) + µ(B) =

Z a

0

f +

Z b

0

f−1.

Since f(0) = 0 and f is nonnegative, f must be strictly increasing by Corollary
272. Let R := [0, a]× [0, b], which has measure ab. If (x, y) ∈ R, then y ≤ f(x)
or y ≥ f(x). If y ≤ f(x) then (x, y) ∈ A. If y ≥ f(x) then f−1(y) ≥ x and
(x, y) ∈ B. In other words, R ⊂ A∪B and we have ab ≤

R a
0
f+

R b
0
f−1. Suppose

a = f(b). Since f is increasing, if (x, y) ∈ A then y = f(x) ≤ f(a) = b and so
(x, y) ∈ R. Likewise B ⊂ R and therefore A∪B ⊂ R and the opposite inequality
holds. If b > f(a) then the region A(f |(a,f−1(b)]) is contained in R, but not in
A. This region has positive measure since f is continuous and positive. That is,
ab >

R a
0
f +

R b
0
f−1. By Lemma 105, f−1 is continuous and a similar argument

shows the opposite strict inequality if b < f(a).
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Exercise 199 Illustrate with a graph the various cases in the proof of Young’s
Inequality; this “proof by picture” is quite simple and clear if the integral is
interpreted as area.

Corollary 316 Let a, b ≥ 0 and 1 < p, p0 <∞ be such that 1p +
1
p0 = 1. Then

ab ≤ ap

p
+

bp
0

p0
.

Exercise 200 Prove Corollary 316. Hint: Use f(x) = xr for r > 0 in Young’s
Inequality and then let r = p − 1. You may use theorems from elementary
calculus to do the necessary integrals.

Theorem 317 (Hölder Inequality) Suppose that 1 < p, p0 < ∞ are such that
1
p +

1
p0 = 1 and let f, g be Borel functions defined on a Borel set E ⊂ Rn such

that |f |p and |g|p
0
are integrable. ThenZ

E

|fg| ≤ kfkp kgkp0 .

Proof. If kfkp = 0 then by Lemma 273 |f |
p
= 0 a.e. and hence |f | = 0 a.e.

This implies that |fg| = 0 a.e and hence
R
E
|fg| = 0 and the inequality must be

true. A similar proof covers the case when kgkp0 = 0, so we may assume both
are nonzero. h := f

kfkp
and k := g

kgkp0
. NowZ

E

|fg| =
³
kfkp kgkp0

´Z
E

|hk| .

Corollary 316 implies thatZ
E

|hk| =
Z
E

|h| |k| ≤
Z
E

Ã
|h|p

p
+
|k|p

0

p0

!

=
1

kfkpp

Z
E

|f |p

p
+

1

kgkp0p0

Z
E

|g|p
0

p0
=
1

p
+
1

p0
= 1.

In the special case p = p0 = 2 we have:

Corollary 318 (Cauchy-Schwarz Inequality) Let f, g be Borel functions defined
on a Borel set E ⊂ R such that f2 and g2 are integrable. ThenZ

E

|fg| ≤ kfk2 kgk2 .

Exercise 201 Prove the Minkowski Inequality for p = 1.
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For p > 1,

kf + gkpp =
Z
E

|f + g|p =
Z
E

|f + g| |f + g|p−1 ≤
Z
E

|f | |f + g|p−1+
Z
E

|g| |f + g|p−1

Applying the Hölder Inequality with p0 = p
p−1 gives usZ

E

|f | |f + g|p−1 ≤
µZ

E

|f |p
¶ 1

p
µZ

E

|f + g|p
¶ p−1

p

= kfkp kf + gkp−1p .

Doing a similar calculation with
R
E
|g| |f + g|p−1 and combining the results

yields

kf + gkpp ≤
³
kfkp + kgkp

´
kf + gkp−1p

and the triangle inequality follows by dividing each side by kf + gkp−1p .
Do we now have a norm? Unfortunately there is a little problem. Recall that

a norm must be postive definite, but, for example, if fδ is the Dirichlet function
then by Corollary 270 we know that kfδk1 = 0, but fδ is certainly not the 0
function. In fact, if f any function that is 0 a.e. then |f |p has the same property
and hence kfkp = 0 for all p. Not to be deterred, we define two functions f
and g to be equivalent if f = g a.e. Rather than considering functions, we
consider equivalence classes of functions, and these equivalence classes form a
vector space, also referred to as Lp, with a norm naturally induced by k·kp.
For example, if [f ] denotes the equivalence class of f in Lp, we define scalar
multiplication by c [f ] = [cf ]. We need to check that this scalar multiplication
is well-defined. Suppose that [f ] = [g]. Then f(x) = g(x) for almost every x
and therefore cf(x) = cg(x) for almost every x. That is, cf is equivalent to cg,
i.e., [cf ] = [cg]. The remaining details are an exercise. Although it is necessary
to use equivalence classes in order for Lp to be formally a normed vector space,
in practice no notation for equivalence classes is used and customary to consider
Lp as a normed vector space but still treat its elements as functions. On the
other hand, since we really are dealing with equivalence classes we may in any
proof concerning Lp spaces replace a given function by a (presumably nicer or
more convenient) function that differs from the original on a set of measure 0.

Exercise 202 Define the sum and norm of equivalence classes of Lp and show
that each of these is well-defined. Check the distributive law; the proofs of the
other axioms of a vector space are similar.

Definition 319 If E is a Borel subset of Rn and fi, f : E → R are Borel
functions, we say fi

p→ f a.e. if there is some F ⊂ E such that µ(F ) = 0 and
fi

p→ f on E\F . We will write fi → f in Lp to mean that fi converges to f in
the metric space Lp.

Exercise 203 Show that if fi
p→ f a.e., where the functions fi and f are all in

Lp, then there exist functions f 0i , f
0 ∈ Lp such that
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1. f 0i
p→ f 0 and

2. fi → f in Lp if and only if f 0i → f 0 in Lp.

Exercise 204 Let fi → f in Lp and ε > 0, and define Ei := {x ∈E : |fi(x)− f(x)| > ε}.
Show that limi→∞ µ(Ei) = 0.

Exercise 205 Let 1 ≤ p < q < ∞. Show that if µ(E) < ∞ then Lq(E) ⊂
Lp(E). Hint: Consider F := {x : f(x) ≥ 1} and E\F .

Lemma 320 If (fi) is a Cauchy sequence in Lp and fi
p→ f a.e. then f ∈ Lp

and fi → f in Lp.

Proof. By Exercise 203, without loss of generality we may assume fi
p→ f .

Let ε > 0. There is some j such that if i, k ≥ j,

kfk − fikp =
µZ

E

|fk − fi|p
¶ 1

p

< ε.

Fixing k = j, an application of Fatou’s Lemma givesZ
E

|fj − f |p ≤ lim inf
i→∞

Z
E

|fk − fi|p ≤ εp.

Then fj − f ∈ Lp and therefore f = fj − (fj − f) ∈ Lp. Moreover,

kfj − fkp =
µZ

E

|fj − f |p
¶ 1

p

→ 0

and therefore fj → f in Lp.

Theorem 321 For all 1 ≤ p <∞, Lp is a Banach space.

Proof. If (fi) be is a Cauchy sequence in Lp then using an iterative con-
struction we can find n1 < n2 < · · · such that for every j

°°fnj − fnj+1
°°
p
≤ 2−j .

Define hk :=
kP

j=1

¯̄
fnj − fnj+1

¯̄
; so (hk) is monotone increasing and nonnegative.

Moreover,

khkkp =

°°°°°°
kX

j=1

¯̄
fnj − fnj+1

¯̄°°°°°°
p

≤
kX

j=1

°°fnj − fnj+1
°°
p
< 1

for any k; that is,
R
E
hpk < 1 for all k. According to Exercise 176, (hk) is

pointwise convergent a.e. For any x ∈E and k we have¯̄̄̄
¯̄ kX
j=1

¡
fnj (x)− fnj+1(x)

¢¯̄̄̄¯̄ ≤ kX
j=1

¯̄
fnj (x)− fnj+1(x)

¯̄
= hk(x).
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That is, the telescoping series
∞P
j=1

¡
fnj (x)− fnj+1(x)

¢
is convergent for almost

every x. According to Exercise 130, this means that (fnj (x)) is convergent for
almost every x. That is, (fnj ) is pointwise convergent a.e. to some function f .
Since (fnj ) is a subsequence of a Cauchy sequence, hence Cauchy, Lemma 320
implies that f ∈ Lp and fnj → f in Lp. The proof is now finished by Lemma
156.
Let’s turn to the special case p = 2. What is special about p = 2 is that we

may take p0 = 2 and the (most recent) Cauchy-Schwarz inequality implies that
if we define

hf, gi :=
Z
E

fg

then hf, gi is finite. It is an exercise below that hf, gi has the same basic prop-
erties as the Euclidean dot product. The Cauchy-Schwarz Inequality in this
setting can now be restated in a form nearly identical to the inequality for
Euclidean spaces:

|hf, gi| ≤ kfk2 kgk2 .

The space L2 is referred to as separable Hilbert space. “Separable” means that
there is a sequence having every element of L2 as a cluster point. Rn is separable;
simply take a sequence having as its image the (countable) collection of all points
having rational coordinates. A Hilbert space is a vector space (often assumed
to be infinite dimensional) with a dot product (also called an inner product or
positive definite, symmetric bilinear form) that is complete with respect to the
norm defined by the dot product. It turns out that any two separable Hilbert
spaces are isomorphically isometric, but we will not prove this here (nor the
fact that L2 is separable). Since the geometry of Euclidean space is entirely
determined by the dot product, any Hilbert space is geometrically essentially
the same as the Euclidean spaces, except that it is infinite dimensional.

Exercise 206 Show that on L2, h·, ·i has the same properties of the dot product
in Euclidean space, namely it is symmetric, bilinear, and positive definite—and
by definition kfk22 =

R
E
f2 = hf, fi.

Exercise 207 Let f1 := χ[0,1], f2 := (−1)χ[0, 12 ) + χ[ 12 ,1].

1. Show that f1 and f2 are orthonormal in L2([0, 1]); that is, hfi, fji = 0 if
i 6= j and hfi, fji = 1 if i = j.

2. Show how to continue this process to construct a sequence (fi) of ortho-
normal functions. (Drawing the graphs of the next couple of functions will
suffice.)

3. Show that for any i 6= j, kfi − fjk2 =
√
2.

4. Show that the Heine-Borel Theorem fails for L2.
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Exercise 208 The Lp spaces have finite dimensional analogs: For (v1, ..., vn)∈Rn
and 1 < p <∞, define

k(v1, ..., vn)kp :=
Ã

nX
i=1

|vi|p
! 1

p

.

Verify a version of the Hölder Inequality for this norm. The proof of the triangle
inequality, also called the Minkowski Inequality in this case, is very similar to
the proof for Lp; you do not need to write the details.



Chapter 5

Differentiation

5.1 A Little Linear Algebra
Differentiation is the process of approximating certain reasonable functions be-
tween Euclidean spaces using linear functions. We will first establish our nota-
tion for basic linear algebra. We denote the standard basis vectors by

ei := (0, ..., 0, 1, 0, ..., 0)

where the “1” is the ith coordinate. A vector v = (v1, ..., vn) is uniquely ex-
pressed as v =

Pn
i=1 viei, where the numbers vi are called the components of v.

We will denote (real) matrices with bold capitals (e.g. A) sometimes reserving
for row or column vectors some of the letters near the end of the alphabet (e.g.
X). The entries of a matrix will be denoted by smaller case (not bold) charac-
ters, since they are real numbers: the entry of A that is in the ith row and jth

column will be denoted by aij or (A)ij . For example the product of matrices
may be expressed as

(AB)ij =
nX

k=1

aikbkj .

If A is and n × m matrix and X := (x1, ..., xm) ∈ Rm then the expression
Y = AX describes a function from Rm to Rn given by matrix multiplication.
Explicitly,

A(x1, ..., xm) =
nX
i=1

mX
k=1

aikxkei

In particular,

Aej =
nX
i=1

aijei or (Aej)i = aij .

This function has continuous components and hence is continuous. Moreover
this function is linear in the sense that for every v,w ∈ Rn and t ∈ R we have
A(v + tw) = A(v) + tA(w). Conversely, if f : Rn → Rm is linear then there

141
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is some matrix A such that f(v) = Av for all v. In fact, the jth column of A
is given by f(ej). For our purposes it is convenient to simply use matrices and
linear functions interchangeably, and so we will use the same kind of notation
for linear functions that we do for matrices.

Exercise 209 Let f : Rm → Rn be a function. Show that f is linear if and
only if each component of f is linear. Hint: Using matrices is not the easiest
way to do this.

Note that ifM is an m×n matrix andN is an n×k matrix then the product
matrixMN represents the composition of the linear functions corresponding to
M and N. We will denote the determinant of a square matrix M by detM.
An identity matrix I is a matrix having a 1 in each diagonal entry and 0 in
each other entry; the n× n identity matrix represents the identity function on
Rn. We will need the facts that detMN = detMdetN, and detM = 0 if
and only if M represents an linear isomorphism of Rn, i.e. a bijective linear
function. In this caseM (and the corresponding linear function) are called non-
singular. In general, a linear function L : Rn → Rm is injective if and only if
L−1({0}) = {0}. If n = m then the following are equivalent: L is injective; L
is surjective; L is an isomorphism.
The next proposition is, in a sense, a transition point between linear algebra

and analysis.

Proposition 322 If L : Rm → Rn is linear then L is Lipschitz.

Proof. Since L is continuous and Sm−1 is compact (Exercise 97) there exists
some M > 0 such that L(y) ≤ M for all y ∈Sm−1. Now for any x 6= y in Rn,
x−y
kx−yk ∈ Sm−1 and

kL(x)− L(y)k = kL(x− y)k

= kx− yk
°°°°Lµ x− y

kx− yk

¶°°°° ≤ kx− ykM .
Exercise 210 Suppose that 1 < p <∞ and 1

p +
1
q = 1. For any f ∈ Lq, define

φ : Lp → R by φ(g) :=
R
E
fg.

1. Prove that φ is linear.

2. Prove that φ is Lipschitz. Hint: You cannot mimic the proof of Proposition
322 (cf. Exercise 207).

The converse of the above exercise, i.e. that every “bounded linear func-
tional” on Lp is of the form φ(g) =

R
E
fg for some f ∈ Lq, is an important

theorem known as the Riesz Representation Theorem. The proof of this theo-
rem requires topics that were not covered in the previous chapter.
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5.2 Derivatives

In elementary calculus one learns that the derivative of a real function f at the
point x0 is given by the formula

f 0(x0) := lim
h→0

f(x0 + h)− f(x)

h

provided this limit exists. The function is assumed to be defined in an open
interval about x0 so that x0 may be “approached from both sides.” The limit
is, of course, a real number; this formula therefore defines a new real function
called the derivative, denoted by f 0, defined wherever the limit exists. There
are various problems with directly generalizing this definition to the case when
more than one variable is involved, including the fact that one cannot divide by
vectors, so the quotient makes no sense when the denominator is a vector h. To
generalize the notion of differentiability we must therefore look at an equivalent
notion—also learned in elementary calculus—that of the “linear approximation”
of a differentiable function. Recall that if f is differentiable at x0 then the linear
approximation is given by L(x) := f 0(x0)(x − x0) + f(x0), the graph of which
is the tangent line to the graph of f at x0. The linear approximation provides
a “first order” approximation to f at x0 in the following sense:

lim
x→x0

f(x)− L(x)

x− x0
= lim

x→x0

f(x)− f(x0)− f 0(x0)(x− x0)

x− x0
(5.1)

= lim
x→x0

f(x)− f(x0)

x− x0
− f 0(x0) = 0.

More generally, a function f is an nth-order approximation of a function g at x0
if limx→x0

f(x)−g(x)
(x−x0)n = 0, where n is a nonnegative integer. The idea is that as

x→ x0, (x− x0)
n → 0 for any n ∈ N, and for larger n the convergence is more

rapid. In order for f(x)−g(x)
(x−x0)n to converge to 0, the numerator must converge

“more rapidly” than the denominator, so the order of the approximation is a
measure of how well g approximates f near x0, with larger n implying a better
approximation. If f and g are continuous then g is a 0th-order approximation
of f if and only if f(x0) = g(x0).

Exercise 211 To what best possible order do the following functions approx-
imate f(x) = x3 at x = 0? (You may use any theorems from elementary
calculus.)

1. g(x) = 0

2. g(x) = x2

3. g(x) = cosx− 1
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In order to extend this idea to functions between higher dimensional Euclid-
ean spaces one needs to replace the x− x0 in the denominator by kx− x0k to
obtain the formula

lim
x→x0

f(x)− g(x)

kx− x0kn
= 0

for an nth order approximation at x0. We will say that a function between
higher dimensional spaces is differentiable at a point if it has a linear first-order
approximation at the point. Note that the function L from elementary calculus
described above is not actually a linear function (due to the constant term).
Therefore the following definition is slightly reformulated from Formula (??):

Definition 323 Let f : U → Rn be a function, where U ⊂ Rm is open. We say
that f is differentiable at x0 ∈ U if there exists a linear function L : Rm → Rn
such that

lim
x→x0

f(x)− L(x− x0)− f(x0)

kx− x0k
= 0. (5.2)

If A is any subset of U we say that f is differentiable on A if f is differentiable
at every x0 ∈ A.

We require that U be open so that the above limit involves all points in
a small ball about x0. Roughly speaking we want to be able to approach x0
“from all directions.” Since L(0) = 0, we subtract the term f(x0) so that
L(x− x0)− f(x0) = f(x0) when x = x0.
Note that Formula (5.2) is equivalent to the real valued limit

lim
x→x0

kf(x)− L(x− x0)− f(x0)k
kx− x0k

= 0.

It is an exercise to show that this limit is also equivalent to the following limits,
which we will use frequently:

lim
h→0

f(x0+h)− Lh−f(x0)
khk = 0 and lim

h→0

kf(x0+h)− Lh−f(x0)k
khk = 0. (5.3)

Exercise 212 Prove that f is differentiable at x0 if and only if either (hence
both) of the equations in (5.3) is true. Hint: vague references to “substitution”
won’t do.

We will now show that there is a good way to compute the linear approxi-
mation L (provided it exists) and that it is unique.

Definition 324 Let f : U → R be a function, where U ⊂ Rm is open and
x0 = (x1, ..., xm) ∈ U . For any 1 ≤ j ≤ m, define the jth partial derivative of f
at x0 by

∂f

∂xj
(x0) = lim

t→0

f(x0 + tej)− f(x0)

t
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provided the limit exists. In case m = 1, i.e. if f is a real function, we will use
the notations f 0(x0) and

df
dx(x0) and simply refer to the (only) partial derivative

at x0 as “the” derivative. When m = 2 the partial derivatives are sometimes
denoted by ∂f

∂x = fx and
∂f
∂y = fy, with similar notation using x, y, z when

m = 3.

Exercise 213 Let f : U → R be a function, where U ⊂ Rm is open and
x0 = (x1, ..., xm) ∈ U . For any 1 ≤ j ≤ m, define

hj(t) := f(x1, ..., xj−1, xj + t, xj+1, ..., xm)

Prove that ∂f
∂xj
(x0) = h0j(0).

In the next proof, and frequently in future proofs, we will replace phrases of
the sort “there exists a δ > 0 such that if a < δ then” by “for all sufficiently
small a” or “for all a sufficiently close to 0.” This is completely analogous to
our use of “for all large n” to replace “there exists and N such that for all
n ≥ N” and is done for similar reasons, namely to shorten statements and to
avoid having to choose several δ’s and then choose the minimum of all those δ’s.
As an example, note that the definition of limx→x0 f(x) = c for a real function f
may be stated as: “for all ε > 0, |f(x)− c| < ε whenever |x− x0| is sufficiently
small”.

Theorem 325 Let f : U → Rn be a function, where U ⊂ Rm is open and let
fi : U → R be the components of f . If f is differentiable at x0 ∈ U and L is a
linear function such that

lim
h→0

f(x0+h)− Lh− f(x0)

khk = 0

then for all i and j the partial derivative

∂fi
∂xj

(x0)

exists and is equal to lij. In particular, the linear function L is unique.

Proof. If the above limit exists then the corresponding limits for the com-
ponents exists, i.e., for every δ > 0 and i, if h is sufficiently close to 0,

|fi(x0+h)− (Lh)i − fi(x0)|
khk < δ.

In particular, if for any j we choose h := tej then khk = ktejk = |t| and

(Lh)i = (L(tej))i = tlij .

Therefore if t is sufficiently close to 0,¯̄̄̄
fi(x0 + tej)− fi(x0)

t
− lij

¯̄̄̄
=

¯̄̄̄
fi(x0 + tej)− fi(x0)− tlij

t

¯̄̄̄
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=
|fi(x0 + h)− L(h)i − fi(x0)|

khk < δ.

The matrix having components

lij =

µ
∂fi
∂xj

(x0)

¶
(or the linear function corresponding to it) is variously referred to as the deriva-
tive or total derivative or Jacobian matrix of f at x0, and is written as D(f)(x0)
or Df(x0) or f 0(x0). We will use the notations Df to try to avoid potential
confusion arising from the fact that the derivative is not a function from a sub-
set of Rm into Rn (except when m = 1, in which case Df is a column vector,
hence an element of Rn). In fact, Df is a function that assigns a matrix (or
linear function) to those points in Rm where f is differentiable. That is, Df
is a function from a subset of Rm into a set of matrices, which can itself be
regarded as a subset of Rmn. However, studying the derivative from this stand-
point is beyond the scope of this text. Since it is unique, one can occasionally
prove differentiability and identify the derivative simply by checking that the
“candidate” linear function satisfies the role of L in the definition. For example:

Proposition 326 If L : Rm → Rn is linear then L is differentiable at every
point x0 ∈ Rm and DL(x0) = L.

Proof. For any x0 we have

lim
x→x0

L(x)− L(x− x0)− L(x0)
kx− x0k

= lim
x→x0

L(x)− L(x)− L(x0)− L(x0)
kx− x0k

= 0.

Exercise 214 Prove that if f : Rm → Rn is constant then f is differentiable
and Df(x) = 0 for all x ∈Rm.

We have seen lemmas like the next one already in the context of limits and
continuity; it will be useful on a number of occasions.

Lemma 327 Let f : U → Rn be a function, where U ⊂ Rm is open. Then
f is differentiable at x0 ∈ U if and only if each component fi : U → R is
differentiable at x0. Moreover, (Df)(x0)i = D(fi)(x0); that is, the components
of the derivative of f are the derivatives of the components of f .

Proof. According to Propositions 130 and 65, the limit

lim
x→x0

kf(x)− L(x− x0)− f(x0)k
kx− x0k

= 0

is equivalent to

lim
x→x0

|fi(x)− (L(x− x0))i − fi(x0)|
kx− x0k

= 0
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for all i. Since (L(x−x0))i = Li(x−x0), the proof follows from uniqueness.
Formula (5.1) shows that a real valued function satisfies Definition 323 if

and only if the derivative of the function exists at each point. Combining this
with Lemma 327 gives us:

Corollary 328 A function f : U→ Rn, where U ⊂ R is open, is differentiable
at x0 ∈ U if and only if for all i, dfi

dx (x0) exists.

Exercise 215 Prove that if f(x) =
√
x then for x > 0, f 0(x) = 1

2
√
x
.

The next example shows that for functions of more than one variable, mere
existence of partial derivatives does not imply that a function is differentiable.

Example 329 Let

f(x, y) =

(
0 if (x, y) = (0, 0)
x3

x2+y2 otherwise
.

First note that f is continuous. The only possible discontinuity of f is at the
point 0. But when 0 < k(x, y)k < ε we have¯̄̄̄

x3

x2 + y2

¯̄̄̄
=

|x|x2
x2 + y2

≤
|x|
¡
x2 + y2

¢
x2 + y2

= |x| ≤
p
x2 + y2 < ε,

which proves continuity at 0.
When (x, y) 6= 0 the partial derivatives can be computed using elementary

calculus. At 0 we must compute directly. Then

fx(0, 0) = lim
t→0

t3

t3
= 1, fy(0, 0) = lim

t→0

0

t2
= 0.

Therefore all partial derivatives of f exist at all points of R2. On the other hand,
we can check differentiability directly at (0, 0), knowing that the linear function
L in question would have to be represented by the matrix

¡
1 0

¢
. We have

lim
(x,y)→0

f(x, y)−
¡
1 0

¢
(x, y)− f(0, 0)p

x2 + y2
= lim
(x,y)→0

Ã
x3 − x(x2 + y2)

(x2 + y2)
3
2

!

= lim
(x,y)→0

Ã
x3 − x(x2 + y2)

(x2 + y2)
3
2

!
= lim
(x,y)→0

Ã
−xy2

(x2 + y2)
3
2

!
But the latter limit does not exist. In fact if one considers any sequence (xi, xi)→
0,

lim

Ã
−x3i

(x2i + x2i )
3
2

!
= −2− 3

2

but for any sequence (xi, 0)→ 0,

lim

Ã
−xi · 0

(x2i + 0
2)

3
2

− xi

!
= 0.
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Exercise 216 Define f(x, y) =

(
0 if x = 0
x2y

x4+y2 otherwise
. Prove that the partial

derivatives of f exist everywhere, but that f is not continuous. Hint: Consider
a sequence that lies on the graph of y = x2.

Example 329 leaves us with no convenient way to actually check whether or
not a function with more than one variable is differentiable. We will remedy
this situation later when we consider continuously differentiable functions.
We conclude by recalling two special cases of derivatives. A differentiable

function α : (a, b)→ Rn, n > 1, is called a differentiable curve . The derivative
of α is denoted by α0 : (a, b) → Rn, and is called the velocity of the curve.
The scalar kα0k is called the speed and the second derivative α00 is called the
acceleration of the curve. The third derivative is referred to by physicists as the
jerk (think about it!).
If f is a real-valued differentiable function defined on U ⊂ Rn then (at

least when n > 1) the derivative of f is called the gradient of f , denoted by
∇f = ( ∂f∂x1 , ...,

∂f
∂xn

).

5.3 Basic Differentiation Theorems
Proposition 330 (Linearity) Let f, g : U → Rn be functions, where U ⊂ Rm
is open and suppose that f and g are differentiable at x0 ∈ U . Then for any
c ∈ R, D(cf + g)(x0) = cD(f)(x0) +D(g)(x0).

Exercise 217 Use uniqueness to prove the above proposition.

Lemma 331 Let f : U → Rn be a function, where U ⊂ Rm is open and suppose
that f is differentiable at x0 ∈ U . Then for some r,M > 0,

kf(x)− f(x0)k ≤M kx− x0k

for all x ∈ B(x0, r).

Proof. We have for L := D(f)(x0),

kf(x)− f(x0)k ≤ kf(x)− f(x0)− L(x− x0)k+ kL(x− x0)k .

For some r > 0, if 0 < kx− x0k < r then

kf(x)− f(x0)− L(x− x0)k
kx− x0k

≤ 1,

and hence (even for x = x0),

kf(x)− f(x0)− L(x− x0)k ≤ kx− x0k .

Also,
kL(x− x0)k ≤ N kx− x0k

for some N and all x by Proposition 322. Let M := N + 1.
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Corollary 332 Let f : U → Rn be a function, where U ⊂ Rm is open. If f is
differentiable at x0 ∈ U then f is continuous at x0.

Proof. Let ε > 0 and let r,M > 0 be such that kf(x)− f(x0)k ≤
M kx− x0k when kx− x0k < r. If kx− x0k < min

©
ε
M , r

ª
then kf(x)− f(x0)k <

ε.
One of the most important applications of the derivative involves identifica-

tion of local maxima and minima.

Definition 333 Let f : A→ R be a function defined on A ⊂ Rm. The function
f is said to have a local minimum (resp. maximum) at a point x0 ∈ A if there
exists an open set U such that x0 ∈ U ⊂ A and for every x ∈ U , f(x0) ≤ f(x)
(resp. f(x0) ≥ f(x)). If f has a local minimum or local maximum at x0 then
we say that f has a local extremum at x0.

Note that by definition a local extremum must be at an interior point of A.
If a real valued function f has a maximum (resp. minimum) at x0 in an open
set U ⊂ Rm then by definition f has a local maximum (resp. minimum) at x0.

Theorem 334 (First Derivative Test) If f : A → R is a function defined on
A ⊂ Rm and x0 is a local extremum of f then for any j, if ∂f

∂xj
(x0) exists then

∂f
∂xj
(x0) = 0.

Proof. Suppose that f has a local maximum at x0; the proof for a local
minimum is similar. Let ti < 0 satisfy ti → 0. By assumption, for any j,
∂f
∂xj
(x0) = lim

f(x0+tiej)−f(x0)
ti

exists. Because f has a local max at x0, f(x0) ≥
f(x0 + tiej) for all large i and therefore (using ti < 0)

f(x0 + ejti)− f(x0)

ti
≥ 0,

which implies ∂f
∂xj
(x0) ≥ 0. A similar argument using a sequence with ti > 0

implies the opposite inequality.

Definition 335 Let f : A → R be a function defined on A ⊂ Rm. A point x0
in the interior of A is called a critical point of f if for every j, ∂f

∂xj
(x0) does

not exist or is 0.

Corollary 336 If f : U → R is a function, where U ⊂ Rn is open, and f is
differentiable on U , then every local extremum of f is a critical point.

In elementary calculus the Chain Rule is introduced as a mechanical compu-
tation method for finding derivatives of compositions of differentiable functions.
The rule is named for this mechanical process in which one starts with the “outer
function”, differentiates it, then moves to the “next inner most” function, mul-
tiplies by the derivative of this function, and so on—thus creating a “chain” of
multiplied derivatives. More complicated rules are learned for functions of more
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than one variable. In fact this computational method comes from a very elegant
and natural theorem, which, through force of habit, we will still refer to as the
Chain Rule—although it would be more aptly named the “Composition Rule”.
The connection between this theorem and the computation method learned in
elementary calculus is addressed in Exercise 218 below.

Theorem 337 (Chain Rule) Let g : U → Rm and f : V → Rn be functions
such that U ⊂ Rk and V ⊂ Rm are open and g(U) ⊂ V . If g is differentiable at
x0 ∈ U and f is differentiable at g(x0) then f ◦ g is differentiable at x0 and

D(f ◦ g)(x0) = D(f)(g(x0)) ◦D(g)(x0)

In other words the derivative of the composition is the composition of the deriv-
atives.

Proof. It is sufficient to show that for every ε > 0,

kf(g(x))− [D(f)(g(x0))] [D(g)(x0)] (x− x0)− f(g(x0))k < ε kx− x0k

when kx− x0k is sufficiently small. Applying Lemma 331, let M be such that
kg(x)− g(x0)k ≤ M kx− x0k when kx− x0k is small. Since f is differentiable
at g(x0), we already know that

kf(g(x))−D(f)(g(x0))(g(x)− g(x0))− f(g(x0))k <
ε

2M
kg(x)− g(x0)k ≤

ε

2
kx− x0k

when kg(x)− g(x0)k is sufficiently small, and hence (since g is continuous at
x0) when kx− x0k is sufficiently small. By the triangle inequality it is now
sufficient to show that

k[D(f)(g(x0))] [D(g)(x0)] (x− x0)−D(f)(g(x0))(g(x)− g(x0))k <
ε

2
kx− x0k

when kx− x0k is sufficiently small. The latter inequality is equivalent (for
positive kx− x0k) to°°°°[D(f)(g(x0))] ∙ [D(g)(x0)] (x− x0)− (g(x)− g(x0))

kx− x0k

¸°°°° < ε

2
.

However, if kx− x0k > 0 is sufficiently small,

[D(g)(x0)] (x− x0)− (g(x)− g(x0))

kx− x0k

is close to 0 and we are finished by the continuity of the linear functionD(f)(g(x0)).

Since composition of linear functions corresponds to the product of the cor-
responding functions, the Chain Rule may be equivalently stated in terms of
matrices using matrix multiplication; that is

D(f ◦ g)(x0) = [D(f)(g(x0))] [D(g)(x0)] .
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For real functions, matrix multiplication is simply scalar multiplication and the
Chain Rule becomes the familiar

(f ◦ g)0(x0) = f 0(g(x0))g
0(x0).

Exercise 218 In elementary calculus the chain rule is not stated in terms of
matrix multiplication, but in terms of specific rules for specific kinds of functions.
For example, one might learn that if s and t are functions of u and v and f is a
function of s and t, then ∂f

∂u =
∂f
∂s

∂s
∂u +

∂f
∂t

∂t
∂u . Show that this particular formula

represents a single entry in a matrix that arises from the Chain Rule applied to
f composed with a function from R2 to R2.

Example 338 We will find the extrema of the function f(x, y) = xy2 on the
closed unit ball C(0, 1) ⊂ R2. Of course the continuous function f does have a
max and a min on this compact set. First we check in the open ball for local
extrema. We have ∂f

∂x = y2 and ∂f
∂y = 2xy. These are simultaneously 0 precisely

when y = 0, and the functional values at these points are all 0. To check
for extrema on the boundary we observe that the function g(t) = (cos t, sin t)
is a differentiable function and its restriction to [0, 2π] is onto the unit circle.
Therefore the maximum and minimum values of f on the unit circle will be the
maximum and minimum values of the real function f ◦g on [0, 2π]. By the chain
rule, since x = cos t and y = sin t,

(f ◦ g)0(t) =
£
sin2 t, 2 cos t sin t

¤∙ − sin t
cos t

¸
= − sin3 t+ 2 cos2 t sin t

= sin t(2 cos2 t− sin2 t) = sin t(3 cos2 t− 1).

Hence the derivative is 0 precisely when sin t = 0 or cos2 t = 1
3 , i.e. when y = 0

or x = ± 1√
3
. We have already treated the case y = 0; if x = ± 1√

3
on the

unit circle then y = ±
q

2
3 . Among these four points f takes on a maximum

of 2
3
√
3
and a minimum of − 2

3
√
3
, which must be the maximum and minimum

of the function. What we have done here is to first check for local extrema
(which might be maxima or minima) in the interior of the region and then
“parameterize” the boundary to be able to apply the First Derivative Test here
as well. This allows us to avoid the problem that the boundary has no interior
and therefore the First Derivative Test cannot be used directly. We will discuss
parameterizations further in a later section. Note that in the above computation
one could have written h(t) = f(g(t)) = cos t sin2 t and use the Chain Rule as
described in elementary calculus to get the same answer.

Exercise 219 Find the extrema of the function f(x, y) = x2+y2 on the closed,
bounded region in R2 bounded by the graph of y = x2 and y = x+ 1. You may
use what you learned in elementary calculus about how to compute derivatives,
except that you must use the matrix form of the chain rule as was done in
Example 338.
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Definition 339 If u ∈Rn is a unit vector then Duf = ∇f · u is called the
directional derivative of f in the direction of u.

Exercise 220 Let f : U → R be differentiable, U ⊂ Rn.

1. Let u ∈ Rn be a unit vector and x ∈ U . Define g(t) := f(x + tu). Show
that Duf(x) = g0(0). This justifies the term “directional derivative” by
showing that Du(f) measures the rate of change of f along the line through
x parallel to u.

2. Show that the derivative in the direction of ∇f
k∇fk is the maximum direc-

tional derivative, with value k∇fk. Note: you may not use the formula
v ·w = kvk kwk cosα, which we have not discussed. In fact this formula is
used to define the angle between two vectors, and verifying that this defin-
inition is legitimate is no easier than (and uses the same theorem as) a
direct solution to this exercise. Moreover, some linear algebra is required
to show that, for n > 2, this notion of angle has the familiar geometric
properties of the angle in the plane.

5.4 The Mean Value Theorem and Applications

The Mean Value Theorem has wide ranging applications, from L’Hospital’s Rule
to optimization problems to the Fundamental Theorem of Calculus. The reader
should pay close attention to when and how it is used because she will likely
have reason to use it in the future.

Theorem 340 (Mean Value Theorem) Let f, g : [a, b] → R be continuous on
[a, b] and differentiable on (a, b), where a < b. Then there exists some x0 ∈ (a, b)
such that

[f(b)− f(a)] g0(x0) = [g(b)− g(a)] f 0(x0).

Proof. Define φ : [a, b]→ R by

φ(t) := [g(b)− g(a)]f(t)− [f(b)− f(a)]g(t).

The function φ is continuous on [a, b] and differentiable on (a, b), φ(a) = φ(b)
and

φ0(t) = [g(b)− g(a)]f 0(t)− [f(b)− f(a)]g0(t).

The proof will therefore be finished if we can show that φ0(x0) = 0 for some
x0 ∈ (a, b). If φ is constant then the proof is finished by Exercise 214. If φ is
not constant then there exists some c ∈ [a, b] such that φ(c) < φ(a) = φ(b) or
φ(c) > φ(a) = φ(b). We will consider only the first case; the second is similar.
Then the minimum m of the continuous function φ satisfies m ≤ φ(c) < φ(a) =
φ(b) and therefore occurs at some x0 ∈ (a, b). But the First Derivative Test tells
us that φ0(x0) = 0.
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The Mean Value Theorem is a powerful workhorse in real analysis because it
relates difference quotients to quotients of derivatives; this can be seen explicitly
if g(b) 6= g(a) and g0(x0) 6= 0, in which case the statement can be written

[f(b)− f(a)]

[g(b)− g(a)]
=

f 0(x0)

g0(x0)
.

Letting g(x) = x in Theorem 340 leads to the following theorem, which is also
referred to as the Mean Value Theorem (sometimes Theorem 340 is called the
Generalized Mean Value Theorem).

Corollary 341 Let f : [a, b] → R be continuous on [a, b] and differentiable on
(a, b). Then there exists some x0 ∈ (a, b) such that f 0(x0) = f(b)−f(a)

b−a .

The next corollary is often referred to as Rolle’s Theorem:

Corollary 342 Let f : [a, b] → R be continuous on [a, b] and differentiable on
(a, b), and suppose that f(a) = f(b). Then f has a critical point in (a, b).

Corollary 343 If f is a real function differentiable on (a, b) and f 0(x) ≥ 0
(resp. f 0(x) ≤ 0, f 0(x) > 0, f 0(x) < 0) for all x ∈ (a, b) then f is increasing
(resp. decreasing, strictly increasing, strictly decreasing) on (a, b).

Proof. We prove only the case for f 0(x) ≥ 0. For any x1 < x2 ∈ (a, b) by
the Mean Value Theorem we have for some c such that x1 < c < x2 that

0 ≤ f 0(c) (x2 − x1) = f(x2)− f(x1).

Exercise 221 Let f be a real function differentiable on (a, b) such that f 0 is
bounded on (a, b).

1. Prove that f is Lipschitz on (a, b).

2. Prove that limx→b f(x) exists.

3. A similar statement holds for a; show that f can be extended to a contin-
uous function on [a, b].

Exercise 222 The purpose of this exercise is to prove one of the several ver-
sions of L’Hospital’s rule. Let f and g be real functions differentiable on (a, b),
g0(x) 6= 0 for all x ∈ (a, b) where b <∞. Suppose that

lim
x→b

f(x) = lim
x→b

g(x) = 0 and lim
x→b

f 0(x)

g0(x)
= L

for some real number L. Show that limx→b
f(x)
g(x) = L by justifying the following

steps: Let ε > 0 and xi → b in (a, b). Then
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1. For all large i, f 0(xi)
g0(xi)

< L+ ε.

2. For any large i and j,g(xi) − g(xj) 6= 0 and f(xi)−f(xj)
g(xi)−g(xj) =

f 0(c)
g0(c) < L + ε

for some c.

3. For all large i, f(xi)
g(xi)

≤ L + ε and therefore lim sup f(xi)
g(xi)

≤ L + ε and

therefore lim sup f(xi)
g(xi)

≤ L.

A similar proof shows the opposite inequality for the lim inf (you don’t need
to fill in the details).

5.5 C1 Functions
Definition 344 Let f : U → Rn be a differentiable function, where U ⊂ Rm is
open. If all the partial derivatives ∂fi

∂xj
(x) exist for all x ∈U and the resulting

functions ∂fi
∂xj

: U → R are continuous then f is called C1.

One may analogously define Cn for n > 1 by requiring that all nth partial
derivatives be continuous, and C∞ to mean partial derivatives of all orders exist
(and hence are continuous). The usual convention is also that C0 simply means
continuous.

Exercise 223 Show that the function f(x) = x2 sin( 1x) can be extended to a
function defined on all of R that is differentiable but not C1 (you may use
differentiation theorems from elementary calculus).

Verifying that a function is C1 is often much simpler than verifying that a
function is differentiable, at least in a concrete situation when one can actually
compute the partial derivatives. Therefore the following theorem is very conve-
nient. Not only does it have as a corollary that C1 functions are differentiable,
it shows that the differential approximates a C1 function uniformly, in a sense,
on any compact set.

Theorem 345 Let f : U → Rn be a C1 function, where U ⊂ Rm is open,
and let A ⊂ U be compact. For every ε > 0 there exists a δ > 0 such that if
kx− yk < δ with x ∈ A then

kf(y)− f(x)−D(f)(x)(y− x)k < ε kx− yk .

Proof. First suppose that n = 1. According to Proposition 90 for some
δ1 > 0, N(A, 2δ1) ⊂ U . It follows from the triangle inequality that, since A is
bounded, N(A, δ1) ⊂ U is bounded, hence compact, and the partial derivatives
of f are uniformly continuous on V := N(A, δ1). Since there are finitely many
partial derivatives, this means there exists some positive δ < δ1 such that if
x ∈ A and d(x,y) < δ then y ∈ V , and for all i, ∂f

∂xi
(y) is defined and¯̄̄̄

∂f

∂xi
(y)− ∂f

∂xi
(x)

¯̄̄̄
<

ε

m
. (5.4)
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For any h such that khk < δ, write h =
Pm

i=1 hiei and set wk :=
Pk

i=1 hiei for
0 < k ≤ m (so wm = h) and w0 := 0. If t ∈ [0, 1] then for any k

kwk + thk+1ek+1k =

vuut kX
i=1

(hi)2 + t2h2k+1 ≤ khk < δ.

In particular expressions such as f(x+wk+thk+1ek+1) when x ∈ A are defined
when t ∈ [0, 1]. We have a telescoping sum

f(x+ h)− f(x) :=
mX
i=1

[f(x+wi)− f(x+wi−1)] . (5.5)

For any i, let
φi(t) = f(x+wi−1 + thiei) for 0 ≤ t ≤ 1.

Then
f(x+wi)− f(x+wi−1) = φ(1)− φ(0)

and by the Mean Value Theorem and the chain rule, for some ti ∈ (0, 1),

f(x+wi)− f(x+wi−1) = φ0(ti) = hi
∂f

∂xi
(yi)

where yi = x+wi−1 + tihiei. Combining this with Formula 5.5 we obtain

f(x+ h)− f(x) =
mX
i=1

hi
∂f

∂xi
(yi)

and Formula (5.4) implies

|f(x+ h)− f(x)−D(f)(x)h| =
¯̄̄̄
¯
mX
i=1

hi
∂f

∂xi
(yi)−

mX
i=1

hi
∂f

∂xi
(x)

¯̄̄̄
¯

≤
mX
i=1

|hi|
¯̄̄̄
∂f

∂xi
(yi)−

∂f

∂xi
(x)

¯̄̄̄
≤

mX
i=1

|hi|
ε

m
≤ ε

m

mX
i=1

|hi| ≤ εmax{|hi|} ≤ ε khk .

Letting y := x+ h finishes the proof when n = 1. The proof for n > 1 is an
exercise.
Taking C to be the singleton set {x} we have the following corollary:

Corollary 346 If f : U → Rn is a C1 function, where U ⊂ Rm is open, then
f is differentiable on U .

Exercise 224 Finish the proof of Theorem 345.

Definition 347 Let f : U → Rn be a differentiable function, where U ⊂ Rm is
open. A point x ∈ U is called regular if the linear function Df(x) : Rm → Rnis
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1. surjective in the case when m ≥ n

2. injective in the case when m < n.

A point that is not regular is called a critical point. If f is C1 and every
point in U is regular, f is simply called regular (on U).

Remark 348 The above definition unifies two standard uses of the word “reg-
ular”. The first condition (surjectivity) is frequently defined for differentiable
functions in general, without regard to dimension. However, the student famil-
iar with linear algebra knows that if L : Rm → Rn is linear then m is the sum of
the rank of L and the nullity of L (i.e. the dimensions of the image and kernel
of L, respectively). The former must be ≤ n and the latter is ≥ 0. In other
words, if m < n it is impossible for the differential to be surjective and hence
for any point to be regular; this definition is of no value in this case. The word
“regular” is also used in reference to regular curves and surfaces, and in this
case m < n and the differential is assumed to be injective. Note that in the case
m = n, regularity is actually equivalent to the differential being bijective. A little
linear algebra shows that the two conditions in the above statement may actually
be compressed to the simple statement: dim(kerDf(x)) = max{0,m− n}.

Exercise 225 This exercise uses some of the facts about linear algebra dis-
cussed at the beginning of this chapter. Let f : U → Rn be a differentiable
function, where U ⊂ Rm is open. Show the following:

1. If m = n, x ∈U is regular if and only if detDf(x) 6=0.

2. If m = 1 (i.e. f is a curve) then x∈U is regular if and only if f 0(x) 6= 0.

3. If n = 1 (i.e. f is real valued) then x ∈U is regular if and only if ∂f
∂xi

(x) 6=
0 for some i. In particular, Definition 335 is consistent with the current
more general one.

4. If f is real valued and C1, and x ∈U is a regular point then for some
ε > 0, f is regular on B(x, ε).

5. If m = n + k for k > 1 then x ∈U is regular if and only if for some
1 ≤ m1 ≤ · · · ≤ mn ≤ n+ k the square matrix D with (D)ij :=

∂fi
∂xmj

(x)

has nonzero determinant. This part requires some additional knowledge
of linear algebra. Hint: For one direction, apply Df(x) to the standard
basis and pick out a maximal linearly independent subset of the resulting
vectors.

Exercise 226 Let g(x) := kxk.

1. Show that for x ∈Rn\{0}, ∂g
∂xi
(x) = xi

kxk .

2. Show that g is regular on Rn\{0}.
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By definition, a function is C1 if and only if its partial derivatives are con-
tinuous. However, in many situations involving C1 functions it is more useful to
know that, in some sense, the differential itself is a continuous function. There
are a couple of ways to interpret this, one of which is in the following exercise.

Exercise 227 We may identify the set M of real m × n matrices with Rmn

using any scheme that sets up a bijection between the entries of a matrix and
the components of a vector. Given any matrices (aij) and (bij) the number
max |aij − bij | corresponds to the max metric on Rmn and therefore defines a
metric on M. Define a function Jf : U →M that assigns to each x ∈ U the
Jacobian matrix Df(x). Show that Jf is continuous if f is C1.

Another method of considering continuity of the differential, which perhaps
better captures the idea that the differentials at close points are close as func-
tions, is the following:

Proposition 349 Suppose that f : U → Rn is a C1 function, where U ⊂ Rm
is open. Then the function Df : U ×Rm → Rn defined by

Df(x,v) = D(f)(x)(v)

is continuous.

Proof. By definition the functions ∂fj
∂xi

are continuous. It suffices to consider
any component

Df(x,v)i =
mX
i=1

∂fi(x)

∂xj
vj =

mX
j=1

∂fi(π1(x,v))

∂xj
· πj(π2(x,v)),

where πk is the projection onto the kth factor, which is continuous. But we
have represented this component as a combination of continuous functions using
compositions and algebraic operations, and hence each component is continuous.

Proposition 350 Let fij : X → R be continuous functions, 1 ≤ i, j ≤ m,
where X is a metric space and let F(v) be the matrix such that (F(v))ij = fij(v).
Then

1. detF : X → R is continuous and

2. If F(v) is nonsingular for all v then the function
¡
F−1

¢
ij
: X → R is

continuous for all i, j.

Proof. If F is 1 × 1 there is nothing to prove. If F is 2 × 2 then detF =
f11f22 − f12f21, which is continuous. The first part of the proposition may
now be proved by induction, since the determinant of a matrix is an algebraic
combination of determinants of lower demensional matrices; details are left to
the reader. Similarly, the entries of the inverse of a matrix are given by Cramer’s
Rule, which expresses them using only algebraic combinations of the entries of
the original matrix, including dividing by the (non-zero) determinant, which we
already know is continuous. Again, details are left to the reader.



158 CHAPTER 5. DIFFERENTIATION

Corollary 351 If f : U → Rn is C1 where U is an open subset of Rn, then
detDf : U → R is continuous. In particular if detDf(x) 6=0 for some x ∈U
then for some ε > 0, f is regular on B(x, ε).

Proposition 352 Suppose that A ⊂ U ⊂ Rm, where A is compact and U is
open. If f : U → Rn is C1 then there exist k1, k2 ∈ R such that for all x ∈ A
and v ∈Rn,

k1 kvk ≤ kDf(x)(v)k ≤ k2 kvk
If f is regular and m < n then k1, k2 > 0. If f is regular and m = n then

1

k2
kvk ≤

°°°(Df)−1 (x)(v)
°°° ≤ 1

k1
kvk .

Proof. Consider the function g(x,v) =kDf(x)(v)k
kvk : A× Sm−1 → Rn, which

is continuous (note that v ∈Sm−1 implies v 6= 0) on the compact set A×Sm−1.
Therefore g has a minimum k1. If f is regular and m < n then Df(x)(v) 6= 0
when v 6= 0 and so Df is never 0 on A × Sm−1; hence k1 > 0. By definition
of minimum, the left inequality holds for v ∈Sm−1. Certainly the inequality is
also true for v = 0. For v 6= 0 we let u := v

kvk ∈ Sm−1, and we have

kDf(x)(v)k = kvk kDf(x)(u)k ≥ k1 kvk kuk = k1 kvk .

The second inequality is similar and the inequalities concerning the case m = n
are an exercise.

Exercise 228 Finish the proof of Proposition 352.

5.6 The Inverse and Implicit Function Theorems
The next theorem is used later in this text, but more generally is useful in analy-
sis, differential equations, differential geometry, and other areas of mathematics.

Theorem 353 (Inverse Function Theorem) Let f : U → Rn be a C1 function
on an open set U ⊂ Rn and x0∈U be regular. Then there exists an open set
W ⊂ U containing x0 such that

1. V = f(W ) is open,

2. the function g := f |W is injective,

3. g−1 is C1 on V and

4. D(g−1)(g(x)) = (D(g)(x))−1 for all x ∈V .

Proof. By Corollary 351, f is regular on some B(x0, ε). By Proposition
352 there exists some k > 0 such that for all x ∈C := C(x0,

ε
2) and v ∈Rn,

k kvk ≤ kDf(x)(v)k . (5.6)
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According to Theorem 345 there is some δ > 0 such that if kx− yk < δ with
x ∈ C then

kf(y)− f(x)−D(f)(x)(y− x)k < k

2
kx− yk .

Let 0 < r < min{ε,δ}
2 . If x,y ∈K := C(x0, r) then x ∈ C and kx− yk < δ. By

the triangle inequality,

kf(y)− f(x)k ≥ kDf(x)(y − x)k− kDf(x)(y− x) + f(x)− f(y)k

≥ k ky − xk− k

2
ky− xk = k

2
ky − xk > 0. (5.7)

It follows that f is injective on K. Moreover, by Lemma 105, g−1 is continuous
on f(K).
We will now show that B(f(x0),

kr
4 ) ⊂f(K). Suppose not, i.e. there is

some y ∈ B(f(x0),
kr
4 )\f(K) and define g(x) := kf(x)− yk. Since f−1({y}) is

closed, Exercise 226 implies g is regular on an open set containing K. Since K
is compact, g has a minimum at some x ∈K. But g is regular and hence has no
critical points, so kx− x0k = r. But

g(x) = kf(x)− yk ≥ kf(x)−f(x0)k− kf(x0)− yk

≥ kr

2
− kf(x0)− yk >

kr

4
> kf(x0)− yk = g(x0)

a contradiction. Let V := B(f(x0),
kr
4 ) and W := f−1(V )∩B(x0, r). It is an

exercise to show f(W ) = V , and the first two parts are finished.
We next show that g−1 is differentiable, with D(g−1) = (Dg)−1 on V . Ap-

plying Inequalities (5.6) and (5.7) and the fact that g = f on W we have for
x,y ∈W °°°(Dg(x)

−1
(g(x)− g(y))− g−1(g(x)) + g−1(g(y))

°°°
kg(x)− g(y)k

≤

°°°D(g(x)) h(Dg(x)−1 (g(x)− g(y))− x+ y))
i°°°

k kg(x)− g(y)k

≤ 2

k2
kg(x)− g(y)−Dg(x)(x− y))k

kx− yk .

The latter quantity is arbitrarily small when kx− yk is small, and since g−1 is
continuous it is small when kg(x)−g(y)k is small, and the proof of the fourth
part is finished. The final detail, that g−1 is C1 on V , follows from Proposition
350.

Exercise 229 Finish the proof of the Inverse Function Theorem.

Corollary 354 If f : U → Rn is a regular function on an open set U ⊂ Rn
then f is open.
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Exercise 230 Prove Corollary 354.

Exercise 231 Consider the function f(x) = x+ 2x2 sin( 1x)M .

1. Show that f may be extended to a differentiable function on all of R such
that f 0(0) 6= 0.

2. Show that the resulting function is not one-to-one on any open interval
containing 0, hence necessity of the requirement in the Inverse Function
Theorem that the function be C1.

To motivate the Implicit Function Theorem, recall the process of “implicit
differentiation” learned in elementary calculus. One is given an equation like
x2y−1 = 0 and one finds dx

dy (or
dy
dx ) without actually solving for the dependent

variable—which can be difficult or impossible to do. Formally, we simply apply
d
dy to each side of the equation, treating x as a function of y and applying the

chain rule (and product rule). The result is 2yxdxdy + x2 = 0, and we may then

solve for dx
dy . If the reader checks his or her calculus book, he/she will find

buried somewhere in the discussion of implicit differentiation some fine print to
the effect that, in carrying out implicit differentiation it is assumed that the
variable in question is defined implicitly as a function of the other variable(s)
by the given equation. What does this caveat mean? Letting f(x, y) = x2y− 1,
the above equation becomes f(x, y) = 0. The assumption is that we can write
x = g(y) where g is differentiable function such that f(g(y), y) = 0. If such exists
then implicit differentiation is clearly just the chain rule: 0 = d

dy (f(g(y), y) =
∂f
∂xg

0(y) + ∂f
∂y · 1, then solve for g0(y). There may not be a single function that

works for all y. In the present case, we can solve for x = ± 1√
y . We then have two

“inverse functions”, one of which is defined for x > 0 and the other for x < 0.
The Implicit Function Theorem justifies the assumption about the existence of
g.
The Implicit Function Theorem concerns functions from open subsets of

Rn+k into Rn, with k ≥ 1. The basic assumption is similar to regularity, except
that in this case the Jacobian matrix is not square and has no determinant.
In fact, the differential is has continuous entries ∂fi

∂xj
, where i = 1, ..., n and

j = 1, ..., n+k and the assumption will be that the square matrix with j = 1, ..., n
has non-zero determinant. In the statement of the theorem we will identify Rn+k
with Rn ×Rk the elements of which are pairs of vectors (x, t).

Theorem 355 (Implicit Function Theorem) Let f : U → Rn be a C1 function
on an open set U ⊂ Rn+k with k ≥ 1. Suppose that for some (x0, t0) ∈ U ,

1. f(x0, t0) = 0 and

2. detD 6=0, where (D)ij :=
∂fi
∂xj
(x0, t0) with 1 ≤ i, j ≤ n.

Then there exist an open subset U 0 ⊂ Rk containing t0 and a unique C1

function g : U 0 → Rn such that g(t0) = x0 and f(g(t), t)) = 0 for all t ∈ U 0.
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Proof. Define a new function F : U → Rn+k by F (x, t) = (f(x, t), t). The
Jacobian matrix for F consists of a block matrix∙

D A
0 I

¸
where D is the matrix defined above and (A)ij =

∂fi
∂tj
. It can be checked that

the determinant of this matrix is (detD) (det I) = detD, which is nonzero at
(x0, t0). Moreover this matrix has continuous entries, so the Inverse Function
Theorem applies and there exist open sets V andW and a C1 function G : V →
W such that G = F−1 when F is restricted to W . Define G1 := π1 ◦G, where
π1 : Rn+k → Rk is the projection. Let V 0 ⊂ Rn and U 0 ⊂ Rk be open such that
(0, t0) = F (x0, t0) ∈ V 0 × U 0 ⊂ V (see Exercise 82) and define g(t) :=G1(0, t)
for all t ∈U 0. Certainly g is C1, and

g(t0) = G1(0, t0) = G1(F (x0, t0)) = x0.

Since F is onto V , if t ∈U 0 then there is some (x, t) ∈W such that f(x, t), t) =
F (x, t) = (0, t). Now

(f(G1(0, t), t), t) = F (G1(0, t), t)

= F (π1(F
−1(F (x, t)), t)) = F (x, t) = (0, t).

The first terms of these ordered pairs must be equal, so

f(g(t), t)) = f(G1(0, t), t)) = 0.

Now suppose h is another such function. Then f(g(t), t) = f(h(t), t) = 0
and

F (g(t), t) = (f(g(t), t), t) = (f(h(t), t), t) = F (h(t), t).

Since F is one-to-one on V , g(t) = h(t).
Note that in some cases, reordering the coordinates may allow the Implicit

Function Theorem to apply. That is, the it may be possible to “collect” n
coordinates as the first n coordinates, so that the determinant of the resulting
matrix D is nonzero. This may be more precisely formulated using the notion
of rank of a linear transformation, but we will not give the details here.

Exercise 232 Consider the function f(x, y) = x2y − 1.

1. Verify that the assumptions for the Implicit Function Theorem are valid
whenever x 6= 0.

2. What is the largest possible set U 0 whose existence the theorem guarantees—
in particular, does U 0 really depend on (x0, y0) in this case?

Exercise 233 Use the Implicit Function Theorem to prove the Inverse Function
Theorem, using the following steps:
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1. Given a function f satisfying the conditions of the Inverse Function The-
orem, consider the function g(x,y) = f(x)− y.

2. Show that the resulting one-sided inverse h : U 0 → Rn also satisfies the
conditions of the Inverse Function Theorem and is 1-1.

3. Apply the same two steps to the function h and show that the resulting
function k must be the restriction of f to some open set.

Exercise 234 Consider the function f : C→ C defined by f(z) = z2.

1. Rewrite f as a function of two real variables from R2 to R2.

2. Show that f is regular on R2\(0, 0) but that it is not one-to-one.

Definition 356 Let h : U → R be a C1 function, where U ⊂ Rn. A regular
value of h is c ∈ R such that if h(x) = c then x is not a critical point of h. A
regular surface is a non-empty set of the form h−1(c), where c is a regular value
of h.

Exercise 235 Show that the graph of any C1 function f : U → R, where
U ⊂ Rn−1 is open, is a regular surface.

Exercise 236 Show that the sphere S of radius c2 > 0 in Rn+1 centered at 0
is a regular surface.

Exercise 237 The purpose of this exercise is to justify the following statement:
every regular surface is “locally the graph of a function”.

1. Let h : U → R be a C1 function, where U ⊂ Rn and z ∈U is not a
critical point of h. Define S = h−1(h(z)). Show that for some 1 ≤ i ≤
n the following holds: Let Rn := R × Rn−1, writing x = (xi, t), with
t :=(x1, ..., xi−1, xi+1, ..., xn). Then there exists an open set V ⊂ Rn−1
and a C1 function g : V → R such that the graph of g is the set of all
y ∈ S such that (y1, ..., yi−1, yi+1, ...yn) ∈ V . Hint: Show that for some i,
∂h
∂xi
(z) 6= 0 and consider the function f(x) := h(x)− h(z).

2. Illustrate the above statement by showing that the unit sphere in R3 is the
union of six open hemispheres that are the graphs of six functions. Not a
lot of details needed—just state what the functions are and draw a picture.

5.7 Real Functions
If f : A → R is differentiable on A ⊂ R then the derivative at each point
defines a new real function f 0 : A → R. Recapping our theorems in the real
case case we have for linearity (cf + g)0(x0) = cf 0(x0) + g0(x0) and for the
Chain Rule (f ◦ g)0(x0) = f 0(g(x0))g

0(x0). Note that every partial derivative is
also a derivative (according to Exercise 213) and therefore the theorems in this
section apply to partial derivatives, and hence to the components of any total
derivative.
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Exercise 238 Let f and g be real functions differentiable at x, and c ∈ R.

1. Prove the Product Rule: (f · g)0(x) = f 0(x)g(x) + g0(x)f(x).

2. Use that fact that f(x)
³

1
f(x)

´
= 1 to prove that

³
1

f(x)

´0
= − f 0(x)

f(x)2 for all

x such that f(x) 6= 0.

3. Prove the Quotient Rule:
³
g(x)
f(x)

´0
= f(x)g0(x)−g(x)f 0(x)

f(x)2 for all x such that

f(x) 6= 0.

4. Prove the Powers Rule for natural numbers: For every natural number n,
if k(x) = xn then k0(x) = nxn−1.

5. Prove that if f has an inverse f−1 in some open interval containing x

and f 0(x) exists and is nonzero, then df−1

dx (f(x)) =
1

f 0(x) . Hint: Use
f(f−1(x)) = x. Note that if f is C1 then one need only assume that
f 0(x) 6= 0 in the interval and apply the Inverse Function Theorem.

We will not go farther in discussing the basic computational theorems in cal-
culus beyond a few comments now and additional exercises about the exponen-
tial function later. The derivatives of trigonometric functions can be determined
using geometric arguments and the basic theorems in the previous exercise. Al-
ternatively one can define the trigonometric functions using their power series
and then derive their geometric properties.
Two of the most important applications of the Mean Value Theorem are the

two theorems together known as the Fundamental Theorem of Calculus. Before
proving these theorems we establish a little notation. From now on we will
denote the Lebesgue integral of an integrable Borel function f on an interval
[a, b] by

R b
a
f or

R b
a
f(x) or

R b
a
f(x)dx. If a < b < c then since the intervals [a, b]

and [b, c] intersect in the set {b}, which has measure 0, we immediately haveR c
a
f =

R b
a
f +

R c
b
f . When a < b we will define

R a
b
f = −

R b
a
f . This definition is

made purely for computational convenience; see, for example, the next exercise.
Also, since [a, a] is the single point set {a},

R a
a
f = 0 for any f .

Exercise 239 Show that the formula
R c
a
f =

R b
a
f+

R c
b
f is true without any as-

sumptions about the relative orders of the points a, b, c. Hint: Don’t be exhaustive—
do a couple of cases including one when two of the points are equal; the rest are
similar.

Theorem 357 (Fundamental Theorem of Calculus I): Suppose that f is a real
function differentiable on an open set containing [a, b]. Then f 0 is a Borel
function on [a, b] and if f 0 is bounded on [a, b] then

R b
a
f 0 = f(b)− f(a).

Proof. Let ti → 0, with ti > 0 for all i. Since f is defined on an open set
containing [a, b], letting hi(x) :=

f(x+ti)−f(x)
ti

we see that hi is defined on [a, b]
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for all large i. By definition f 0 is the pointwise limit of (hi)∞i=1 and hence is
Borel. Moreover by the Mean Value Theorem for all large i and all x we have

|hi(x)| =
¯̄̄̄
f(x+ ti)− f(x)

ti

¯̄̄̄
= |f 0(c)| ≤M ,

where M is a bound for f 0 and c is some point between x and x + ti. The
Lebesgue Dominated Convergence Theorem applies and we haveZ b

a

f 0 = lim

Z b

a

hi = lim

Z b

a

f(x+ ti)− f(x)

ti
= lim

1

ti

ÃZ b

a

f(x+ ti)−
Z b

a

f(x)

!
.

Invoking translation invariance yieldsZ b

a

f 0 = lim
1

ti

ÃZ b+ti

a+ti

f −
Z b

a

f

!
= lim

1

ti

ÃZ b+ti

b

f −
Z a+ti

a

f

!

≤ lim 1

ti

µ
ti · max

[b,b+ti]
f − ti · min

[a,a+ti]
f

¶
= lim

µ
max
[b,b+ti]

f − min
[a,a+ti]

f

¶
= f(b)−f(a)

since f is continuous. Changing the max to a min and vice versa reverses the
inequality in the last line, proving equality.

Corollary 358 If f and g are differentiable on some open set containing [a, b]
and f 0(x) = g0(x) for all x ∈ (a, b) then for all x, f(x) − g(x) = c for some
c ∈ R. In particular if f 0(x) = 0 for all x then f is constant.

Proof. Let h(x) = f(x)−g(x). Then h0(x) = 0 and h(x)−h(a) =
R x
a
h0(x) =

0. Letting c := h(a) finishes the proof.
Note that a C1 function on an open set containing a closed, bounded interval

always has bounded derivative on that interval.

Exercise 240 For this exercise you may use only results from this or previous
sections and not your other knowledge about the function ex. Suppose that
f : R→ R satisfies the equations f 0(x) = f(x) for all x and f(0) = 1.

1. Prove that the function h(x) := f(x)f(−x) is the constant function 1;
conclude that f is never 0 (hence positive), and that f(−x) = 1

f(x) for all
x.

2. Prove that there is only one such function f . Hint: Consider the function
g
f where f and g are any two such functions.

3. Show that f(a + x) = f(a)f(x) for any a and x. Hint: Fix a and apply
uniqueness to the function k(x) = f(a+x)

f(a) .

Theorem 359 (Fundamental Theorem of Calculus II) If f : [a, b]→ R is con-
tinuous then for any c ∈ (a, b) the function F (x) :=

R x
c
f is differentiable on

(a, b) and F 0(x) = f(x).
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Proof. Let ε > 0. If h > 0 is small enough that x + h ∈ (a, b) we have
F (x+ h)− F (x) =

R x+h
a

f −
R x
a
f =

R x+h
x

f and

h min
[x,x+h]

f ≤
Z x+h

x

f ≤ h max
[x,x+h]

f ,

which implies

min
[x,x+h]

f ≤ F (x+ h)− F (x)

h
≤ max
[x,x+h]

f .

Since f is continuous, when h is small we have

f(x)− ε ≤ F (x+ h)− F (x)

h
≤ f(x) + ε.

A similar argument shows the same inequality when h is negative, and the proof
is finished.
The function F (x) :=

R x
c
f is called an antiderivative of f , because F 0(x) =

f(x) for all x. Given any other antiderivative g, we see that d
dx(F (x)− g(x)) =

f(x)−f(x) = 0 for every x and hence F (x)−g(x) is constant. That is, any two
antiderivatives of f differ by a constant; conversely, for any constant q, g(x)+ q
is also an antiderivative of f .
We next consider differentiation in connection with sequences of functions.

The Fundamental Theorem of Calculus allows us to derive a useful differentia-
tion theorem from our theorems about limits of integrals.

Theorem 360 Let fi : (a, b)→ R be a sequence of differentiable functions such
that (f 0i) converges uniformly to a function g : (a, b) → R and for some x0 ∈
(a, b), fi(x0) is convergent. Then (fi) converges uniformly to a differentiable
function f : (a, b)→ R and for every x ∈ (a, b),

f 0(x) = g(x) = lim f 0i(x).

Proof. Let δ > 0. Given any x, x + h ∈ (a, b), applying the Mean Value
Theorem and the fact that (f 0i) is Cauchy, we have for all large i and j there is
some cij ∈ (a, b) such that

|fi(x+ h)− fi(x)− fj(x+ h) + fj(x)|

= |(fi − fj) (x+ h)− (fi − fj) (x)|

=
¯̄
h (fi − fj)

0
(cij)

¯̄
≤ δ |h| . (5.8)

Now given ε > 0 we may take δ := ε
2(b−a) in the above inequality and note that

for large i and j, |fi(x0)− fj(x0)| ≤ ε
2 .

Letting h := x0 − x we obtain

|fi(x)− fj(x)| ≤ |fi(x)− fj(x)− fi(x0) + fj(x0)|+ |fi(x0)− fj(x0)|
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≤ ε |x0 − x|
2(b− a)

+
ε

2
≤ ε.

This shows (fi) is Cauchy, and Proposition 220 implies that fi → f for some
f . Now for any x, x + h ∈ (a, b) with h 6= 0, define k i(h) :=

fi(x+h)−fi(x)
h .

Formula (5.8) implies that (ki) converges uniformly to k(h) := f(x+h)−f(x)
h .

Theorem 217 now implies that the following limits exist:

f 0(x) = lim
h→0

lim
i→∞

fi(x+ h)− fi(x)

h

= lim
i→∞

lim
h→0

fi(x+ h)− fi(x)

h
= lim

i→∞
f 0i(x) = g(x).

We now turn our attention to Taylor’s Theorem and power series for real
functions. If f is differentiable on some interval, then we can ask whether
the function f 0 is differentiable. If it is, its derivative will be denoted by f 00.
Continuing this process (as long as the derivatives in question exist), the higher
derivatives of f will be denoted by f 00, f 000, f (4), ... or d2f

dx2 ,
d3f
dx3 , .... In order to

simplify the statement of Taylor’s Theorem we will also denote f by f (0). In the
next theorem we will say that c is between x and x0 if x < c < x0 or x0 < c < x.

Theorem 361 (Taylor’s Theorem) Let f be a real Cn function defined on an
open set U and suppose that f (n+1) exists for every x ∈ [a, b] ⊂ U . For any
x0, x ∈ [a, b] there exists some point c between x0 and x such that

f(x) =
nX

k=0

f (k)(x0)

k!
(x− x0)

k +
f (n+1)(c)(x− x0)

n+1

(n+ 1)!
.

Proof. If we define

M :=
f(x)−

Pn
k=0

f(k)(x0)
k! (x− x0)

k

(x− x0)n+1

then we need to show that for some c between x and x0, f (n+1)(c) = (n+ 1)!M .
Letting

g(t) := f(t)−
nX

k=0

f (k)(x0)

k!
(t− x0)

k −M(t− x0)
n+1 (5.9)

it is an exercise to prove that g(x0) = g(x) = 0 and g(j)(x0) = 0 for all j ≤ n.
We will show by induction that for all 1 ≤ j ≤ n + 1, g(j)(cj) = 0 for some cj
between x and x0. The case j = 1 follows from Rolle’s Theorem and the fact that
g(x0) = g(x) = 0. Suppose that we have proved that for some k ≤ n, there exists
some ck between x0 and x such that g(k)(ck) = 0. Since g(k)(x0) = 0 the Mean
Value Theorem implies there exists some ck+1 between x0 and ck, and hence
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between x0 and x, such that g(k+1)(ck+1) = 0. Now since
Pn

k=0
f(k)(x0)

k! (t−x0)k
is an nth degree polynomial, differentiating Formula (5.9) (n+ 1) times yields

0 = g(n+1)(cn+1) = f (n+1)(cn+1)− 0− (n+ 1)!M .

Exercise 241 Finish the proof of Taylor’s Theorem.

Exercise 242 Let f : (0,∞)→ R be a function such that f 00(x) exists for all x
and f 00 is bounded on (0,∞). Show that if limx→∞ f(x) = 0 then limx→∞ f 0(x) =
0. Hint: Solve for the derivative in Taylor’s formula and figure out how to make
it small by making x− x0 small and x large.

We are now in a position to discuss integration and differentiation of real
power series. Although we previously studied power series for complex numbers,
if the coefficients of a power series are real then the restriction of the power series
to those real numbers for which it converges defines a real function. The domain
of this function is the intersection of the domain of the complex series with R;
that is, if R > 0 is the radius of convergence of the complex power series (which
depends only on the coefficients) then the real power series converges absolutely
and uniformly on any interval [−r, r] where 0 < r < R, and converges pointwise
on (−R,R). A power series

P∞
n=0 cnx

n, where cn and x are real is called a real
power series. Given such a power series one can “formally" differentiate and
antidifferentiate it (i.e. compute now, prove later) as one would a polynomial,
to obtain the real power series

∞X
n=0

ncnx
n−1 and

∞X
n=0

1

n+ 1
cnx

n+1 (5.10)

respectively. Since lim n
√
n = lim n

√
n+ 1 = 1, these two series have the same

radius as convergence R as the original. Supposing that R > 0 we know thatPk
n=0 cnx

n converges uniformly to the continuous function
P∞

n=0 cnx
n on any

[−r, r] where 0 < r < R. From Theorem 360 we obtain:

Proposition 362 Let f(x) =
P∞

n=0 cnx
n be a real power series with radius of

convergence R > 0. The the derivative and an antiderivative of f are given by
Formula (5.10), and these series also have radius of convergence R.

Differentiating a power series n times proves the next corollary, which essen-
tially states that any power series with positive radius of convergence is equal
to its own (infinite) Taylor series with x0 = 0 (such series are often called
Maclaurin series). A function having a Taylor series with nontrivial interval of
convergence is called analytic in that interval.

Corollary 363 If f(x) =
P∞

n=0 cnx
n has radius of convergence R > 0 then

cn =
f(n)(0)xn

n! for all n.
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Exercise 243 Let f be the function from Exercise 240, which is the unique
function such that f 0(x) = f(x) for all x ∈ R and f(0) = 1.

1. Prove that
P∞

n=0
xn

n! is the Maclaurin series for f and hence that f(x) =
ex.

2. Show that d
dx(lnx) =

1
x .

Exercise 244 Write out the first four terms of the Taylor series of f(x) = 1
x at

x0 = 1 and use this to find the first five terms of the Taylor series of g(x) = x lnx
at x0 = 1. Hint: For the last part multiply by (x− 1) + 1 rather than x.

5.8 Linear Functions and Integration

We will review a little more linear algebra. A nonsingular linear function can be
written as a composition of elementary linear functions of the following three
types:

1. switch coordinates: (x1, .., xi, ..., xj , ..., xn) 7→ (x1, .., xj , ..., xi, ..., xn), i <
j

2. scale coordinate: (x1, .., xi, ..., xn) 7→ (x1, .., axi, ..., xn), a 6= 0

3. tilt coordinate: (x1, .., xi, ..., xn) 7→ (x1, .., xi + axj , ..., xn), a 6= 0, i 6= j

Note that the inverse of any elementary linear transformation is an elemen-
tary linear transformation of the same type. We will need to know the effect on
a unit cube of these three types of elementary functions. The first one takes the
unit cube back to itself. The second one takes the unit cube to a rectangular
box of measure |a|, and the last one takes the unit cube to a parallelepiped of
measure 1 (see also Exercise 247 below). We will only provide details of the last,
computing the measure by slices. Let E be a linear function of the third type.
Since the unit cube Qn is compact and E is continuous, E(Qn) is compact, and
has the form E(Qn) = {(x1, .., xi + axj , ..., xn) : 0 ≤ xk ≤ 1 for all k}. Using
Rn = Rn−1 × R1, where R1 is the ith factor, we see that the projection E1 of
E(Qn) onto Rn−1 is simply Qn−1. Fixing any x =(x1, ..., xn−1) ∈ E1, we have
axl ≤ xi + axl ≤ axl + 1 where l = j if j < i and l = j − 1 if j > i. This means
Ex = [axj , axj + 1], which has measure 1. Applying Theorem 296 shows that

µ (E(Qn)) =

Z
Qn−1

1 = µ(Qn−1) = 1.

From elementary linear algebra we know that the determinant of an elemen-
tary linear transformation of the first or third type is 1, and the determinant of
one of the second type is a. In other words, for any elementary linear transfor-
mation E,

µ(E(Qn)) = |detE| . (5.11)
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Before we continue we need to show that the image of a Borel set with
respect to a homeomorphism is a Borel set. While this fact may seem trivial
since homeomorphisms preserve all topological properties of a metric space, the
definition of Borel sets as the smallest σ-algebra of sets with certain properties
makes the argument a little tricky.

Lemma 364 Let f : X → Y be a homeomorphism between metric spaces. If
E ⊂ X is a Borel set then f(E) is a Borel set.

Proof. Let B(X) be the collection of all Borel sets in X and B0(X) :=
{f−1(A) : A ⊂ X is a Borel set}. It is easy to check that B0(X) is a σ-algebra
and contains all open sets. Since B(X) is the smallest collection with these
properties, B(X) ⊂ B0(X). Now suppose that A = f(E) where E is a Borel set
in X. Then f−1(E) = A ∈ B(X) ⊂ B0(X) and therefore E = f−1(C) for some
Borel set C in Y . But f is one-to-one and E = f−1(A), so f(E) = C and f(E)
is therefore a Borel set. This shows B0(X) ⊂ B(X).

Corollary 365 If f : Y → Z is a Borel function and h : X → Y is a homeo-
morphism, where X,Y,Z are metric spaces then f ◦ h is a Borel function.

Proof. For any open set U in Z, (f ◦h)−1(U) = h−1(f−1(U)). Since f−1(U)
is Borel and h−1 is a homeomorphism, the proof is complete.
Note that a nonsingular linear function L has a linear, hence continuous,

inverse, and hence is a homeomorphism.

Theorem 366 Let L : Rn → Rn be nonsingular. For any nonnegative Borel
function f : E → R, where E ⊂ Rn is a Borel set,

R
E
f = |detL|

R
L−1(E) (f ◦ L).

In particular for any Borel set E ⊂ Rn we have µ(L(E)) = |detL|µ(E).

Proof. Since L is a homeomorphism, Lemma 364 and Corollary 365 imply
that the set L−1(E) and the function f ◦ L are both Borel. Therefore the
integral in the right side of the equation is defined. We will show that the
function that assigns to E and f the function IE(f) := |detL|

R
L−1(E) (f ◦ L)

satisfies the properties of the Lebesgue integral, which, according to Theorem
247, is uniquely determined by these properties. Positivity is clear. For any
constant c > 0 and nonnegative functions f, g : E → R we have

IE(cf + g) = |detL|
Z
L−1(E)

((cf + g) ◦ L) = |detL|
Z
L−1(E)

(cf ◦ L+ g ◦ L)

= c |detL|
Z
L−1(E)

f ◦ L+ |detL|
Z
L−1(E)

g ◦ L = cIE(f) + IE(g)

= cIE(f) + IE(g).

If c = 0 the proof follows from Proposition 262.
Countable set additivity is an exercise.
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Now let v ∈ Rn; it is easy to check that L−1(E+v) = L−1(E)+L−1(v). If
h(x) = f(x− v) then

h(L(x)) = f(L(x)− v) =f(L(x− L−1(v))

and applying translation invariance to the functions h ◦ L and f ◦ L we have

IE+v(h) = |detL|
Z
L−1(E+v)

(h ◦ L) = |detL|
Z
L−1(E)+L−1(v)

(h ◦ L)

= |detL|
Z
L−1(E)

(f ◦ L) = IE(f).

To show normalization, suppose first that L is elementary. According to
Formula (5.11) we have

IQn(1) = |detL|
Z
L−1(Qn)

(1) = |detL|µ(L−1(Qn)) = |detL| 1

|detL| = 1.

(5.12)
This completes the proof of the theorem for any elementary transformation

L, and in particular we have that for any Borel set E,

µ(L(E)) = |detL|µ(E). (5.13)

But any linear transformation is a composition of elementary linear transfor-
mations, and since the determinant of the composition is the product of the
determinants, Formula (5.13) implies that Formula (5.11) holds for an arbitrary
linear transformation. Now Equation (5.12) holds, and finishes the proof.

Corollary 367 Let L : Rn → Rn be nonsingular. For any integrable Borel
function f : E → R, where E ⊂ Rn is a Borel set,

R
E
f = |detL|

R
L−1(E) (f ◦ L).

Exercise 245 Finish the proof of the above theorem.

Exercise 246 Prove the above corollary.

Recall from linear algebra that a rotation is an orthogonal linear function
from Rn to itself that preserves orientation. An orthogonal linear function, in
turn, is one that preserves the standard dot product, and such functions have
determinant ±1. Therefore:

Corollary 368 Any orthogonal linear function, and in particular any rotation,
preserves measure, i.e., if f : Rn → Rn is orthogonal and A ⊂ Rn is Borel then
µ(A) = µ(f(A)).

Another fact from linear algebra is that any isometry of Rn is the composi-
tion of an orthogonal linear function and a translation. We already know that
translation preserves measure, and hence we have:
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Corollary 369 Any isometry of Rn preserves measure.

Exercise 247 The parallelepiped spanning {v1, ...,vn} is

P (v1, ...,vn) :=

(
nX
i=1

tivi : 0 ≤ ti ≤ 1
)
.

Show that µ (P (v1, ...,vn)) = |detM|, whereM is the matrix having {v1, ...,vn}
as rows. Hint: Find a linear function that takes the unit cube to P (v1, ...,vn).

Another important type of linear function defined on Rn is rescaling. A
rescaling of Rn with factor s > 0 is the function ρs : Rn → Rn given by
ρs(v) = sv. The matrix for this linear function consists of sI, where I is the
identity matrix; that is, sI has s for the diagonal entries and 0’s elsewhere. The
determinant of this function is the product of the diagonal elements, or sn. We
have proved:

Corollary 370 For any s > 0 and Borel set A ⊂ Rn, µ(σs(A)) = snµ(A).

5.9 Change of Variables
In this section we will investigate the following important idea: if a f : U → Rn,
U ⊂ Rn is C1 then “locally” (that is, in some possibly small open set contain-
ing that point), the function behaves approximately like its derivative in terms
of measure. While there are related results concerning points where the linear
function D(f) is singular, we will only consider the case when detD(f) 6= 0 and
the Inverse Function Theorem implies that f is open and locally a homeomor-
phism. We start with the following proposition, which extends Theorem 345
and is used in the proof of the main theorem.

Proposition 371 Let f : U → Rn be a regular function, where U ⊂ Rn is open,
and let A ⊂ U be compact. Given z ∈U , define gz := Df(z)−1 ◦ f : U → Rn.
For every ε > 0 there exists a δ > 0 such that if z,x ∈A and y ∈U such that
kx− yk < δ, then

kgz(y)− gz(x)−Dgz(x)(y− x)k < ε kx− yk .

Proof. By Proposition 352 there is some k > 0 such that for all z ∈ A and
v ∈Rn, °°°Df(z)

−1
(v)
°°° ≤ k kvk .

According to Theorem 345 there is some δ > 0 such that if kx− yk < δ with
x ∈ A then

kf(y)− f(x)−Df(x)(y− x)k < ε kx− yk
k

.

For all such x,y and z ∈A we then have Dgz(x) = Df(z)
−1◦Df(x) and

kgz(y)− gz(x)−D(gz)(x)(y − x)k
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=
°°°Df(z)

−1
(f(y)− f(x)−Df(x)(y− x))

°°°
≤ k kf(y)− f(x)−Df(x)(y− x)k < ε kx− yk .

Theorem 372 Let f : U → Rn be a C1 function on an open set U ⊂ Rn such
that D(x) := |detD(f)(x)| 6=0 for all x ∈U . For any compact set A ⊂ U and
ρ > 0 there exists a δ > 0 such that if Q is a semicube of radius r < δ centered
at x ∈A, ¯̄̄̄

µ (f(Q)

(2r)n
−D(x)

¯̄̄̄
< ρ.

Proof. Let λ > 0 be small enough that

1− ρ < (1− λ)n < (1 + λ)n < 1 + ρ.

According to Proposition 371 there exists a δ > 0 such that if z,x ∈A and y ∈U
such that kx− yk < δ, then

kgz(y)− gz(x)−Dgz(x)(y − x)k <
λ√
n
kx− yk .

where gz := Df(z)−1◦f . Applying Proposition 115, we have that if kx− ykmax <
δ, then kx− yk < δ and

kgz(y)− gz(x)−Dgz(x)(y − x)kmax <
λ√
n
kx− yk ≤ λ kx− ykmax . (5.14)

Now fix any x ∈ A. Since Lebesgue measure and distance are both translation
invariant, by composing f with translations we need only consider the case
x = 0 and f(0) = 0. Taking z = x, we have Dg0(0)) =Df(0)−1Df(0)= I and
Formula (5.14) simplifies to

kg0(y)− ykmax < λ kykmax (5.15)

when kykmax < δ. If r < δ and y ∈ Cmax(0, r) then

kg0(y)kmax ≤ kg0(y)− ykmax + kykmax < (1 + λ) r

which proves
g0(Cmax(0, r)) ⊂ Cmax (0, (1 + λ) r) .

From this we conclude that

µ (g0(Cmax(0, r)) ≤ (2 (1 + λ) r)n = (1 + λ)n(2r)n < (1 + ρ)(2r)n. (5.16)

Since g0 = Df(0)−1 ◦ f , we obtain from Theorem 366 that

µ(f(Cmax(0, r)) ≤ (1 + ρ)D(0)(2r)n.
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We next will prove that

C := Cmax (0, (1− λ) r) ⊂ g0(Bmax(0, r)). (5.17)

Calculating as in Formula (5.16) we then obtain

µ (f(Bmax(0, r)) ≥ (1− ρ)D(0)(2r)n (5.18)

to finish the proof of the theorem.
To prove Formula (5.17)9, suppose first that kykmax = r, so

kg0(y)kmax ≥ kykmax − kg0(y)− ykmax > r − λ

2
r = (1− λ

2
)r.

That is, if kykmax = r then g0(y) /∈C and

A := g0(Bmax(0,r)) ∩ C = g0(Cmax(0,r)) ∩ C.

Now according to Corollary 354, g0 is open, so A is open in C. On the other
hand, g0(Cmax(0,r)) is compact, hence closed, and so A is also closed in C.
Since g0(0) = 0, A is also non-empty, and since C is connected, C = A ⊂
g0(Bmax(0,r)).

Proposition 373 Let φ : U → Rn be a one-to-one C1 function, where U ⊂ Rn
is open and for all x ∈U , D(x) := |detDφ(x)| 6= 0. Let E ⊂ U be an Fσ set
and F := φ(E). Then

µ(F ) =

Z
E

D.

Proof. We will prove the proposition through a sequence of weakening
assumptions on E: starting with E being a semicube. In this case consider
the sequence {Km}∞m=1 from Theorem 274, where Km is a collection {Qmi}nmi=1
of disjoint semicubes that subdivide the semicube E. Define a simple function
sm :=

P
D(xmi)χQmi

, where xmi is the center of Qmi. Since D is continuous,
for any x ∈E and ε > 0, for large enough m, |D(x)−D(xmi)| < ε, where
x ∈ Qmi. In other words, sm

p→ D. According to Theorem 372, given ε > 0, for
large enough m we have that¯̄̄̄

µ(φ(Qmi))

µ(Qmi)
−D(xmi)

¯̄̄̄
≤ ε

for all i. Now F is the disjoint union of the sets φ(Qmi) for every m and we
have

µ(F ) =
X
i

µ(φ(Qmi)) ≤ (1 + ε)
X
i

D(xmi)µ(Qmi) = (1 + ε)

Z
E

sm.

Applying the Lebesgue Dominated Convergence Theorem (each sm is bounded
above by the maximum ofD on the compact setE), we have µ(F ) ≤ (1+ε)

R
E
D.

A similar argument shows that µ(F ) ≥ (1−ε)
R
E
D and this first step is finished.
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Now suppose E is an arbitrary compact set. Let ε > 0. Using Theorem
274 we can cover E by disjoint semicubes Qi such that if A :=

S
i
Qi then

µ(A\E) < ε
M and therefore

R
A\ED ≤ ε. Now

µ(F ) ≤
X
i

µ(φ(Qi)) =
X
i

Z
Qi

D =

Z
A

D =

Z
E

D +

Z
A\E

D ≤
Z
E

D + ε

and since ε was arbitrary we obtain

µ(F ) ≤
Z
E

D.

Applying this to the set A\E we have µ(φ(A\E)) ≤
R
A\E D ≤ ε. Since φ

is one-to-one we have that φ(A) is the disjoint union of F and φ(A\E) and
therefore

µ(F ) = µ(φ(A))− µ(φ(A\E)) ≥
X
i

µ(φ(Qi))− ε =

Z
A

D − ε ≥
Z
E

D − ε.

Finally, if E is an Fσ then according to Lemma 291 E is the increasing union
of compact sets Ei. Since φ is injective, F is the increasing union of compact
sets Fi := φ(Ei). We have

µ(F ) = limµ(Fi) = lim

Z
Ei

D =

Z
E

D.

Theorem 374 (Change of Variables) Let φ : U → Rn be a one-to-one C1

function, where U ⊂ Rn is open and for all x ∈U , D(x) := |detDφ(x)| 6= 0.
Let E ⊂ U be closed, F := φ(E), and f : F → R be a Borel function. ThenZ

F

f =

Z
E

[(f ◦ φ)D]

provided either integral exists.

Proof. Suppose first that f = χB whereB ⊂ F is an Fσ—so alsoA = φ−1(B)
is an Fσ. By Proposition 373,Z

F

f = µ(B) =

Z
A

D =

Z
E

χφ−1(A)D =

Z
E

(f ◦ φ)D.

If f =
Pm

i=1 ciχFi is a simple function with each Fi an Fσ then the proof follows
from linearity. If f is a nonnegative Borel function then by Proposition 292
there exists a sequence (fi) of functions of the type just considered such that
fi % f on E. Then since D ≥ 0, (fi ◦ φ)D% (f ◦ φ)D andZ

F

f = lim

Z
F

fi = lim

Z
E

(fi ◦ φ)D =

Z
F

(f ◦ φ)D.

The rest of the proof is an exercise.
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Exercise 248 Finish the proof of the Change of Variables Theorem.

Exercise 249 Evaluate
R
E
exy(x4 − y4) where E is the region bounded by the

graphs of the functions xy = 1, xy = 6, x2 − y2 = 2, x2 − y2 = 4.



176 CHAPTER 5. DIFFERENTIATION



Bibliography

[1] J. R. Munkres, Topology, second edition, Prentice Hall, Upper Saddle River,
NJ, 2000.

[2] W. Rudin, Principles of Mathematical Analysis, second edition, McGraw-
Hill, New York, NY, 1964.

[3] R. Wheeden and A. Zygmund, Measure and Integral: An Introduction to
Real Analysis, Marcel Dekker, New York, NY, 1977.

177



Index

σ-compact set, 122

accumulation point, 32
angle, 146
antiderivative, 162
approximation property for infs/sups,

17
Archimedean Principle, 19
arcwise connectedness, 64

ball, metric, 27
Banach space, 133
between, 163
bijection, 9
bilipschitz, 53
binomial formula, 74
Bolzano-Weierstrass Theorem, 40, 45,

61
Borel set, see sets
bounded

subset, 27
bounds, upper and lower, see func-

tions, sets

Cauchy-Schwarz Inequality, 56, 134
Chain Rule, 148, 149
Change of Variables, 171
closure, see sets
cluster point, 32
completeness axiom, 16
complex numbers, 69

modulus of, 71
pure imaginary, 70

connectedness, 62
continuous

uniformly, 44
critical point, 148, 154

cube, 105
boundary of, 105
faces of, 105
measure of, 112

curve
acceleration of, 146
continuous, 64
differentiable, 146
speed of, 146
velocity of, 146

de Morgan’s laws, 5, 8
derivative, 144

higher, 163
partial, 142
total, 144

differentiable, 142, 145
directional derivative, 146
Dirichlet function, 100, 102
dot product, 55, 138

empty set, 5
exponential function, 85, 160, 161,

164
exponents, 73
extended reals, 16

Fσ set, 122
Fatou’s Lemma, 119
Fibonacci numbers, 20
field, 12
field isomorphism, 70
First Derivative Test, 147
functions, 9

bilipschitz, 53
Borel, 102
sum and product of, 104
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bounds, upper and lower, 18
C1, 152
characteristic, 102
composition of, 10
continuous, 34
differentiable, 142
graph of, 127
identity, 10
increasing/decreasing, 64, 151
inf and sup of, 118
inf/sup of, 18
limits of, 34
linear, see linear functions
Lipschitz, 52
local max/min of, 147
max/min of, 18
one-to-one, 9
onto, 9
regular, 153
restriction of, 11
simple, 121
uniformly continuous, 44

Fundamental Theorems of Calculus,
160, 161

gradient, 146

Heine-Borel Theorem, 40, 45, 61
Hölder Inequality, 134
homeomorphism, 48

image, 10
Implicit Function Theorem, 158
inclusion, 47
increasing/decreasing, see functions,

sets
indexing set, 7
infimum or inf, see functions, sets
infinity

algebraic conventions for, 16
limits to, 75

injection, 9
inner product, 138
interior, see sets
Intermediate Value Theorem, 64
Inverse Function Theorem, 156

inverse image, 10
isometry, 47, 167

Jacobian matrix, 144

L’Hospital’s Rule, 151
Lebesgue Dominated Convergence The-

orem, 120
Lebesgue integral, 106

as area under graph, 127
convergence theorems
Fatou’s Lemma, 119
Lebesgue Dominated Conver-
gence, 120

Uniform, 120
countable subadditivity of, 108
finite additivity of, 107

Lebesgue measure, 110
Lebesgue number, 42
linear functions

derivative of, 144
elementary, 165
rescaling, 167
rotation, 167

Lipschitz, 52
local max/min, see functions

Maclaurin series, 164
matrices, 139
Max-min Theorem, 41
maximum/minimum, see functions,

sets
Mean Value Theorem, 150
measurable, 122, 132
measure by slices, 125
metric

induced by a norm, 57
invariant, 57
standard (Euclidean), 49
standard (real), 26

metric space, 25
complete, 66
constructions
max metric, 50
plus metric, 54
product metric, 49
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examples
complex numbers, 69
continuous functions, 93
continuous real functions, 26,
91

functions into a metric space,
91

integers, 46
real numbers, 26
reals with trivial metric, 51
trivial metric, 26

Minkowski inequality, 135
Monotone Convergence Theorem, 117

nth-order approximation, 141
nonoverlapping, see sets
nonsingular linear function, 140
norm, 55, 57
norms

topologically equivalent, 62

one-to-one correspondence, 9
open ball, 27
open cover, 42
order axioms, 14
ordered field, 17
ordered pair, 7

parallelepiped, 167
partial derivative, 142
partition, 97

refinement of, 98
size of, 97

path, 64
power series, 85, 95

adding, 87
continuity of, 96
differentiation of, 164
radius of convergence of, 86

powers, 73
Powers Rule, 160
Product Rule, 159
projection, 11

Quotient Rule, 160

regular point, 153

rescaling, see linear functions
Riemann integrable, 97
Riemann integral, 97, 121

improper, 122
Riemann sum, 97
Riesz Representation Theorem, 140
Rolle’s Theorem, 151
root,n-th, 73
rotation, see linear functions

σ-algebra, 101
Sandwich Theorem, 32
semicube, 106
sequences, 20

Cauchy, 65
convergent, 31
in a product metric space, 59
increasing, 34
limit point of, 31
limsup and liminf of, 76
subsequence of, 21
terms of, 20

sequences of functions
monotone (increasing/decreasing),

89
pointwise convergence of, 87
sum and product of, 94
switching iterated limits of, 92
uniformly bounded, 89
uniformly convergent, 91

series, 78
absolute convergence of, 79
adding, 80
alternataing, 83
Cauchy Criterion for, 78
comparison test for, 81
convergence of, 78
divergence of, 78
divergence test for, 79
geometric, 79, 86
harmonic, 83
ratio test for, 82
rearrangement of terms, 84
root test for, 82
sequence of partial sums of, 78
sum of, 78



INDEX 181

telescoping, 80
series of functions, 94
sets

σ-compact, 122
Borel, 101
homeomorphic image of, 165
nonoverlapping, 111

bounds, 15
cartesian product of, 7, 11
closed, 28
closed in subspace, 45
closure of, 30
compact, 39
complement of, 5
disjoint, 5
Fσ, 122
increasing/decreasing collection

of, 109
interior of, 30
intersection of, 5, 7
maximimum/minimum of, 15
measurable, 122, 132
neighborhood of, 43
nested, 41
open, 28
open in subspace, 45
pairwise disjoint, 105
singleton, 28
sup/inf of, 15
translation of, 105
union of, 5, 7

slice, 125
Small Tails Lemma, 78
speed, 146
square root, 19
standard basis, 139
subset, 5

proper, 5
subspace metric, 44
supremum or sup, see functions, sets
surjection, 9

tail (of a sequence), 23
Taylor’s Theorem, 163
topologically equivalent, 51

norms, 62

triangle inequality, 15, 55, 135
Tschebyshev Inequality, 111

Uniform Convergence Theorem, 120
uniformly bounded, 89
unit sphere, 61
unit vector, 55

vacuous hypothesis, 3
vector, 54
velocity, 146

Weierstrass M-test, 95

Young’s Inequality, 133


